Skip to main content

2014 | OriginalPaper | Buchkapitel

Optimal Treatment Planning in Radiotherapy Based on Boltzmann Transport Equations

verfasst von : Richard C. Barnard, Martin Frank, Michael Herty

Erschienen in: Trends in PDE Constrained Optimization

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We look at the optimization of radiotherapy treatment planning. By using a deterministic model of dose deposition in tissue derived from the Boltzmann transport equations, we can improve on the accuracy of existing models near tissue inhomogeneities while also making use of adjoint calculus for developing necessary conditions for optimality. We describe the relevant model and consider the planning problem in an optimal control framework. Two versions of the problem are discussed, optimality conditions are derived, and numerical methods are described. Numerical examples are presented.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R. Barnard, M. Frank, M. Herty, Optimal radiotherapy treatment planning using minimum entropy models. Appl. Math. Comput. 219(5), 2668–2679 (2012)CrossRefMathSciNet R. Barnard, M. Frank, M. Herty, Optimal radiotherapy treatment planning using minimum entropy models. Appl. Math. Comput. 219(5), 2668–2679 (2012)CrossRefMathSciNet
2.
Zurück zum Zitat R. Barnard, M. Frank, M. Herty, Treatment planning optimization for radiotherapy. Proc. Appl. Math. Mech. 13(1), 339–340 (2013)CrossRef R. Barnard, M. Frank, M. Herty, Treatment planning optimization for radiotherapy. Proc. Appl. Math. Mech. 13(1), 339–340 (2013)CrossRef
3.
Zurück zum Zitat C. Börgers, Complexity of Monte Carlo and deterministic dose-calculation methods. Phys. Med. Biol. 43, 517–528 (1998)CrossRef C. Börgers, Complexity of Monte Carlo and deterministic dose-calculation methods. Phys. Med. Biol. 43, 517–528 (1998)CrossRef
4.
Zurück zum Zitat C. Börgers, The radiation therapy planning problem, in Computational Radiology and Imaging (Minneapolis, MN, 1997), ed. by C. Börgers, F. Natterer. Volume 110 of IMA Volumes in Mathematics and its Applications (Springer, New York, 1999), pp. 1–16 C. Börgers, The radiation therapy planning problem, in Computational Radiology and Imaging (Minneapolis, MN, 1997), ed. by C. Börgers, F. Natterer. Volume 110 of IMA Volumes in Mathematics and its Applications (Springer, New York, 1999), pp. 1–16
5.
Zurück zum Zitat T. Brunner, Forms of approximate radiation transport. Sandia Report, 2002 T. Brunner, Forms of approximate radiation transport. Sandia Report, 2002
6.
Zurück zum Zitat M.K. Bucci, A. Bevan, M. Roach, Advances in radiation therapy: conventional to 3d, to imrt, to 4d, and beyond. CA: Cancer J. Clin. 55(2), 117–134 (2005) M.K. Bucci, A. Bevan, M. Roach, Advances in radiation therapy: conventional to 3d, to imrt, to 4d, and beyond. CA: Cancer J. Clin. 55(2), 117–134 (2005)
7.
Zurück zum Zitat R.G. Dale, The application of the linear-quadratic dose-effect equation to fractionated and protracted radiotherapy. Br. J. Radiol. 58(690), 515–528 (1985)CrossRef R.G. Dale, The application of the linear-quadratic dose-effect equation to fractionated and protracted radiotherapy. Br. J. Radiol. 58(690), 515–528 (1985)CrossRef
8.
Zurück zum Zitat G. Delaney, S. Jacob, C. Featherstone, M. Barton, The role of radiotherapy in cancer treatment. Cancer 104(6), 1129–1137 (2005)CrossRef G. Delaney, S. Jacob, C. Featherstone, M. Barton, The role of radiotherapy in cancer treatment. Cancer 104(6), 1129–1137 (2005)CrossRef
9.
Zurück zum Zitat B. Dubroca, J.-L. Feugeas, Étude théorique et numérique d’une hiérarchie de modèles aux moments pout le transfert radiatif. Analyse Numérique 329(1), 915–920 (1999)MATHMathSciNet B. Dubroca, J.-L. Feugeas, Étude théorique et numérique d’une hiérarchie de modèles aux moments pout le transfert radiatif. Analyse Numérique 329(1), 915–920 (1999)MATHMathSciNet
10.
