Skip to main content
Erschienen in: Electrical Engineering 2/2022

04.06.2021 | Original Paper

Optimization approach for planning hybrid electrical energy system: a Brazilian case

verfasst von: D. T. Kitamura, K. P. Rocha, L. W. Oliveira, J. G. Oliveira, B. H. Dias, T. A. Soares

Erschienen in: Electrical Engineering | Ausgabe 2/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The continuous proliferation of distributed generation is leading end users to look for new tools that help to design hybrid electrical energy systems (HEES). Thus, this work proposes a novel approach for optimal planning of HEES, which comprises the optimization of the type and capacity of distributed generation connected to the end user. The main objective is to minimize the project’s total cost, considering the net metering scheme. To this end, the bioinspired meta-heuristic artificial immune system is proposed to optimally determine the number and type of photovoltaic panels. In addition, a nonlinear programming model is proposed to optimize the diesel generator and BESS capacity, considering the energy supply to the consumer by the HEES and the main distribution grid. Case studies involving commercial and residential customers in Brazil are introduced considering the normative resolutions from ANEEL, the Brazilian Regulatory Agency. Comparative analyses are made concerning an exhaustive search procedure and the commercial software Homer Pro, designed to optimize the operation of HEES systems. An important conclusion is that the proposed approach is as effective as the cutting-edge tools, with reasonable computational effort.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
State value-added tax on sales and services (ICMS) on semi-finished products.
 
