Skip to main content
Erschienen in: Journal of Computational Neuroscience 1/2017

06.10.2016

Optimal nonlinear cue integration for sound localization

verfasst von: Brian J. Fischer, Jose Luis Peña

Erschienen in: Journal of Computational Neuroscience | Ausgabe 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Integration of multiple sensory cues can improve performance in detection and estimation tasks. There is an open theoretical question of the conditions under which linear or nonlinear cue combination is Bayes-optimal. We demonstrate that a neural population decoded by a population vector requires nonlinear cue combination to approximate Bayesian inference. Specifically, if cues are conditionally independent, multiplicative cue combination is optimal for the population vector. The model was tested on neural and behavioral responses in the barn owl’s sound localization system where space-specific neurons owe their selectivity to multiplicative tuning to sound localization cues interaural phase (IPD) and level (ILD) differences. We found that IPD and ILD cues are approximately conditionally independent. As a result, the multiplicative combination selectivity to IPD and ILD of midbrain space-specific neurons permits a population vector to perform Bayesian cue combination. We further show that this model describes the owl’s localization behavior in azimuth and elevation. This work provides theoretical justification and experimental evidence supporting the optimality of nonlinear cue combination.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Alais, D., & Burr, D. (2004). The ventriloquist effect results from near-optimal bimodal integration. Current Biology, 14, 257–262.CrossRefPubMed Alais, D., & Burr, D. (2004). The ventriloquist effect results from near-optimal bimodal integration. Current Biology, 14, 257–262.CrossRefPubMed
Zurück zum Zitat Albeck, Y., & Konishi, M. (1995). Responses of neurons in the auditory pathway of the barn owl to partially correlated binaural signals. Journal of Neurophysiology, 74, 1689–1700.PubMed Albeck, Y., & Konishi, M. (1995). Responses of neurons in the auditory pathway of the barn owl to partially correlated binaural signals. Journal of Neurophysiology, 74, 1689–1700.PubMed
Zurück zum Zitat Angelaki, D. E., Gu, Y., & DeAngelis, G. C. (2009). Multisensory integration: psychophysics, neurophysiology, and computation. Current Opinion in Neurobiology, 19, 452–458.CrossRefPubMedPubMedCentral Angelaki, D. E., Gu, Y., & DeAngelis, G. C. (2009). Multisensory integration: psychophysics, neurophysiology, and computation. Current Opinion in Neurobiology, 19, 452–458.CrossRefPubMedPubMedCentral
Zurück zum Zitat Bala, A. D. S., Spitzer, M. W., & Takahashi, T. T. (2007). Auditory spatial acuity approximates the resolving power of space-specific neurons. PLoS ONE, 2, e675.CrossRefPubMedPubMedCentral Bala, A. D. S., Spitzer, M. W., & Takahashi, T. T. (2007). Auditory spatial acuity approximates the resolving power of space-specific neurons. PLoS ONE, 2, e675.CrossRefPubMedPubMedCentral
Zurück zum Zitat Battaglia, P. W., Jacobs, R. A., & Aslin, R. N. (2003). Bayesian integration of visual and auditory signals for spatial localization. Journal of the Optical Society of America A, 20, 1391–1397.CrossRef Battaglia, P. W., Jacobs, R. A., & Aslin, R. N. (2003). Bayesian integration of visual and auditory signals for spatial localization. Journal of the Optical Society of America A, 20, 1391–1397.CrossRef
Zurück zum Zitat Beck, J., Ma, W. J., Latham, P. E., & Pouget, A. (2007). Probabilistic population codes and the exponential family of distributions. Progress in Brain Research, 165, 509–519.CrossRefPubMed Beck, J., Ma, W. J., Latham, P. E., & Pouget, A. (2007). Probabilistic population codes and the exponential family of distributions. Progress in Brain Research, 165, 509–519.CrossRefPubMed
Zurück zum Zitat Beck, J. M., Latham, P. E., & Pouget, A. (2011). Marginalization in neural circuits with divisive normalization. Journal of Neuroscience, 31, 15310–15319.CrossRefPubMedPubMedCentral Beck, J. M., Latham, P. E., & Pouget, A. (2011). Marginalization in neural circuits with divisive normalization. Journal of Neuroscience, 31, 15310–15319.CrossRefPubMedPubMedCentral
Zurück zum Zitat Brainard, M. S., & Knudsen, E. I. (1993). Experience-dependent plasticity in the inferior colliculus: a site for visual calibration of the neural representation of auditory space in the barn owl. Journal of Neuroscience, 13, 4589–4608.PubMed Brainard, M. S., & Knudsen, E. I. (1993). Experience-dependent plasticity in the inferior colliculus: a site for visual calibration of the neural representation of auditory space in the barn owl. Journal of Neuroscience, 13, 4589–4608.PubMed
Zurück zum Zitat Brainard, M. S., Knudsen, E. I., & Esterly, S. D. (1992). Neural derivation of sound source location: resolution of spatial ambiguities in binaural cues. Journal of the Acoustical Society of America, 91, 1015–1027.CrossRefPubMed Brainard, M. S., Knudsen, E. I., & Esterly, S. D. (1992). Neural derivation of sound source location: resolution of spatial ambiguities in binaural cues. Journal of the Acoustical Society of America, 91, 1015–1027.CrossRefPubMed
Zurück zum Zitat Bregman AS (1994) Auditory scene analysis: The perceptual organization of sound. Cambridge, MA.: MIT press. Bregman AS (1994) Auditory scene analysis: The perceptual organization of sound. Cambridge, MA.: MIT press.
