Skip to main content

2021 | OriginalPaper | Buchkapitel

26. Optimal Path and Path-Following Control in Airborne Wind Energy Systems

verfasst von : Manuel C. R. M. Fernandes, Luís Tiago Paiva, Fernando A. C. C. Fontes

Erschienen in: Advances in Evolutionary and Deterministic Methods for Design, Optimization and Control in Engineering and Sciences

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An Airborne Wind Energy System (AWES) is a concept to convert wind energy into electricity, which comprises a tethered aircraft connected to a ground station. These systems are capable of harvesting high altitude winds, which are more frequent and more consistent. Among AWES, there are Pumping Kite Generators (PKG) that involve a rigid or flexible kite connected to a motor/generator placed on the ground through a light–weight tether. Such PKG produces electrical power in a cyclical two–phased motion with a traction phase and a retraction phase. During the traction phase, the aim is to maximize power production. This goal is achieved by controlling the kite such that it performs an almost crosswind motion, keeping a low elevation angle in order to maximize the tether tension. During the retraction phase, the tether tension force is minimized by steering the kite while the tether is reeled–in. Such strategy assures that the cyclical two–phased motion has a positive electrical balance at the end of the overall cycle. In a first stage, we solve an optimal control problem to compute the optimal plan for the kite trajectory during the traction phase, maximizing power production. Such trajectory is then used to define a time–independent geometrical path, which in turn is used as the reference path for the path–following control procedure that is developed in a second stage, and for which results are also presented.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Cherubini A, Papini A, Vertechy R, Fontana M (2015) Airborne wind energy systems: a review of the technologies. Renew Sustain Energy Rev 51:1461–1476CrossRef Cherubini A, Papini A, Vertechy R, Fontana M (2015) Airborne wind energy systems: a review of the technologies. Renew Sustain Energy Rev 51:1461–1476CrossRef
2.
Zurück zum Zitat Ahrens U, Diehl M, Schmehl R (eds) (2013) Airborne wind energy. Green energy and technology. Springer, Berlin Ahrens U, Diehl M, Schmehl R (eds) (2013) Airborne wind energy. Green energy and technology. Springer, Berlin
3.
Zurück zum Zitat Schmehl R (ed) (2018) Airborne wind energy: advances in technology development and research. Green energy and technology. Springer, Singapore Schmehl R (ed) (2018) Airborne wind energy: advances in technology development and research. Green energy and technology. Springer, Singapore
4.
5.
Zurück zum Zitat Paiva LT, Fontes FACC (2018) Optimal electric power generation with underwater kite systems. Computing 100:1137–1153MathSciNetCrossRef Paiva LT, Fontes FACC (2018) Optimal electric power generation with underwater kite systems. Computing 100:1137–1153MathSciNetCrossRef
6.
Zurück zum Zitat Fernandes MC (2018) Airborne wind energy systems: modelling, simulation and economic analysis. Master’s thesis, Universidade do Porto, Porto, June 2018 Fernandes MC (2018) Airborne wind energy systems: modelling, simulation and economic analysis. Master’s thesis, Universidade do Porto, Porto, June 2018
7.
Zurück zum Zitat Faggiani P (2014) Pumping kites wind farm. Master’s thesis, TU Delft, Netherlands Faggiani P (2014) Pumping kites wind farm. Master’s thesis, TU Delft, Netherlands
8.
Zurück zum Zitat Paiva LT, Fontes FACC (2018) Optimal control algorithms with adaptive time-mesh refinement for kite power systems. Energies 11:475CrossRef Paiva LT, Fontes FACC (2018) Optimal control algorithms with adaptive time-mesh refinement for kite power systems. Energies 11:475CrossRef
9.
