Skip to main content
Erschienen in: Photonic Network Communications 2/2019

15.11.2018 | Original Paper

Optimization method for reducing network loss of dc distribution system with distributed resource

verfasst von: Bing Han, Yonggang Li

Erschienen in: Photonic Network Communications | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

With mature of the direct current (dc) distribution grid technology, the distributed energy is embraced as much as possible, and reducing network loss becomes an effective way to increase energy efficiency and system stability. The conventional reducing loss approaches include complex algorithms, loss modeling in power devices and adding hardware, which lead to costs and system response time increase and system stability reduce. Considering the Intermittent characteristics of distributed energy, for reducing network loss, the effective option is to control error and response speed directly through the upper control, when distributed energy accesses on dc distribution network, which is no need to change grid topologies, run cumbersome power flow algorithms, nor add additional equipment. A reducing network loss method is proposed based on this idea. The details are as follows: Firstly, the network loss formula is derived based on power flow calculation, and the network loss change rules are analyzed. Secondly, one optimal power flow mathematical model of dc distribution network is established, which takes the minimum network loss as the objective functions and conforms to constraints of system security and components operating limit. The tide optimization is solved by using the artificial bees (ABC) algorithm. Thirdly, the network loss reduction method is proposed in the dc distribution network by using master–slave control through real-time control instruction optimization. The node voltage, branch current and main voltage source converter power are precisely regulated to control the power flow; thus, the network loss of multiple distributed energy access dc distribution network can be reduced. Fourthly, when wind and solar energy is connected to the dc distribution network, a typical IEEE16 node case is demonstrated to verify the feasibility of the proposed method using software MATLAB/SIMULINK. Fifthly, evaluation and prospect are made for the research.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wang, K., Yu, J., Yu, Y., Qian, Y., Zeng, D., Guo, S., Xiang, Y., Wu, J.: A survey on energy internet: architecture, approach, and emerging technologies. IEEE Syst. J. 12(3), 2403–2416 (2018)CrossRef Wang, K., Yu, J., Yu, Y., Qian, Y., Zeng, D., Guo, S., Xiang, Y., Wu, J.: A survey on energy internet: architecture, approach, and emerging technologies. IEEE Syst. J. 12(3), 2403–2416 (2018)CrossRef
2.
Zurück zum Zitat Choi, S.: Practical coordination between day-ahead and real-time optimization for economic and stable operation of distribution systems. IEEE Trans. Power Syst. 33(4), 4475–4487 (2018)MathSciNetCrossRef Choi, S.: Practical coordination between day-ahead and real-time optimization for economic and stable operation of distribution systems. IEEE Trans. Power Syst. 33(4), 4475–4487 (2018)MathSciNetCrossRef
3.
Zurück zum Zitat Ji, Y., Yuan, Z., Zhao, J., Wang, Y., Zhao, Y., Li, Y., Han, Y.: Overall control scheme for VSC-based medium-voltage DC power distribution networks. IET Gen. Transm. Distrib. 12(6), 1438–1445 (2018) Ji, Y., Yuan, Z., Zhao, J., Wang, Y., Zhao, Y., Li, Y., Han, Y.: Overall control scheme for VSC-based medium-voltage DC power distribution networks. IET Gen. Transm. Distrib. 12(6), 1438–1445 (2018)
4.
Zurück zum Zitat Nordman, B., Christensen, K.: DC local power distribution: technology, deployment, and pathways to success. IEEE Electrif. Mag. 4(2), 29–36 (2016)CrossRef Nordman, B., Christensen, K.: DC local power distribution: technology, deployment, and pathways to success. IEEE Electrif. Mag. 4(2), 29–36 (2016)CrossRef
5.
Zurück zum Zitat Cao, J., Du, W., Wang, H.F., Bu, S.Q.: Minimization of transmission loss in meshed AC/DC grids with VSC-MTDC networks. IEEE Trans. Power Syst. 28(3), 3047–3055 (2013)CrossRef Cao, J., Du, W., Wang, H.F., Bu, S.Q.: Minimization of transmission loss in meshed AC/DC grids with VSC-MTDC networks. IEEE Trans. Power Syst. 28(3), 3047–3055 (2013)CrossRef