Zurück zum Zitat Carr, C. E., & Konishi, M. (1990). A circuit for detection of interaural time differences in the brain stem of the barn owl. Journal of Neuroscience, 10, 3227–3246.PubMed Carr, C. E., & Konishi, M. (1990). A circuit for detection of interaural time differences in the brain stem of the barn owl. Journal of Neuroscience, 10, 3227–3246.PubMed
Zurück zum Zitat Cazettes, F., Fischer, B. J., & Pena, J. L. (2014). Spatial cue reliability drives frequency tuning in the barn Owl’s midbrain. eLife, 3, e04854.CrossRefPubMedPubMedCentral Cazettes, F., Fischer, B. J., & Pena, J. L. (2014). Spatial cue reliability drives frequency tuning in the barn Owl’s midbrain. eLife, 3, e04854.CrossRefPubMedPubMedCentral
Zurück zum Zitat Cazettes, F., Fischer, B. J., & Peña, J. L. (2016). Cue reliability represented in the shape of tuning curves in the owl’s sound localization system. Journal of Neuroscience, 36, 2101–2110.CrossRefPubMedPubMedCentral Cazettes, F., Fischer, B. J., & Peña, J. L. (2016). Cue reliability represented in the shape of tuning curves in the owl’s sound localization system. Journal of Neuroscience, 36, 2101–2110.CrossRefPubMedPubMedCentral
Zurück zum Zitat Christianson, G. B., & Peña, J. L. (2006). Noise reduction of coincidence detector output by the inferior colliculus of the barn owl. Journal of Neuroscience, 26, 5948–5954.CrossRefPubMedPubMedCentral Christianson, G. B., & Peña, J. L. (2006). Noise reduction of coincidence detector output by the inferior colliculus of the barn owl. Journal of Neuroscience, 26, 5948–5954.CrossRefPubMedPubMedCentral
Zurück zum Zitat Edut, S., & Eilam, D. (2004). Protean behavior under barn-owl attack: voles alternate between freezing and fleeing and spiny mice flee in alternating patterns. Behavioural Brain Research, 155, 207–216.CrossRefPubMed Edut, S., & Eilam, D. (2004). Protean behavior under barn-owl attack: voles alternate between freezing and fleeing and spiny mice flee in alternating patterns. Behavioural Brain Research, 155, 207–216.CrossRefPubMed
Zurück zum Zitat Egnor, R. S. (2001). Effects of binaural decorrelation on neural and behavioral processing of interaural level differences in the barn owl (Tyto alba). Journal of Comparative Physiology A, 187, 589–595.CrossRef Egnor, R. S. (2001). Effects of binaural decorrelation on neural and behavioral processing of interaural level differences in the barn owl (Tyto alba). Journal of Comparative Physiology A, 187, 589–595.CrossRef
Zurück zum Zitat Eliasmith C., & Anderson C.H. (2004). Neural engineering: Computation, representation, and dynamics in neurobiological systems. Cambridge, MA: MIT Press. Eliasmith C., & Anderson C.H. (2004). Neural engineering: Computation, representation, and dynamics in neurobiological systems. Cambridge, MA: MIT Press.