2
Contribution to the Social Integration Plan.
 
3
Contribution for Social Security Financing.
 
Literatur
1.
Zurück zum Zitat Bignucolo F, Caldon R, Prandoni V (2008) Radial mv networks voltage regulation with distribution management system coordinated controller. Electric Power Syst Res 78:634–645CrossRef Bignucolo F, Caldon R, Prandoni V (2008) Radial mv networks voltage regulation with distribution management system coordinated controller. Electric Power Syst Res 78:634–645CrossRef
2.
Zurück zum Zitat Strnad I, Prenc R (2018) Optimal sizing of renewable sources and energy storage in low-carbon microgrid nodes. Electr Eng 100:1661–1674CrossRef Strnad I, Prenc R (2018) Optimal sizing of renewable sources and energy storage in low-carbon microgrid nodes. Electr Eng 100:1661–1674CrossRef
3.
Zurück zum Zitat Chiradeja P, Ramakumar R (2004) An approach to quantify the technical benefits of distributed generation. IEEE Trans Energy Convers 19:764–773CrossRef Chiradeja P, Ramakumar R (2004) An approach to quantify the technical benefits of distributed generation. IEEE Trans Energy Convers 19:764–773CrossRef
6.
Zurück zum Zitat Askarzadeh A (2017) Distribution generation by photovoltaic and diesel generator systems: energy management and size optimization by a new approach for a stand-alone application. Energy 122:542–551CrossRef Askarzadeh A (2017) Distribution generation by photovoltaic and diesel generator systems: energy management and size optimization by a new approach for a stand-alone application. Energy 122:542–551CrossRef
7.
Zurück zum Zitat D’Arco S, Suul JA, Fosso OBA (2015) Virtual synchronous machine implementation for distributed control of power converters in smartgrids. Electric Power Syst Res 122:180–197CrossRef D’Arco S, Suul JA, Fosso OBA (2015) Virtual synchronous machine implementation for distributed control of power converters in smartgrids. Electric Power Syst Res 122:180–197CrossRef
8.
Zurück zum Zitat Alqunun K, Guesmi T, Farah A (2020) Load shedding optimization for economic operation, cost in a microgrid. Electr Eng 102:779–791CrossRef Alqunun K, Guesmi T, Farah A (2020) Load shedding optimization for economic operation, cost in a microgrid. Electr Eng 102:779–791CrossRef
9.
Zurück zum Zitat Ramli MAM, Bouchekara HREH, Alghamdi AS (2018) Optimal sizing of PV/wind/diesel hybrid microgrid system using multi-objective self-adaptive differential evolution algorithm. Renew Energy 121:400–411CrossRef Ramli MAM, Bouchekara HREH, Alghamdi AS (2018) Optimal sizing of PV/wind/diesel hybrid microgrid system using multi-objective self-adaptive differential evolution algorithm. Renew Energy 121:400–411CrossRef
10.
Zurück zum Zitat Muh E, Tabet F (2019) Comparative analysis of hybrid renewable energy systems for off-grid applications in Southern Cameroons. Renew Energy 135:41–54CrossRef Muh E, Tabet F (2019) Comparative analysis of hybrid renewable energy systems for off-grid applications in Southern Cameroons. Renew Energy 135:41–54CrossRef
11.
Zurück zum Zitat Nadjemi O, Nacer T, Hamidat A, Salhi H (2017) Optimal hybrid PV/wind energy system sizing: application of cuckoo search algorithm for Algerian dairy farms. Renew Sustain Energy Rev 70:1352–1365CrossRef Nadjemi O, Nacer T, Hamidat A, Salhi H (2017) Optimal hybrid PV/wind energy system sizing: application of cuckoo search algorithm for Algerian dairy farms. Renew Sustain Energy Rev 70:1352–1365CrossRef
12.
Zurück zum Zitat Hossain M, Mekhilef S, Olatomiwa L (2017) Performance evaluation of a stand-alone PV-wind-diesel-battery hybrid system feasible for a large resort center in South China Sea, Malaysia. Sustain Urban Areas 28:358–366 Hossain M, Mekhilef S, Olatomiwa L (2017) Performance evaluation of a stand-alone PV-wind-diesel-battery hybrid system feasible for a large resort center in South China Sea, Malaysia. Sustain Urban Areas 28:358–366
13.
Zurück zum Zitat Singh S, Kaushik SC (2016) Optimal sizing of grid integrated hybrid PV-biomass energy system using artificial bee colony algorithm. IET Renew Power Gener 10:642–650CrossRef Singh S, Kaushik SC (2016) Optimal sizing of grid integrated hybrid PV-biomass energy system using artificial bee colony algorithm. IET Renew Power Gener 10:642–650CrossRef
14.
Zurück zum Zitat Razali NM, Hashim A (2010). Backward reduction application for minimizing wind power scenarios in stochastic programming. In: Power engineering and optimization conference (PEOCO), 2010. IEEE, pp 430–434 Razali NM, Hashim A (2010). Backward reduction application for minimizing wind power scenarios in stochastic programming. In: Power engineering and optimization conference (PEOCO), 2010. IEEE, pp 430–434
15.
Zurück zum Zitat Singh A, Baredar P, Gupta B (2015) Computational simulation and optimization of a solar, fuel cell and biomass hybrid energy system using homer pro software. Procedia Eng 127:743–750CrossRef Singh A, Baredar P, Gupta B (2015) Computational simulation and optimization of a solar, fuel cell and biomass hybrid energy system using homer pro software. Procedia Eng 127:743–750CrossRef
16.