6.
Zurück zum Zitat Farasat, M., Arabali, A.: Voltage and power control for minimising converter and distribution losses in autonomous microgrids. IET Gen. Transm. Distrib. 9(13), 1614–1620 (2015)CrossRef Farasat, M., Arabali, A.: Voltage and power control for minimising converter and distribution losses in autonomous microgrids. IET Gen. Transm. Distrib. 9(13), 1614–1620 (2015)CrossRef
7.
Zurück zum Zitat Ma, M., Yuan, L., Zhao, Z., He, F.: Transmission loss optimization-based optimal power flow strategy by hierarchical control for DC microgrids. IEEE Trans. Power Electron. 32(3), 1952–1963 (2017)CrossRef Ma, M., Yuan, L., Zhao, Z., He, F.: Transmission loss optimization-based optimal power flow strategy by hierarchical control for DC microgrids. IEEE Trans. Power Electron. 32(3), 1952–1963 (2017)CrossRef
8.
Zurück zum Zitat Hong, T., De Leon, F.: Centralized unbalanced dispatch of smart distribution dc micro-grid systems. IEEE Trans. Smart Grid 99, 1 (2016) Hong, T., De Leon, F.: Centralized unbalanced dispatch of smart distribution dc micro-grid systems. IEEE Trans. Smart Grid 99, 1 (2016)
9.
Zurück zum Zitat Zhang, Y., Ravishankar, J., Fletcher, J.: Power flow and transmission loss analysis of modular multi-level converter based multi-terminal high-voltage DC systems. IET Renew. Power Gen. 10(6), 767–775 (2016)CrossRef Zhang, Y., Ravishankar, J., Fletcher, J.: Power flow and transmission loss analysis of modular multi-level converter based multi-terminal high-voltage DC systems. IET Renew. Power Gen. 10(6), 767–775 (2016)CrossRef
10.
Zurück zum Zitat Zhao, B., Song, Q., Liu, W.: Efficiency characterization and optimization of isolated bidirectional DC–DC converter based on dual-phase-shift control for DC distribution application. IEEE Trans. Power Electron. 28(4), 1711–1727 (2003)CrossRef Zhao, B., Song, Q., Liu, W.: Efficiency characterization and optimization of isolated bidirectional DC–DC converter based on dual-phase-shift control for DC distribution application. IEEE Trans. Power Electron. 28(4), 1711–1727 (2003)CrossRef
11.
Zurück zum Zitat Pan, H., Shi, Y., Wang, X., Li, T.: Modeling wireless sensor networks radio frequency signal loss in corn environment. Multimed. Tools Appl. 76(19), 19479–19490 (2017)CrossRef Pan, H., Shi, Y., Wang, X., Li, T.: Modeling wireless sensor networks radio frequency signal loss in corn environment. Multimed. Tools Appl. 76(19), 19479–19490 (2017)CrossRef
12.
Zurück zum Zitat Chong, K., Yoo, S.: Neural network prediction model for a real-time data transmission. Neural Comput. Appl. 15(3–4), 373–382 (2006)CrossRef Chong, K., Yoo, S.: Neural network prediction model for a real-time data transmission. Neural Comput. Appl. 15(3–4), 373–382 (2006)CrossRef
13.
Zurück zum Zitat Chai, R., Zhang, B., Dou, J., Hao, Z., Zheng, T.: Unified power flow algorithm based on the NR method for hybrid AC/DC grids incorporating VSCs. IEEE Trans. Power Syst. 31(6), 4310–4318 (2016)CrossRef Chai, R., Zhang, B., Dou, J., Hao, Z., Zheng, T.: Unified power flow algorithm based on the NR method for hybrid AC/DC grids incorporating VSCs. IEEE Trans. Power Syst. 31(6), 4310–4318 (2016)CrossRef
14.
Zurück zum Zitat Lei, J., An, T., Du, Z., Yuan, Z.: A general unified AC/DC power flow algorithm with MTDC. IEEE Trans. Power Syst. 32(4), 2837–2846 (2017)CrossRef Lei, J., An, T., Du, Z., Yuan, Z.: A general unified AC/DC power flow algorithm with MTDC. IEEE Trans. Power Syst. 32(4), 2837–2846 (2017)CrossRef
15.
Zurück zum Zitat Dragičević, T., Lu, X., Vasquez, J.C., Guerrero, J.M.: DC microgrids—part II: a review of power architectures, applications, and standardization issues. IEEE Trans. Power Electron. 31(5), 3528–3549 (2016)CrossRef Dragičević, T., Lu, X., Vasquez, J.C., Guerrero, J.M.: DC microgrids—part II: a review of power architectures, applications, and standardization issues. IEEE Trans. Power Electron. 31(5), 3528–3549 (2016)CrossRef
16.