Zurück zum Zitat Ernst, M. O., & Banks, M. S. (2002). Humans integrate visual and haptic information in a statistically optimal fashion. Nature, 415, 429–433.CrossRefPubMed Ernst, M. O., & Banks, M. S. (2002). Humans integrate visual and haptic information in a statistically optimal fashion. Nature, 415, 429–433.CrossRefPubMed
Zurück zum Zitat Fetsch, C. R., Pouget, A., DeAngelis, G. C., & Angelaki, D. E. (2011). Neural correlates of reliability-based cue weighting during multisensory integration. Nature Neuroscience, 15, 146–154.CrossRefPubMedPubMedCentral Fetsch, C. R., Pouget, A., DeAngelis, G. C., & Angelaki, D. E. (2011). Neural correlates of reliability-based cue weighting during multisensory integration. Nature Neuroscience, 15, 146–154.CrossRefPubMedPubMedCentral
Zurück zum Zitat Fischer, B. J., & Konishi, M. (2008). Variability reduction in interaural time difference tuning in the barn owl. Journal of Neurophysiology, 100, 708–715.CrossRefPubMedPubMedCentral Fischer, B. J., & Konishi, M. (2008). Variability reduction in interaural time difference tuning in the barn owl. Journal of Neurophysiology, 100, 708–715.CrossRefPubMedPubMedCentral
Zurück zum Zitat Fischer, B. J., & Peña, J. L. (2011). Owl’s behavior and neural representation predicted by Bayesian inference. Nature Neuroscience, 14, 1061–1066.CrossRefPubMedPubMedCentral Fischer, B. J., & Peña, J. L. (2011). Owl’s behavior and neural representation predicted by Bayesian inference. Nature Neuroscience, 14, 1061–1066.CrossRefPubMedPubMedCentral
Zurück zum Zitat Fischer, B. J., Peña, J. L., & Konishi, M. (2007). Emergence of multiplicative auditory responses in the midbrain of the barn owl. Journal of Neurophysiology, 98, 1181–1193.CrossRefPubMedPubMedCentral Fischer, B. J., Peña, J. L., & Konishi, M. (2007). Emergence of multiplicative auditory responses in the midbrain of the barn owl. Journal of Neurophysiology, 98, 1181–1193.CrossRefPubMedPubMedCentral
Zurück zum Zitat Fischer, B. J., Anderson, C. H., & Peña, J. L. (2009). Multiplicative auditory spatial receptive fields created by a hierarchy of population codes. PLoS One, 4, e8015.CrossRefPubMedPubMedCentral Fischer, B. J., Anderson, C. H., & Peña, J. L. (2009). Multiplicative auditory spatial receptive fields created by a hierarchy of population codes. PLoS One, 4, e8015.CrossRefPubMedPubMedCentral
Zurück zum Zitat Fux, M., & Eilam, D. (2009a). How barn owls (Tyto alba) visually follow moving voles (Microtus socialis) before attacking them. Physiology and Behavior, 98, 359–366.CrossRefPubMed Fux, M., & Eilam, D. (2009a). How barn owls (Tyto alba) visually follow moving voles (Microtus socialis) before attacking them. Physiology and Behavior, 98, 359–366.CrossRefPubMed
Zurück zum Zitat Fux, M., & Eilam, D. (2009b). The trigger for barn owl (Tyto alba) attack is the onset of stopping or progressing of the prey. Behavioural Processes, 81, 140–143.CrossRefPubMed Fux, M., & Eilam, D. (2009b). The trigger for barn owl (Tyto alba) attack is the onset of stopping or progressing of the prey. Behavioural Processes, 81, 140–143.CrossRefPubMed
Zurück zum Zitat Girshick, A. R., Landy, M. S., & Simoncelli, E. P. (2011). Cardinal rules: visual orientation perception reflects knowledge of environmental statistics. Nature Neuroscience, 14, 926–932.CrossRefPubMedPubMedCentral Girshick, A. R., Landy, M. S., & Simoncelli, E. P. (2011). Cardinal rules: visual orientation perception reflects knowledge of environmental statistics. Nature Neuroscience, 14, 926–932.CrossRefPubMedPubMedCentral