Zurück zum Zitat R. Duclous, B. Dubroca, M. Frank, A deterministic partial differential equation model for dose calculation in electron radiotherapy. Phys. Med. Biol. 55(13), 3843–3857 (2010)CrossRef R. Duclous, B. Dubroca, M. Frank, A deterministic partial differential equation model for dose calculation in electron radiotherapy. Phys. Med. Biol. 55(13), 3843–3857 (2010)CrossRef
11.
Zurück zum Zitat B.C. Ferreira, P. Mavroidis, M. Adamus-Górka, R. Svensson, B.K. Lind, The impact of different dose-response parameters on biologically optimized imrt in breast cancer. Phys. Med. Biol. 53(10), 2733 (2008) B.C. Ferreira, P. Mavroidis, M. Adamus-Górka, R. Svensson, B.K. Lind, The impact of different dose-response parameters on biologically optimized imrt in breast cancer. Phys. Med. Biol. 53(10), 2733 (2008)
12.
Zurück zum Zitat M. Frank, Approximate models for radiative transfer. Bull. Inst. Math. Acad. Sinica (New Series) 2(2), 409–432 (2007) M. Frank, Approximate models for radiative transfer. Bull. Inst. Math. Acad. Sinica (New Series) 2(2), 409–432 (2007)
13.
Zurück zum Zitat M. Frank, M. Herty, M. Schäfer, Optimal treatment planning in radiotherapy based on Boltzmann transport calculations. Math. Models Methods Appl. Sci. 18(4), 573–592 (2008)CrossRefMATHMathSciNet M. Frank, M. Herty, M. Schäfer, Optimal treatment planning in radiotherapy based on Boltzmann transport calculations. Math. Models Methods Appl. Sci. 18(4), 573–592 (2008)CrossRefMATHMathSciNet
14.
Zurück zum Zitat M. Frank, M. Herty, A.N. Sandjo, Optimal radiotherapy treatment planning governed by kinetic equations. Math. Models Methods Appl. Sci. 20(4), 661–678 (2010)CrossRefMATHMathSciNet M. Frank, M. Herty, A.N. Sandjo, Optimal radiotherapy treatment planning governed by kinetic equations. Math. Models Methods Appl. Sci. 20(4), 661–678 (2010)CrossRefMATHMathSciNet
15.
Zurück zum Zitat M. Frank, C. Berthon, C. Sarazin, R. Turpault, Numerical methods for balance laws with space dependent flux: application to radiotherapy dose calculation. Commun. Comput. Phys. 10(5), 1184–1210 (2011) M. Frank, C. Berthon, C. Sarazin, R. Turpault, Numerical methods for balance laws with space dependent flux: application to radiotherapy dose calculation. Commun. Comput. Phys. 10(5), 1184–1210 (2011)
16.
Zurück zum Zitat M. Frank, M. Herty, M. Hinze, Instantaneous closed loop control of the radiative transfer equations with applications in radiotherapy. ZAMM Z. Angew. Math. Mech. 92(1), 8–24 (2012)CrossRefMATHMathSciNet M. Frank, M. Herty, M. Hinze, Instantaneous closed loop control of the radiative transfer equations with applications in radiotherapy. ZAMM Z. Angew. Math. Mech. 92(1), 8–24 (2012)CrossRefMATHMathSciNet
17.
Zurück zum Zitat H. Hensel, R. Iza-Teran, N. Siedow, Deterministic model for dose calculation in photon radiotherapy. Phys. Med. Biol. 51(3), 675 (2006) H. Hensel, R. Iza-Teran, N. Siedow, Deterministic model for dose calculation in photon radiotherapy. Phys. Med. Biol. 51(3), 675 (2006)
18.
Zurück zum Zitat M. Herty, A.N. Sandjo, On optimal treatment planning in radiotherapy governed by transport equations. Math. Models Methods Appl. Sci. 21(2):345–359 (2011)CrossRefMATHMathSciNet M. Herty, A.N. Sandjo, On optimal treatment planning in radiotherapy governed by transport equations. Math. Models Methods Appl. Sci. 21(2):345–359 (2011)CrossRefMATHMathSciNet
19.
