Skip to main content
Erschienen in: Telecommunication Systems 4/2018

29.08.2017

Optimal energy-delay tradeoff for opportunistic spectrum access in cognitive radio networks

verfasst von: Oussama Habachi, Yezekael Hayel, Rachid El-Azouzi

Erschienen in: Telecommunication Systems | Ausgabe 4/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cognitive radio (CR) has been considered as a promising technology to enhance spectrum efficiency via opportunistic transmission at link level. Basic CR features allow secondary users (SUs) to transmit only when the licensed channel is not occupied by primary users (PUs). However, waiting for an idle time slot may lead to large packet delays and high energy consumption. We further consider that the SU may decide, at any moment, to use another dedicated way of communication (4G) in order to transmit his packets. Thus, we consider an Opportunistic Spectrum Access (OSA) mechanism that takes into account packet delay and energy consumption. We formulate the OSA problem as a Partially Observable Markov Decision Process (POMDP) by explicitly considering the energy consumption as well as packets’ delay, which are often ignored in existing OSA solutions. Specifically, we consider a POMDP with an average reward criterion. We derive structural properties of the value function and we show the existence of optimal strategies in the class of the threshold strategies. For implementation purposes, we propose online learning mechanisms that estimate the PU activity and determine the appropriate threshold strategy on the fly. In particular, numerical illustrations validate our theoretical findings.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Hossain, E., Niyato, D., & Han, Z. (2009). Dynamic spectrum access and management in cognitive radio networks. Cambridge: Cambridge University Press.CrossRef Hossain, E., Niyato, D., & Han, Z. (2009). Dynamic spectrum access and management in cognitive radio networks. Cambridge: Cambridge University Press.CrossRef
2.
Zurück zum Zitat Mitola, J. (2000). Cognitive radio: An integrated agent architecture for software defined radio. Ph.D. Dissertation, Royal Institute of Technology (KTH), Stockholm. Mitola, J. (2000). Cognitive radio: An integrated agent architecture for software defined radio. Ph.D. Dissertation, Royal Institute of Technology (KTH), Stockholm.
3.
Zurück zum Zitat Akyildiz, F., Lee, W.-Y., et al. (2006). NeXt generation dynamic spectrum access cognitive radio wireless networks: A survey. Computer Networks, 50(13), 2127–2159.CrossRef Akyildiz, F., Lee, W.-Y., et al. (2006). NeXt generation dynamic spectrum access cognitive radio wireless networks: A survey. Computer Networks, 50(13), 2127–2159.CrossRef
4.
Zurück zum Zitat Jaganathan, K., Menache, I., Modiano, E., & Zussman, G. (2011). Non-cooperative spectrum access—The dedicated vs. free spectrum choice. In Proceedings of ACM MOBIHOC’11. Jaganathan, K., Menache, I., Modiano, E., & Zussman, G. (2011). Non-cooperative spectrum access—The dedicated vs. free spectrum choice. In Proceedings of ACM MOBIHOC’11.
5.
Zurück zum Zitat Zhao, Q., Tong, L., Swami, A., & Chen, Y. (2007). Decentralized cognitive MAC for opportunistic spectrum access in ad hoc networks: A POMDP framework. IEEE Journal on Selected Areas in Communications, 25(3), 589–600.CrossRef Zhao, Q., Tong, L., Swami, A., & Chen, Y. (2007). Decentralized cognitive MAC for opportunistic spectrum access in ad hoc networks: A POMDP framework. IEEE Journal on Selected Areas in Communications, 25(3), 589–600.CrossRef
6.
Zurück zum Zitat Zheng, H., & Peng, C. (2005). Collaboration and fairness in opportunistic spectrum access. In Proceedings of IEEE international conference on communication (ICC). Zheng, H., & Peng, C. (2005). Collaboration and fairness in opportunistic spectrum access. In Proceedings of IEEE international conference on communication (ICC).