Zurück zum Zitat Gold, J. I., & Shadlen, M. N. (2001). Neural computations that underlie decisions about sensory stimuli. Trends in Cognitive Science, 5, 10–16.CrossRef Gold, J. I., & Shadlen, M. N. (2001). Neural computations that underlie decisions about sensory stimuli. Trends in Cognitive Science, 5, 10–16.CrossRef
Zurück zum Zitat Gu, Y., Angelaki, D. E., & DeAngelis, G. C. (2008). Neural correlates of multisensory cue integration in macaque MSTd. Nature Neuroscience, 11, 1201–1210.CrossRefPubMedPubMedCentral Gu, Y., Angelaki, D. E., & DeAngelis, G. C. (2008). Neural correlates of multisensory cue integration in macaque MSTd. Nature Neuroscience, 11, 1201–1210.CrossRefPubMedPubMedCentral
Zurück zum Zitat Hillis, J. M., Watt, S. J., Landy, M. S., & Banks, M. S. (2004). Slant from texture and disparity cues: optimal cue combination. Journal of Vision, 4, 1.CrossRef Hillis, J. M., Watt, S. J., Landy, M. S., & Banks, M. S. (2004). Slant from texture and disparity cues: optimal cue combination. Journal of Vision, 4, 1.CrossRef
Zurück zum Zitat Hollensteiner, K. J., Pieper, F., Engler, G., König, P., & Engel, A. K. (2015). Crossmodal integration improves sensory detection thresholds in the ferret. PLoS One, 10, e0124952.CrossRefPubMedPubMedCentral Hollensteiner, K. J., Pieper, F., Engler, G., König, P., & Engel, A. K. (2015). Crossmodal integration improves sensory detection thresholds in the ferret. PLoS One, 10, e0124952.CrossRefPubMedPubMedCentral
Zurück zum Zitat Jacobs, R. A. (1999). Optimal integration of texture and motion cues to depth. Vision Research, 39, 3621–3629.CrossRefPubMed Jacobs, R. A. (1999). Optimal integration of texture and motion cues to depth. Vision Research, 39, 3621–3629.CrossRefPubMed
Zurück zum Zitat Jazayeri, M., & Movshon, J. A. (2006). Optimal representation of sensory information by neural populations. Nature Neuroscience, 9, 690–696.CrossRefPubMed Jazayeri, M., & Movshon, J. A. (2006). Optimal representation of sensory information by neural populations. Nature Neuroscience, 9, 690–696.CrossRefPubMed
Zurück zum Zitat Jeffress, L. A., Blodgett, H. C., & Deatherage, B. H. (1962). Effect of interaural correlation on the precision of centering a noise. Journal of the Acoustical Society of America, 34, 1122–1123.CrossRef Jeffress, L. A., Blodgett, H. C., & Deatherage, B. H. (1962). Effect of interaural correlation on the precision of centering a noise. Journal of the Acoustical Society of America, 34, 1122–1123.CrossRef
Zurück zum Zitat Johnson, D. H. (1980). The relationship between spike rate and synchrony in responses of auditory-nerve fibers to single tones. Journal of the Acoustical Society of America, 68, 1115–1122.CrossRefPubMed Johnson, D. H. (1980). The relationship between spike rate and synchrony in responses of auditory-nerve fibers to single tones. Journal of the Acoustical Society of America, 68, 1115–1122.CrossRefPubMed
Zurück zum Zitat Keller, C. H., Hartung, K., & Takahashi, T. T. (1998). Head-related transfer functions of the barn owl: measurement and neural responses. Hearing Research, 118, 13–34.CrossRefPubMed Keller, C. H., Hartung, K., & Takahashi, T. T. (1998). Head-related transfer functions of the barn owl: measurement and neural responses. Hearing Research, 118, 13–34.CrossRefPubMed
Zurück zum Zitat Kita, H. & Armstrong, W. (1991). A biotin-containing compound N-(2-aminoethyl)biotinamide for intracellular labeling and neuronal tracing studies: comparison with biocytin. Journal of Neuroscience Methods, 37, 141–150. Kita, H. & Armstrong, W. (1991). A biotin-containing compound N-(2-aminoethyl)biotinamide for intracellular labeling and neuronal tracing studies: comparison with biocytin. Journal of Neuroscience Methods, 37, 141–150.