Zurück zum Zitat M. Herty, C. Jörres, A.N. Sandjo, Optimization of a model Fokker-Planck equation. Kinet. Relat. Models 5(3), 485–503 (2012)CrossRefMATHMathSciNet M. Herty, C. Jörres, A.N. Sandjo, Optimization of a model Fokker-Planck equation. Kinet. Relat. Models 5(3), 485–503 (2012)CrossRefMATHMathSciNet
20.
Zurück zum Zitat C.R. King, T.A. DiPetrillo, D.E. Wazer, Optimal radiotherapy for prostate cancer: predictions for conventional external beam, imrt, and brachytherapy from radiobiologic models. Int. J. Radiat. Oncol. Biol. Phys. 46(1), 165–172 (2000)CrossRef C.R. King, T.A. DiPetrillo, D.E. Wazer, Optimal radiotherapy for prostate cancer: predictions for conventional external beam, imrt, and brachytherapy from radiobiologic models. Int. J. Radiat. Oncol. Biol. Phys. 46(1), 165–172 (2000)CrossRef
21.
Zurück zum Zitat T. Krieger, O.A Sauer, Monte carlo- versus pencil-beam-/collapsed-cone-dose calculation in a heterogeneous multi-layer phantom. Phys. Med. Biol. 50(5), 859–868 (2005) T. Krieger, O.A Sauer, Monte carlo- versus pencil-beam-/collapsed-cone-dose calculation in a heterogeneous multi-layer phantom. Phys. Med. Biol. 50(5), 859–868 (2005)
22.
Zurück zum Zitat E.W. Larsen, M.M. Miften, B.A. Fraass, I.A.D. Bruinvis, Electron dose calculations using the method of moments. Med. Phys. 24(1), 111–125 (1997)CrossRef E.W. Larsen, M.M. Miften, B.A. Fraass, I.A.D. Bruinvis, Electron dose calculations using the method of moments. Med. Phys. 24(1), 111–125 (1997)CrossRef
23.
24.
Zurück zum Zitat U. Ringborg, D. Bergqvist, B. Brorsson, E. Cavallin-ståhl, J. Ceberg, N. Einhorn, J.erik Frödin, J. Järhult, G. Lamnevik, C. Lindholm, B. Littbrand, A. Norlund, U. Nylén, M. Rosén, H. Svensson, T.R. Möller, The swedish council on technology assessment in health care (sbu) systematic overview of radiotherapy for cancer including a prospective survey of radiotherapy practice in sweden 2001–summary and conclusions. Acta Oncologica 42(5–6), 357–365 (2003) U. Ringborg, D. Bergqvist, B. Brorsson, E. Cavallin-ståhl, J. Ceberg, N. Einhorn, J.erik Frödin, J. Järhult, G. Lamnevik, C. Lindholm, B. Littbrand, A. Norlund, U. Nylén, M. Rosén, H. Svensson, T.R. Möller, The swedish council on technology assessment in health care (sbu) systematic overview of radiotherapy for cancer including a prospective survey of radiotherapy practice in sweden 2001–summary and conclusions. Acta Oncologica 42(5–6), 357–365 (2003)
25.
Zurück zum Zitat D.M. Shepard, M.C. Ferris, G.H. Olivera, T.R. Mackie, Optimizing the delivery of radiation therapy to cancer patients. SIAM Rev. 41, 721–744 (1999)CrossRefMATH D.M. Shepard, M.C. Ferris, G.H. Olivera, T.R. Mackie, Optimizing the delivery of radiation therapy to cancer patients. SIAM Rev. 41, 721–744 (1999)CrossRefMATH
26.
Zurück zum Zitat M. Sikora, J. Muzik, M. Söhn, M. Weinmann, M. Alber, Monte carlo vs. pencil beam based optimization of stereotactic lung imrt. Radiat. Oncol. 4(64) (2009) M. Sikora, J. Muzik, M. Söhn, M. Weinmann, M. Alber, Monte carlo vs. pencil beam based optimization of stereotactic lung imrt. Radiat. Oncol. 4(64) (2009)
27.
Zurück zum Zitat C.P. South, M. Partridge, P.M. Evans, A theoretical framework for prescribing radiotherapy dose distributions using patient-specific biological information. Med. Phys. 35(10), 4599–4611 (2008)CrossRef C.P. South, M. Partridge, P.M. Evans, A theoretical framework for prescribing radiotherapy dose distributions using patient-specific biological information. Med. Phys. 35(10), 4599–4611 (2008)CrossRef
28.