Zurück zum Zitat Miao C, Teng K, Wang Y, Jiang L (2020) Technoeconomic analysis on a hybrid power system for the UK household using renewable energy: a case study. Energies 13:3231–3249CrossRef Miao C, Teng K, Wang Y, Jiang L (2020) Technoeconomic analysis on a hybrid power system for the UK household using renewable energy: a case study. Energies 13:3231–3249CrossRef
17.
Zurück zum Zitat Ayop R, Isa NM, Tan CW (2018) Components sizing of photovoltaic stand-alone system based on loss of power supply probability. Renew Sustain Energy Rev 81:2731–2743CrossRef Ayop R, Isa NM, Tan CW (2018) Components sizing of photovoltaic stand-alone system based on loss of power supply probability. Renew Sustain Energy Rev 81:2731–2743CrossRef
18.
Zurück zum Zitat Nordin ND, Rahman HA (2015) Pre-installation design simulation tool for grid-connected photovoltaic system using iterative methods. Energy Procedia 68:68–76CrossRef Nordin ND, Rahman HA (2015) Pre-installation design simulation tool for grid-connected photovoltaic system using iterative methods. Energy Procedia 68:68–76CrossRef
19.
Zurück zum Zitat Borowy BS, Salameh ZM (1996) Methodology for optimally sizing the combination of a battery bank and PV array in a wind/PV hybrid system. IEEE Trans Energy Convers 11:367–375CrossRef Borowy BS, Salameh ZM (1996) Methodology for optimally sizing the combination of a battery bank and PV array in a wind/PV hybrid system. IEEE Trans Energy Convers 11:367–375CrossRef
20.
Zurück zum Zitat Gözel T, Hocaoglu MH (2009) An analytical method for the sizing and siting of distributed generators in radial systems. Electric Power Syst Res 79:912–918CrossRef Gözel T, Hocaoglu MH (2009) An analytical method for the sizing and siting of distributed generators in radial systems. Electric Power Syst Res 79:912–918CrossRef
21.
Zurück zum Zitat Ming M, Wang R, Zha Y, Zhang T (2017) Multi-objective optimization of hybrid renewable energy system using an enhanced multi-objective evolutionary algorithm. Energies 10:674–688CrossRef Ming M, Wang R, Zha Y, Zhang T (2017) Multi-objective optimization of hybrid renewable energy system using an enhanced multi-objective evolutionary algorithm. Energies 10:674–688CrossRef
22.
Zurück zum Zitat Castro RCC (2019) Hybrid particle swarm optimization and gravitational search algorithm for optimal sizing of hybrid renewable energy systems. In: Asia-Pacific power and energy engineering conference (APPEEC), 2019. IEEE, pp 1–6 Castro RCC (2019) Hybrid particle swarm optimization and gravitational search algorithm for optimal sizing of hybrid renewable energy systems. In: Asia-Pacific power and energy engineering conference (APPEEC), 2019. IEEE, pp 1–6
23.
Zurück zum Zitat Yang Y, Li R (2020) Techno-economic optimization of an off-grid solar/wind/battery hybrid system with a novel multi-objective differential evolution algorithm. Energies 13:1585–1600CrossRef Yang Y, Li R (2020) Techno-economic optimization of an off-grid solar/wind/battery hybrid system with a novel multi-objective differential evolution algorithm. Energies 13:1585–1600CrossRef
24.
Zurück zum Zitat Rousis AO, Konstantelos I, Strbac G (2019) A planning model for a hybrid AC–DC microgrid using a novel GA/AC OPF algorithm. IEEE Trans Power Syst 35:227–237CrossRef Rousis AO, Konstantelos I, Strbac G (2019) A planning model for a hybrid AC–DC microgrid using a novel GA/AC OPF algorithm. IEEE Trans Power Syst 35:227–237CrossRef
25.
Zurück zum Zitat Ekren O, Ekren BY (2010) Size optimization of a pv/wind hybrid energy conversion system with battery storage using simulated annealing. Appl Energy 87:592–598CrossRef Ekren O, Ekren BY (2010) Size optimization of a pv/wind hybrid energy conversion system with battery storage using simulated annealing. Appl Energy 87:592–598CrossRef
26.
Zurück zum Zitat Mohamed S, Shaaban MF, Ismail M, Serpedin E, Qaraqe KA (2019) An efficient planning algorithm for hybrid remote microgrids. IEEE Trans Sustain Energy 10:257–267CrossRef Mohamed S, Shaaban MF, Ismail M, Serpedin E, Qaraqe KA (2019) An efficient planning algorithm for hybrid remote microgrids. IEEE Trans Sustain Energy 10:257–267CrossRef
27.
Zurück zum Zitat Shivaie M, Mokhayeri M, Kiani-Moghaddam M, Ashouri-Zadeh A (2019) A reliability-constrained cost-effective model for optimal sizing of an autonomous hybrid solar/wind/diesel/battery energy system by a modified discrete bat search algorithm. Sol Energy 189:344–356CrossRef Shivaie M, Mokhayeri M, Kiani-Moghaddam M, Ashouri-Zadeh A (2019) A reliability-constrained cost-effective model for optimal sizing of an autonomous hybrid solar/wind/diesel/battery energy system by a modified discrete bat search algorithm. Sol Energy 189:344–356CrossRef
28.
Zurück zum Zitat Bukar AL, Tan CW, Lau KY (2019) Optimal sizing of an autonomous photovoltaic/wind/battery/diesel generator microgrid using grasshopper optimization algorithm. Sol Energy 188:685–696CrossRef Bukar AL, Tan CW, Lau KY (2019) Optimal sizing of an autonomous photovoltaic/wind/battery/diesel generator microgrid using grasshopper optimization algorithm. Sol Energy 188:685–696CrossRef
29.