Zurück zum Zitat Knill, D. C., & Pouget, A. (2004). The Bayesian brain: the role of uncertainty in neural coding and computation. Trends in Neurosciences, 27, 712–719.CrossRefPubMed Knill, D. C., & Pouget, A. (2004). The Bayesian brain: the role of uncertainty in neural coding and computation. Trends in Neurosciences, 27, 712–719.CrossRefPubMed
Zurück zum Zitat Knudsen, E. I. (1982). Auditory and visual maps of space in the optic tectum of the owl. Journal of Neuroscience, 2, 1177–1194.PubMed Knudsen, E. I. (1982). Auditory and visual maps of space in the optic tectum of the owl. Journal of Neuroscience, 2, 1177–1194.PubMed
Zurück zum Zitat Knudsen, E. I. (1983). Subdivisions of the inferior colliculus in the barn owl (Tyto alba). Journal of Comparative Neurology, 218, 174–186.CrossRefPubMed Knudsen, E. I. (1983). Subdivisions of the inferior colliculus in the barn owl (Tyto alba). Journal of Comparative Neurology, 218, 174–186.CrossRefPubMed
Zurück zum Zitat Knudsen, E. I., & Konishi, M. (1978). A neural map of auditory space in the owl. Science, 200, 795–797.CrossRefPubMed Knudsen, E. I., & Konishi, M. (1978). A neural map of auditory space in the owl. Science, 200, 795–797.CrossRefPubMed
Zurück zum Zitat Knudsen, E. I., & Konishi, M. (1979). Mechanisms of sound localization in the barn owl (Tyto alba). Journal of Comparative Physiology, 133, 13–21.CrossRef Knudsen, E. I., & Konishi, M. (1979). Mechanisms of sound localization in the barn owl (Tyto alba). Journal of Comparative Physiology, 133, 13–21.CrossRef
Zurück zum Zitat Knudsen, E. I., Konishi, M., & Pettigrew, J. D. (1977). Receptive fields of auditory neurons in the owl. Science, 198, 1278–1280.CrossRefPubMed Knudsen, E. I., Konishi, M., & Pettigrew, J. D. (1977). Receptive fields of auditory neurons in the owl. Science, 198, 1278–1280.CrossRefPubMed
Zurück zum Zitat Knudsen, E. I., Blasdel, G. G., & Konishi, M. (1979). Sound localization by the barn owl (Tyto alba) measured with the search coil technique. Journal of Comparative Physiology, 133, 1–11.CrossRef Knudsen, E. I., Blasdel, G. G., & Konishi, M. (1979). Sound localization by the barn owl (Tyto alba) measured with the search coil technique. Journal of Comparative Physiology, 133, 1–11.CrossRef
Zurück zum Zitat Koch, C. (2004). Biophysics of computation: information processing in single neurons. USA: Oxford University Press. Koch, C. (2004). Biophysics of computation: information processing in single neurons. USA: Oxford University Press.
Zurück zum Zitat Konishi, M. (1993). Neuroethology of sound localization in the owl. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 173, 3–7.CrossRef Konishi, M. (1993). Neuroethology of sound localization in the owl. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 173, 3–7.CrossRef
Zurück zum Zitat Köppl, C. (1997a). Phase locking to high frequencies in the auditory nerve and cochlear nucleus magnocellularis of the barn owl, Tyto alba. Journal of Neuroscience, 17, 3312–3321.PubMed Köppl, C. (1997a). Phase locking to high frequencies in the auditory nerve and cochlear nucleus magnocellularis of the barn owl, Tyto alba. Journal of Neuroscience, 17, 3312–3321.PubMed
Zurück zum Zitat Köppl, C. (1997b). Frequency tuning and spontaneous activity in the auditory nerve and cochlear nucleus magnocellularis of the barn owl Tyto alba. Journal of Neurophysiology, 77, 364–377. Köppl, C. (1997b). Frequency tuning and spontaneous activity in the auditory nerve and cochlear nucleus magnocellularis of the barn owl Tyto alba. Journal of Neurophysiology, 77, 364–377.
Zurück zum Zitat Kullback, S., & Leibler, R. A. (1951). On information and sufficiency. Annals of Mathematical Statistics, 22, 79–86.CrossRef Kullback, S., & Leibler, R. A. (1951). On information and sufficiency. Annals of Mathematical Statistics, 22, 79–86.CrossRef
Zurück zum Zitat Landy, M. S., & Kojima, H. (2001). Ideal cue combination for localizing texture-defined edges. Journal of the Optical Society of America A, 18, 2307.CrossRef Landy, M. S., & Kojima, H. (2001). Ideal cue combination for localizing texture-defined edges. Journal of the Optical Society of America A, 18, 2307.CrossRef
Zurück zum Zitat Landy, M. S., Maloney, L. T., Johnston, E. B., & Young, M. (1995). Measurement and modeling of depth cue combination: in defense of weak fusion. Vision Research, 35, 389–412.CrossRefPubMed Landy, M. S., Maloney, L. T., Johnston, E. B., & Young, M. (1995). Measurement and modeling of depth cue combination: in defense of weak fusion. Vision Research, 35, 389–412.CrossRefPubMed
Zurück zum Zitat Landy MS, Banks MS, Knill DC (2011) Ideal-observer models of cue integration. Sensory Cue Integration: 5–29. Landy MS, Banks MS, Knill DC (2011) Ideal-observer models of cue integration. Sensory Cue Integration: 5–29.