Zurück zum Zitat Rouzbehi, K., Miranian, A., Luna, A., Rodriguez, P.: DC voltage control and power sharing in multiterminal DC grids based on optimal DC power flow and voltage-droop strategy. J. Emerg. Sel. Top. Power Electron. 2(4), 1171–1180 (2014)CrossRef Rouzbehi, K., Miranian, A., Luna, A., Rodriguez, P.: DC voltage control and power sharing in multiterminal DC grids based on optimal DC power flow and voltage-droop strategy. J. Emerg. Sel. Top. Power Electron. 2(4), 1171–1180 (2014)CrossRef
17.
Zurück zum Zitat Mackay, L., Guarnotta, R., Dimou, A., Morales-España, G., Ramirez-Elizondo, L., Bauer, P.: Optimal power flow for unbalanced bipolar DC distribution grids. IEEE Access 6, 5199–5207 (2018)CrossRef Mackay, L., Guarnotta, R., Dimou, A., Morales-España, G., Ramirez-Elizondo, L., Bauer, P.: Optimal power flow for unbalanced bipolar DC distribution grids. IEEE Access 6, 5199–5207 (2018)CrossRef
18.
Zurück zum Zitat Yang, Z., Zhong, H., Bose, A., Xia, Q., Kang, C.: Optimal power flow in AC–DC grids with discrete control devices. IEEE Trans. Power Syst. 33(2), 1461–1472 (2018)CrossRef Yang, Z., Zhong, H., Bose, A., Xia, Q., Kang, C.: Optimal power flow in AC–DC grids with discrete control devices. IEEE Trans. Power Syst. 33(2), 1461–1472 (2018)CrossRef
19.
Zurück zum Zitat Li, M., Zhao, H., Weng, X., Huang, X.: Artificial bee colony algorithm with comprehensive search mechanism for numerical optimization. J. Syst. Eng. Electron. 26(3), 603–617 (2015)CrossRef Li, M., Zhao, H., Weng, X., Huang, X.: Artificial bee colony algorithm with comprehensive search mechanism for numerical optimization. J. Syst. Eng. Electron. 26(3), 603–617 (2015)CrossRef
20.
Zurück zum Zitat Farhadi, M., Mohammed, O.A.: Real-time operation and harmonic analysis of isolated and non-isolated hybrid DC microgrid. IEEE Trans. Ind. Appl. 50(4), 2900–2909 (2014)CrossRef Farhadi, M., Mohammed, O.A.: Real-time operation and harmonic analysis of isolated and non-isolated hybrid DC microgrid. IEEE Trans. Ind. Appl. 50(4), 2900–2909 (2014)CrossRef
21.
Zurück zum Zitat Li, X., Guo, L., Hong, C., Zhang, Y., Li, Y.W., Wang, C.: Hierarchical control of multiterminal DC grids for large-scale renewable energy integration. IEEE Trans. Sustain. Energy 9(3), 1448–1457 (2018)CrossRef Li, X., Guo, L., Hong, C., Zhang, Y., Li, Y.W., Wang, C.: Hierarchical control of multiterminal DC grids for large-scale renewable energy integration. IEEE Trans. Sustain. Energy 9(3), 1448–1457 (2018)CrossRef
22.
Zurück zum Zitat Chen, D., Xu, L., Yao, L.: DC voltage variation based autonomous control of DC microgrids. IEEE Trans. Power Deliv. 28(2), 637–648 (2013)CrossRef Chen, D., Xu, L., Yao, L.: DC voltage variation based autonomous control of DC microgrids. IEEE Trans. Power Deliv. 28(2), 637–648 (2013)CrossRef
23.
Zurück zum Zitat Werth, A., Kitamura, N., Tanaka, K.: Conceptual study for open energy systems: distributed energy network using interconnected DC nanogrids. IEEE Trans. Smart Grid 6(4), 1621–1630 (2015)CrossRef Werth, A., Kitamura, N., Tanaka, K.: Conceptual study for open energy systems: distributed energy network using interconnected DC nanogrids. IEEE Trans. Smart Grid 6(4), 1621–1630 (2015)CrossRef
24.
Zurück zum Zitat Hayes, B.P., Wilson, A., Webster, R., Djokic, S.Z.: Comparison of two energy storage options for optimum balancing of wind farm power outputs. IET Gen. Trans. Distrib. 10(3), 832–839 (2016)CrossRef Hayes, B.P., Wilson, A., Webster, R., Djokic, S.Z.: Comparison of two energy storage options for optimum balancing of wind farm power outputs. IET Gen. Trans. Distrib. 10(3), 832–839 (2016)CrossRef
25.
Zurück zum Zitat Dong, J., Gao, F., Guan, X., Zhai, Q., Wu, J.: Storage sizing with peak-shaving policy for wind farm based on cyclic Markov chain model. IEEE Trans. Sustain. Energy 99, 1–1 (2016) Dong, J., Gao, F., Guan, X., Zhai, Q., Wu, J.: Storage sizing with peak-shaving policy for wind farm based on cyclic Markov chain model. IEEE Trans. Sustain. Energy 99, 1–1 (2016)
Metadaten
Titel
Optimization method for reducing network loss of dc distribution system with distributed resource
verfasst von
Bing Han
Yonggang Li
Publikationsdatum
15.11.2018
Verlag
Springer US
Erschienen in
Photonic Network Communications / Ausgabe 2/2019
Print ISSN: 1387-974X
Elektronische ISSN: 1572-8188
DOI
https://doi.org/10.1007/s11107-018-0805-5

Weitere Artikel der Ausgabe 2/2019

Photonic Network Communications 2/2019 Zur Ausgabe

Neuer Inhalt