Zurück zum Zitat Kaabeche A, Diaf S, Ibtiouen R (2017) Firefly inspired algorithm for optimal sizing of renewable hybrid system considering reliability criteria. Sol Energy 155:727–738CrossRef Kaabeche A, Diaf S, Ibtiouen R (2017) Firefly inspired algorithm for optimal sizing of renewable hybrid system considering reliability criteria. Sol Energy 155:727–738CrossRef
30.
Zurück zum Zitat Mellit A, Kalogirou SA, Drif M (2010) Application of neural networks and genetic algorithms for sizing of photovoltaic systems. Renew Energy 35:2881–2893CrossRef Mellit A, Kalogirou SA, Drif M (2010) Application of neural networks and genetic algorithms for sizing of photovoltaic systems. Renew Energy 35:2881–2893CrossRef
31.
Zurück zum Zitat Margeta J, Glasnovic Z (2010) Feasibility of the green energy production by hybrid solar + hydro power system in europe and similar climate areas. Renew Sustain Energy Rev 2010(14):1580–1590CrossRef Margeta J, Glasnovic Z (2010) Feasibility of the green energy production by hybrid solar + hydro power system in europe and similar climate areas. Renew Sustain Energy Rev 2010(14):1580–1590CrossRef
33.
Zurück zum Zitat CRESEB C (2014) Manual de engenharia para sistemas fotovoltaicos. Rio de Janeiro, Brasil CRESEB C (2014) Manual de engenharia para sistemas fotovoltaicos. Rio de Janeiro, Brasil
34.
Zurück zum Zitat Diaf S, Diaf D, Belhamel M, Haddadi M, Louche A (2007) A methodology for optimal sizing of autonomous hybrid PV/wind system. Energy Policy 35:5708–5718CrossRef Diaf S, Diaf D, Belhamel M, Haddadi M, Louche A (2007) A methodology for optimal sizing of autonomous hybrid PV/wind system. Energy Policy 35:5708–5718CrossRef
36.
Zurück zum Zitat Dranka GS, Ferreira P (2020) Towards a smart grid power system in Brazil: challenges and opportunities. Energy Policy 136:111033CrossRef Dranka GS, Ferreira P (2020) Towards a smart grid power system in Brazil: challenges and opportunities. Energy Policy 136:111033CrossRef
37.
Zurück zum Zitat Karimi H, Bahmani R, Jadid S, Makui A (2021) Dynamic transactive energy in multi-microgrid systems considering independence performance index: a multi-objective optimization framework. Int J Electr Power Energy Syst 126:106563CrossRef Karimi H, Bahmani R, Jadid S, Makui A (2021) Dynamic transactive energy in multi-microgrid systems considering independence performance index: a multi-objective optimization framework. Int J Electr Power Energy Syst 126:106563CrossRef
39.
Zurück zum Zitat Castro LN, Zuben FJV (2002) Learning and optimization using the clonal selection principle. IEEE Trans Evol Comput 6(3):239–251CrossRef Castro LN, Zuben FJV (2002) Learning and optimization using the clonal selection principle. IEEE Trans Evol Comput 6(3):239–251CrossRef
40.
Zurück zum Zitat Castro LN, Zuben FJV (1999) Artificial immune systems: part I-basic theory and applications. Technical Report TR-DCA 01/99 Castro LN, Zuben FJV (1999) Artificial immune systems: part I-basic theory and applications. Technical Report TR-DCA 01/99
41.
Zurück zum Zitat Castro LN, Zuben FJV (2000) Artificial immune systems: part II—a survey of applications. Technical Report DCA-RT 02/00 Castro LN, Zuben FJV (2000) Artificial immune systems: part II—a survey of applications. Technical Report DCA-RT 02/00
42.
Zurück zum Zitat Oliveira LW, Oliveira EJ, Gomes FV, Silva IC, Marcato AL, Resende PV (2014) Artificial immune systems applied to the reconfiguration of electrical power distribution networks for energy loss minimization. Int J Electr Power Energy Syst 56:64–74CrossRef Oliveira LW, Oliveira EJ, Gomes FV, Silva IC, Marcato AL, Resende PV (2014) Artificial immune systems applied to the reconfiguration of electrical power distribution networks for energy loss minimization. Int J Electr Power Energy Syst 56:64–74CrossRef
43.
Zurück zum Zitat Wakui T, Hashiguchi M, Sawada K, Yokoyama R (2019) Two-stage design optimization based on artificial immune system and mixed-integer linear programming for energy supply networks. Energy 170:1228–1248CrossRef Wakui T, Hashiguchi M, Sawada K, Yokoyama R (2019) Two-stage design optimization based on artificial immune system and mixed-integer linear programming for energy supply networks. Energy 170:1228–1248CrossRef
47.
Zurück zum Zitat Lu J, Wang W, Zhang Y, Cheng S (2017) Multi-objective optimal design of a stand-alone hybrid energy system using entropy weight method based on HOMER. Energies 10:1664CrossRef Lu J, Wang W, Zhang Y, Cheng S (2017) Multi-objective optimal design of a stand-alone hybrid energy system using entropy weight method based on HOMER. Energies 10:1664CrossRef
Metadaten
Titel
Optimization approach for planning hybrid electrical energy system: a Brazilian case
verfasst von
D. T. Kitamura
K. P. Rocha
L. W. Oliveira
J. G. Oliveira
B. H. Dias
T. A. Soares
Publikationsdatum
04.06.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Electrical Engineering / Ausgabe 2/2022
Print ISSN: 0948-7921
Elektronische ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-021-01316-3

Weitere Artikel der Ausgabe 2/2022

Electrical Engineering 2/2022 Zur Ausgabe

Neuer Inhalt