Zurück zum Zitat Ma, W. J., Beck, J. M., Latham, P. E., & Pouget, A. (2006). Bayesian inference with probabilistic population codes. Nature Neuroscience, 9, 1432–1438.CrossRefPubMed Ma, W. J., Beck, J. M., Latham, P. E., & Pouget, A. (2006). Bayesian inference with probabilistic population codes. Nature Neuroscience, 9, 1432–1438.CrossRefPubMed
Zurück zum Zitat Manley, G. A., Koppl, C., & Konishi, M. (1988). A neural map of interaural intensity differences in the brain stem of the barn owl. Journal of Neuroscience, 8, 2665–2676.PubMed Manley, G. A., Koppl, C., & Konishi, M. (1988). A neural map of interaural intensity differences in the brain stem of the barn owl. Journal of Neuroscience, 8, 2665–2676.PubMed
Zurück zum Zitat Middlebrooks, J. C., & Green, D. M. (1991). Sound localization by human listeners. Annual Review of Psychology, 42, 135–159.CrossRefPubMed Middlebrooks, J. C., & Green, D. M. (1991). Sound localization by human listeners. Annual Review of Psychology, 42, 135–159.CrossRefPubMed
Zurück zum Zitat Mogdans, J., & Knudsen, E. I. (1994). Representation of interaural level difference in the VLVp, the first site of binaural comparison in the barn owl’s auditory system. Hearing Research, 74, 148–164.CrossRefPubMed Mogdans, J., & Knudsen, E. I. (1994). Representation of interaural level difference in the VLVp, the first site of binaural comparison in the barn owl’s auditory system. Hearing Research, 74, 148–164.CrossRefPubMed
Zurück zum Zitat Moiseff, A. (1989). Bi-coordinate sound localization by the barn owl. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 164, 637–644.CrossRef Moiseff, A. (1989). Bi-coordinate sound localization by the barn owl. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 164, 637–644.CrossRef
Zurück zum Zitat Moiseff, A., & Konishi, M. (1983). Binaural characteristics of units in the owl’s brainstem auditory pathway: precursors of restricted spatial receptive fields. Journal of Neuroscience, 3, 2553–2562.PubMed Moiseff, A., & Konishi, M. (1983). Binaural characteristics of units in the owl’s brainstem auditory pathway: precursors of restricted spatial receptive fields. Journal of Neuroscience, 3, 2553–2562.PubMed
Zurück zum Zitat Mysore, S. P., & Knudsen, E. I. (2012). Reciprocal inhibition of inhibition: a circuit motif for flexible categorization in stimulus selection. Neuron, 73, 193–205.CrossRefPubMedPubMedCentral Mysore, S. P., & Knudsen, E. I. (2012). Reciprocal inhibition of inhibition: a circuit motif for flexible categorization in stimulus selection. Neuron, 73, 193–205.CrossRefPubMedPubMedCentral
Zurück zum Zitat Mysore, S. P., & Knudsen, E. I. (2013). A shared inhibitory circuit for both exogenous and endogenous control of stimulus selection. Nature Neuroscience, 16, 473–478.CrossRefPubMedPubMedCentral Mysore, S. P., & Knudsen, E. I. (2013). A shared inhibitory circuit for both exogenous and endogenous control of stimulus selection. Nature Neuroscience, 16, 473–478.CrossRefPubMedPubMedCentral
Zurück zum Zitat Niven, J. E., & Laughlin, S. B. (2008). Energy limitation as a selective pressure on the evolution of sensory systems. Journal of Experimental Biology, 211, 1792–1804.CrossRefPubMed Niven, J. E., & Laughlin, S. B. (2008). Energy limitation as a selective pressure on the evolution of sensory systems. Journal of Experimental Biology, 211, 1792–1804.CrossRefPubMed
Zurück zum Zitat Nix, J., & Hohmann, V. (2006). Sound source localization in real sound fields based on empirical statistics of interaural parametersa). Journal of the Acoustical Society of America, 119, 463–479.CrossRefPubMed Nix, J., & Hohmann, V. (2006). Sound source localization in real sound fields based on empirical statistics of interaural parametersa). Journal of the Acoustical Society of America, 119, 463–479.CrossRefPubMed
Zurück zum Zitat Ohayon, S., van der Willigen, R. F., Wagner, H., Katsman, I., & Rivlin, E. (2006). On the barn owl’s visual pre-attack behavior: I. Structure of head movements and motion patterns. Journal of Comparative Physiology A, 192, 927–940.CrossRef Ohayon, S., van der Willigen, R. F., Wagner, H., Katsman, I., & Rivlin, E. (2006). On the barn owl’s visual pre-attack behavior: I. Structure of head movements and motion patterns. Journal of Comparative Physiology A, 192, 927–940.CrossRef