7.
Zurück zum Zitat Shi, Y., Hou, Y., Zhou, H., & Midkiff, S. (2012). Distributed cross-layer optimization for cognitive radio networks. IEEE Transactions on Vehicular Technology, 59(8), 4058–4069.CrossRef Shi, Y., Hou, Y., Zhou, H., & Midkiff, S. (2012). Distributed cross-layer optimization for cognitive radio networks. IEEE Transactions on Vehicular Technology, 59(8), 4058–4069.CrossRef
8.
Zurück zum Zitat Min, A., Kim, K., Singh, J., & Shin, K. (2011). Opportunistic spectrum access for mobile cognitive radios. In Proceedings of IEEE Infocom. Min, A., Kim, K., Singh, J., & Shin, K. (2011). Opportunistic spectrum access for mobile cognitive radios. In Proceedings of IEEE Infocom.
9.
Zurück zum Zitat Hoang, A. T., Liang, Y. C., Wong, D. T. C., Zeng, Y., & Zhang, R. (2008). Opportunistic spectrum access for energy-constrained cognitive radios. IEEE Transactions on Wireless Communications, 8(3), 1206–1211.CrossRef Hoang, A. T., Liang, Y. C., Wong, D. T. C., Zeng, Y., & Zhang, R. (2008). Opportunistic spectrum access for energy-constrained cognitive radios. IEEE Transactions on Wireless Communications, 8(3), 1206–1211.CrossRef
10.
Zurück zum Zitat Chen, Y., Zhao, Q., & Swami, A. (2009). Distributed spectrum sensing and access in cognitive radio networks with energy constraint. IEEE Transactions on Signal Processing, 57(2), 783–797.CrossRef Chen, Y., Zhao, Q., & Swami, A. (2009). Distributed spectrum sensing and access in cognitive radio networks with energy constraint. IEEE Transactions on Signal Processing, 57(2), 783–797.CrossRef
11.
Zurück zum Zitat Sultan, A. (2012). Sensing and transmit energy optimization for an energy harvesting cognitive radio. IEEE Wireless Communication Letters, 1, 500–503.CrossRef Sultan, A. (2012). Sensing and transmit energy optimization for an energy harvesting cognitive radio. IEEE Wireless Communication Letters, 1, 500–503.CrossRef
12.
Zurück zum Zitat Garcia-Saaverdra, A., Serrano, P., & Banchs, A. (2014). Energy-efficient optimization for distributed opportunistic scheduling. IEEE Communications Letters, 18(6), 1083–1086.CrossRef Garcia-Saaverdra, A., Serrano, P., & Banchs, A. (2014). Energy-efficient optimization for distributed opportunistic scheduling. IEEE Communications Letters, 18(6), 1083–1086.CrossRef
13.
Zurück zum Zitat Xiong, C., Lu, L., & Li, G. (2014). Energy-efficient spectrum access in cognitive radios. IEEE Journal on Selected Areas in Communications, 32(3), 550–562.CrossRef Xiong, C., Lu, L., & Li, G. (2014). Energy-efficient spectrum access in cognitive radios. IEEE Journal on Selected Areas in Communications, 32(3), 550–562.CrossRef
14.
Zurück zum Zitat Tsiropoulos, G. I., Dobre, O. A., Ahmed, M. H., & Baddour, K. E. (2016). Radio resource allocation techniques for efficient spectrum access in cognitive radio networks. IEEE Communications Surveys & Tutorials, 18(1), 824–847.CrossRef Tsiropoulos, G. I., Dobre, O. A., Ahmed, M. H., & Baddour, K. E. (2016). Radio resource allocation techniques for efficient spectrum access in cognitive radio networks. IEEE Communications Surveys & Tutorials, 18(1), 824–847.CrossRef
15.
Zurück zum Zitat Althunibat, S., Di Renzo, M., & Granelli, F. (2015). Towards energy-efficient cooperative spectrum sensing for cognitive radio networks: An overview. Telecommunication Systems, 59, 77–91.CrossRef Althunibat, S., Di Renzo, M., & Granelli, F. (2015). Towards energy-efficient cooperative spectrum sensing for cognitive radio networks: An overview. Telecommunication Systems, 59, 77–91.CrossRef
16.