Zurück zum Zitat G.G. Steel, J.D. Down, J.H. Peacock, T.C. Stephens, Dose-rate effects and the repair of radiation damage. Radiother. Oncol. 5(4), 321–331 (1986)CrossRef G.G. Steel, J.D. Down, J.H. Peacock, T.C. Stephens, Dose-rate effects and the repair of radiation damage. Radiother. Oncol. 5(4), 321–331 (1986)CrossRef
29.
Zurück zum Zitat G.G. Steel, J.M. Deacon, G.M. Duchesne, A. Horwich, L.R. Kelland, J.H. Peacock, The dose-rate effect in human tumour cells. Radiother. Oncol. 9(4), 299–310 (1987)CrossRef G.G. Steel, J.M. Deacon, G.M. Duchesne, A. Horwich, L.R. Kelland, J.H. Peacock, The dose-rate effect in human tumour cells. Radiother. Oncol. 9(4), 299–310 (1987)CrossRef
30.
Zurück zum Zitat J. Tervo, P. Kolmonen, Inverse radiotherapy treatment planning model applying boltzmann-transport equation. Math. Models. Methods. Appl. Sci. 12, 109–141 (2002)CrossRefMATHMathSciNet J. Tervo, P. Kolmonen, Inverse radiotherapy treatment planning model applying boltzmann-transport equation. Math. Models. Methods. Appl. Sci. 12, 109–141 (2002)CrossRefMATHMathSciNet
31.
Zurück zum Zitat J. Tervo, P. Kolmonen, M. Vauhkonen, L.M. Heikkinen, J.P. Kaipio, A finite-element model of electron transport in radiation therapy and related inverse problem. Inv. Probl. 15, 1345–1361 (1999)CrossRefMATHMathSciNet J. Tervo, P. Kolmonen, M. Vauhkonen, L.M. Heikkinen, J.P. Kaipio, A finite-element model of electron transport in radiation therapy and related inverse problem. Inv. Probl. 15, 1345–1361 (1999)CrossRefMATHMathSciNet
32.
Zurück zum Zitat J. Tervo, M. Vauhkonen, E. Boman, Optimal control model for radiation therapy inverse planning applying the Boltzmann transport equation. Lin. Alg. Appl. 428, 1230–1249 (2008)CrossRefMATHMathSciNet J. Tervo, M. Vauhkonen, E. Boman, Optimal control model for radiation therapy inverse planning applying the Boltzmann transport equation. Lin. Alg. Appl. 428, 1230–1249 (2008)CrossRefMATHMathSciNet
33.
Zurück zum Zitat M. Treutwein, L. Bogner, Elektronenfelder in der klinischen anwendung. Strahlentherapie und Onkologie 183, 454–458 (2007). doi:10.1007/s00066-007-1687-0CrossRef M. Treutwein, L. Bogner, Elektronenfelder in der klinischen anwendung. Strahlentherapie und Onkologie 183, 454–458 (2007). doi:10.1007/s00066-007-1687-0CrossRef
34.
Zurück zum Zitat F. Tröltzsch, Optimal Control of Partial Differential Equations: Theory, Methods, and Applications. Volume 112 of Graduate Studies in Mathematics (American Mathematical Society, Providence, 2010) F. Tröltzsch, Optimal Control of Partial Differential Equations: Theory, Methods, and Applications. Volume 112 of Graduate Studies in Mathematics (American Mathematical Society, Providence, 2010)
35.
Zurück zum Zitat S. Webb, Optimum parameters in a model for tumour control probability including interpatient heterogeneity. Phys. Med. Biol. 39(11), 1895–1914 (1994)CrossRef S. Webb, Optimum parameters in a model for tumour control probability including interpatient heterogeneity. Phys. Med. Biol. 39(11), 1895–1914 (1994)CrossRef
36.
Zurück zum Zitat World Health Organization, Radiotherapy Risk Profile (WHO, Geneva, 2008) World Health Organization, Radiotherapy Risk Profile (WHO, Geneva, 2008)
Metadaten
Titel
Optimal Treatment Planning in Radiotherapy Based on Boltzmann Transport Equations
verfasst von
Richard C. Barnard
Martin Frank
Michael Herty
Copyright-Jahr
2014
DOI
https://doi.org/10.1007/978-3-319-05083-6_28

Premium Partner