Zurück zum Zitat Oruç, I., Maloney, L. T., & Landy, M. S. (2003). Weighted linear cue combination with possibly correlated error. Vision Research, 43, 2451–2468.CrossRefPubMed Oruç, I., Maloney, L. T., & Landy, M. S. (2003). Weighted linear cue combination with possibly correlated error. Vision Research, 43, 2451–2468.CrossRefPubMed
Zurück zum Zitat Palmer, A. R., & Russell, I. J. (1986). Phase-locking in the cochlear nerve of the guinea-pig and its relation to the receptor potential of inner hair-cells. Hearing Research, 24, 1–15.CrossRefPubMed Palmer, A. R., & Russell, I. J. (1986). Phase-locking in the cochlear nerve of the guinea-pig and its relation to the receptor potential of inner hair-cells. Hearing Research, 24, 1–15.CrossRefPubMed
Zurück zum Zitat Pecka, M., Siveke, I., Grothe, B., & Lesica, N. A. (2010). Enhancement of ITD coding within the initial stages of the auditory pathway. Journal of Neurophysiology, 103, 38–46.CrossRefPubMed Pecka, M., Siveke, I., Grothe, B., & Lesica, N. A. (2010). Enhancement of ITD coding within the initial stages of the auditory pathway. Journal of Neurophysiology, 103, 38–46.CrossRefPubMed
Zurück zum Zitat Peña, J. L., & Konishi, M. (2000). Cellular mechanisms for resolving phase ambiguity in the owl’s inferior colliculus. Proceedings of the National Academy of Science, 97, 11787–11792.CrossRef Peña, J. L., & Konishi, M. (2000). Cellular mechanisms for resolving phase ambiguity in the owl’s inferior colliculus. Proceedings of the National Academy of Science, 97, 11787–11792.CrossRef
Zurück zum Zitat Peña, J. L., & Konishi, M. (2001). Auditory spatial receptive fields created by multiplication. Science, 292, 249–252.CrossRefPubMed Peña, J. L., & Konishi, M. (2001). Auditory spatial receptive fields created by multiplication. Science, 292, 249–252.CrossRefPubMed
Zurück zum Zitat Peña, J. L., & Konishi, M. (2002). From postsynaptic potentials to spikes in the genesis of auditory spatial receptive fields. Journal of Neuroscience, 22, 5652–5658.PubMed Peña, J. L., & Konishi, M. (2002). From postsynaptic potentials to spikes in the genesis of auditory spatial receptive fields. Journal of Neuroscience, 22, 5652–5658.PubMed
Zurück zum Zitat Peña, J. L., & Konishi, M. (2004). Robustness of multiplicative processes in auditory spatial tuning. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 24, 8907–8910.CrossRef Peña, J. L., & Konishi, M. (2004). Robustness of multiplicative processes in auditory spatial tuning. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 24, 8907–8910.CrossRef
Zurück zum Zitat Roman, N., Wang, D., & Brown, G. J. (2003). Speech segregation based on sound localization. Journal of the Acoustical Society of America, 114, 2236–2252.CrossRefPubMed Roman, N., Wang, D., & Brown, G. J. (2003). Speech segregation based on sound localization. Journal of the Acoustical Society of America, 114, 2236–2252.CrossRefPubMed
Zurück zum Zitat Saberi, K., Takahashi, Y., Konishi, M., Albeck, Y., Arthur, B. J., & Farahbod, H. (1998). Effects of interaural decorrelation on neural and behavioral detection of spatial cues. Neuron, 21, 789–798.CrossRefPubMed Saberi, K., Takahashi, Y., Konishi, M., Albeck, Y., Arthur, B. J., & Farahbod, H. (1998). Effects of interaural decorrelation on neural and behavioral detection of spatial cues. Neuron, 21, 789–798.CrossRefPubMed
Zurück zum Zitat Shi, L., & Griffiths, T.L. (2009). Neural implementation of hierarchical Bayesian inference by importance sampling. In Y. Bengio, D. Schuurmans, J. Lafferty, C. Williams, & A. Culotta (Eds.), Advances in neural information processing systems 22 (pp. 1669–1677). Cambridge, MA: MIT Press. Shi, L., & Griffiths, T.L. (2009). Neural implementation of hierarchical Bayesian inference by importance sampling. In Y. Bengio, D. Schuurmans, J. Lafferty, C. Williams, & A. Culotta (Eds.), Advances in neural information processing systems 22 (pp. 1669–1677). Cambridge, MA: MIT Press. 