Zurück zum Zitat Wu, Y., Tsang, D., & Qian, L. (2012). Energy-efficient delay-constrained transmission and sensing for cognitive radio systems. IEEE Transactions on Vehicular Technology, 61(7), 3100–3113.CrossRef Wu, Y., Tsang, D., & Qian, L. (2012). Energy-efficient delay-constrained transmission and sensing for cognitive radio systems. IEEE Transactions on Vehicular Technology, 61(7), 3100–3113.CrossRef
17.
Zurück zum Zitat Pei, Y., Liang, Y., Teh, K., & Li, K. (2011). Energy-efficient design of sequential channel sensing in cognitive radio networks: Optimal sensing strategy, power allocation, and sensing order. IEEE Journal on Selected Areas in Communication, 29(8), 1648–1659.CrossRef Pei, Y., Liang, Y., Teh, K., & Li, K. (2011). Energy-efficient design of sequential channel sensing in cognitive radio networks: Optimal sensing strategy, power allocation, and sensing order. IEEE Journal on Selected Areas in Communication, 29(8), 1648–1659.CrossRef
18.
Zurück zum Zitat Mahapatra, R., Nijsure, Y., Kaddoum, G., Hassan, N. U., & Yuen, C. (2016). Energy efficiency tradeoff mechanism towards wireless green communication: A survey. IEEE Communications Surveys & Tutorials, 18(1), 686–705.CrossRef Mahapatra, R., Nijsure, Y., Kaddoum, G., Hassan, N. U., & Yuen, C. (2016). Energy efficiency tradeoff mechanism towards wireless green communication: A survey. IEEE Communications Surveys & Tutorials, 18(1), 686–705.CrossRef
19.
Zurück zum Zitat Habachi, O., El Azouzi, R., & Hayel, Y. (2013). A Stackelberg model for opportunistic sensing in cognitive radio networks. Transactions on Wireless Communications, 12(5), 2148–2159.CrossRef Habachi, O., El Azouzi, R., & Hayel, Y. (2013). A Stackelberg model for opportunistic sensing in cognitive radio networks. Transactions on Wireless Communications, 12(5), 2148–2159.CrossRef
20.
Zurück zum Zitat Kaelbling, L., Littman, M., & Cassandra, A. (1998). Planning and acting in partially observable stochastic domains. Artificial Intelligence Journal, 101, 99–134.CrossRef Kaelbling, L., Littman, M., & Cassandra, A. (1998). Planning and acting in partially observable stochastic domains. Artificial Intelligence Journal, 101, 99–134.CrossRef
21.
Zurück zum Zitat Putterman, M. L. (2005). Markov decision process discrete stochastic dynamic programming. London: Wiley. Putterman, M. L. (2005). Markov decision process discrete stochastic dynamic programming. London: Wiley.
22.
Zurück zum Zitat Smallwood, R., & Sondik, E. (1973). The optimal control of partially observable Markov decision processes over a finite horizon. Operations Research, 21, 1071–1088.CrossRef Smallwood, R., & Sondik, E. (1973). The optimal control of partially observable Markov decision processes over a finite horizon. Operations Research, 21, 1071–1088.CrossRef
23.
Zurück zum Zitat Lovejoy, W. S. (1987). Some monotonicity results for partially observed Markov decision processes. Operations Research, 35(5), 736–743.CrossRef Lovejoy, W. S. (1987). Some monotonicity results for partially observed Markov decision processes. Operations Research, 35(5), 736–743.CrossRef
24.
Zurück zum Zitat Shellhammer, S. J., Sadek, A. K., & Zhang, W. (2009). Technical challenges for cognitive radio in the TV white space spectrum. In 2009 Information Theory and Applications Workshop (pp. 323–333). San Diego, CA. Shellhammer, S. J., Sadek, A. K., & Zhang, W. (2009). Technical challenges for cognitive radio in the TV white space spectrum. In 2009 Information Theory and Applications Workshop (pp. 323–333). San Diego, CA.
Metadaten
Titel
Optimal energy-delay tradeoff for opportunistic spectrum access in cognitive radio networks
verfasst von
Oussama Habachi
Yezekael Hayel
Rachid El-Azouzi
Publikationsdatum
29.08.2017
Verlag
Springer US
Erschienen in
Telecommunication Systems / Ausgabe 4/2018
Print ISSN: 1018-4864
Elektronische ISSN: 1572-9451
DOI
https://doi.org/10.1007/s11235-017-0370-8

Weitere Artikel der Ausgabe 4/2018

Telecommunication Systems 4/2018 Zur Ausgabe

Neuer Inhalt