Zurück zum Zitat Prodan I, Olaru S, Fontes FACC, Pereira FL, de Sousa JB, Maniu CS, Niculescu S-I (2015) Predictive control for path-following. from trajectory generation to the parametrization of the discrete tracking sequences. Developments in model-based optimization and control. Lecture notes in control and information sciences. Springer, Cham, pp 161–181CrossRef Prodan I, Olaru S, Fontes FACC, Pereira FL, de Sousa JB, Maniu CS, Niculescu S-I (2015) Predictive control for path-following. from trajectory generation to the parametrization of the discrete tracking sequences. Developments in model-based optimization and control. Lecture notes in control and information sciences. Springer, Cham, pp 161–181CrossRef
10.
Zurück zum Zitat Caldeira AC, Fontes FA 2010) Model predictive control for path-following of nonholonomic systems. In: Proceedings of the 10th Portuguese conference on automatic control - CONTROLO 2010, Coimbra, Portugal, September 2010, pp 720–725 Caldeira AC, Fontes FA 2010) Model predictive control for path-following of nonholonomic systems. In: Proceedings of the 10th Portuguese conference on automatic control - CONTROLO 2010, Coimbra, Portugal, September 2010, pp 720–725
11.
Zurück zum Zitat Vinter RB (2000) Optimal control. Springer Vinter RB (2000) Optimal control. Springer
12.
Zurück zum Zitat Betts JT (2001) Practical methods for optimal control using nonlinear programming. SIAM Betts JT (2001) Practical methods for optimal control using nonlinear programming. SIAM
13.
Zurück zum Zitat Gerdts M (2012) Optimal control of odes and daes. De Gruyter Gerdts M (2012) Optimal control of odes and daes. De Gruyter
14.
Zurück zum Zitat Silva GB, Paiva LT, Fontes FA (2019) A path—following guidance method for airborne wind energy systems with large domain of attraction. In: Proceedings of the 2019 American control conference - ACC’19, June 2019 Silva GB, Paiva LT, Fontes FA (2019) A path—following guidance method for airborne wind energy systems with large domain of attraction. In: Proceedings of the 2019 American control conference - ACC’19, June 2019
15.
Zurück zum Zitat Park S, Deyst J, How J (2004) A new nonlinear guidance logic for trajectory tracking. In: AIAA guidance, navigation, and control conference and exhibit. American Institute of Aeronautics and Astronautics Park S, Deyst J, How J (2004) A new nonlinear guidance logic for trajectory tracking. In: AIAA guidance, navigation, and control conference and exhibit. American Institute of Aeronautics and Astronautics
16.
Zurück zum Zitat Park S, Deyst J, How JP (2007) Performance and Lyapunov stability of a nonlinear path following guidance method. J Guid Control Dyn 30:1718–1728CrossRef Park S, Deyst J, How JP (2007) Performance and Lyapunov stability of a nonlinear path following guidance method. J Guid Control Dyn 30:1718–1728CrossRef
17.
Zurück zum Zitat Fagiano L, Zgraggen AU, Morari M, Khammash M (2014) Automatic crosswind flight of tethered wings for airborne wind energy: modeling, control design, and experimental results. IEEE Trans Control Syst Technol 22:1433–1447CrossRef Fagiano L, Zgraggen AU, Morari M, Khammash M (2014) Automatic crosswind flight of tethered wings for airborne wind energy: modeling, control design, and experimental results. IEEE Trans Control Syst Technol 22:1433–1447CrossRef
18.
Zurück zum Zitat Fernandes MC, Silva GB, Paiva LT, Fontes FA (2018) A trajectory controller for kite power systems with wind gust handling capabilities. In: Proceedings of 15th international conference on informatics in control, automation and robotics (ICINCO), Porto Fernandes MC, Silva GB, Paiva LT, Fontes FA (2018) A trajectory controller for kite power systems with wind gust handling capabilities. In: Proceedings of 15th international conference on informatics in control, automation and robotics (ICINCO), Porto
Metadaten
Titel
Optimal Path and Path-Following Control in Airborne Wind Energy Systems
verfasst von
Manuel C. R. M. Fernandes
Luís Tiago Paiva
Fernando A. C. C. Fontes
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-57422-2_26