Zurück zum Zitat Simoncelli, E.P. (2009). Optimal estimation in sensory systems. In M. Gazzaniga (Ed.), The cognitive neurosciences (vol. 4, pp. 525–535). Cambridge, MA: MIT Press. Simoncelli, E.P. (2009). Optimal estimation in sensory systems.  In M. Gazzaniga (Ed.), The cognitive neurosciences (vol. 4, pp. 525–535). Cambridge, MA: MIT Press.
Zurück zum Zitat Spitzer, M. W., Bala, A. D., & Takahashi, T. T. (2003). Auditory spatial discrimination by barn owls in simulated echoic conditions. Journal of the Acoustical Society of America, 113, 1631–1645.CrossRefPubMed Spitzer, M. W., Bala, A. D., & Takahashi, T. T. (2003). Auditory spatial discrimination by barn owls in simulated echoic conditions. Journal of the Acoustical Society of America, 113, 1631–1645.CrossRefPubMed
Zurück zum Zitat Stein, B. E., & Stanford, T. R. (2008). Multisensory integration: current issues from the perspective of the single neuron. Nature Review Neuroscience, 9, 255–266.CrossRef Stein, B. E., & Stanford, T. R. (2008). Multisensory integration: current issues from the perspective of the single neuron. Nature Review Neuroscience, 9, 255–266.CrossRef
Zurück zum Zitat Takahashi, T., Moiseff, A., & Konishi, M. (1984). Time and intensity cues are processed independently in the auditory system of the owl. Journal of Neuroscience, 4, 1781–1786.PubMed Takahashi, T., Moiseff, A., & Konishi, M. (1984). Time and intensity cues are processed independently in the auditory system of the owl. Journal of Neuroscience, 4, 1781–1786.PubMed
Zurück zum Zitat van Beers, R. J., Sittig, A. C., & Gon, J. J. (1999). Integration of proprioceptive and visual position-information: an experimentally supported model. Journal of Neurophysiology, 81, 1355–1364.PubMed van Beers, R. J., Sittig, A. C., & Gon, J. J. (1999). Integration of proprioceptive and visual position-information: an experimentally supported model. Journal of Neurophysiology, 81, 1355–1364.PubMed
Zurück zum Zitat Van Trees HL (2004) Detection, estimation, and modulation theory. New York, NY: Wiley. Van Trees HL (2004) Detection, estimation, and modulation theory. New York, NY: Wiley.
Zurück zum Zitat Wagner, H., Takahashi, T., & Konishi, M. (1987). Representation of interaural time difference in the central nucleus of the barn owl’s inferior colliculus. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 7, 3105–3116. Wagner, H., Takahashi, T., & Konishi, M. (1987). Representation of interaural time difference in the central nucleus of the barn owl’s inferior colliculus. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 7, 3105–3116.
Zurück zum Zitat Whitchurch, E. A., & Takahashi, T. T. (2006). Combined auditory and visual stimuli facilitate head saccades in the barn owl (Tyto alba). Journal of Neurophysiology, 96, 730–745.CrossRefPubMed Whitchurch, E. A., & Takahashi, T. T. (2006). Combined auditory and visual stimuli facilitate head saccades in the barn owl (Tyto alba). Journal of Neurophysiology, 96, 730–745.CrossRefPubMed
Zurück zum Zitat Wightman, F. L. & Kistler, D. J. (1993). Sound localization. In W. A. Yost, A. N. Popper, & R. R. Fay (Eds.), Human psychophysics (pp. 155–192). New York: Springer-Verlag. Wightman, F. L. & Kistler, D. J. (1993). Sound localization. In W. A. Yost, A. N. Popper, & R. R. Fay (Eds.), Human psychophysics (pp. 155–192). New York: Springer-Verlag.
Zurück zum Zitat Xu, J., Yu, L., Rowland, B. A., Stanford, T. R., & Stein, B. E. (2012). Incorporating cross-modal statistics in the development and maintenance of multisensory integration. Journal of Neuroscience, 32, 2287–2298.CrossRefPubMedPubMedCentral Xu, J., Yu, L., Rowland, B. A., Stanford, T. R., & Stein, B. E. (2012). Incorporating cross-modal statistics in the development and maintenance of multisensory integration. Journal of Neuroscience, 32, 2287–2298.CrossRefPubMedPubMedCentral
Metadaten
Titel
Optimal nonlinear cue integration for sound localization
verfasst von
Brian J. Fischer
Jose Luis Peña
Publikationsdatum
06.10.2016
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 1/2017
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-016-0626-4

Weitere Artikel der Ausgabe 1/2017

Journal of Computational Neuroscience 1/2017 Zur Ausgabe