Skip to main content
Erschienen in: Wireless Networks 2/2019

25.09.2017

Optimization of energy-constrained wireless powered communication networks with heterogeneous nodes

verfasst von: Mohamed A. Abd-Elmagid, Tamer ElBatt, Karim G. Seddik

Erschienen in: Wireless Networks | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we generalize conventional time division multiple access (TDMA) wireless networks to a new type of wireless networks coined generalized wireless powered communication networks (g-WPCNs). Our prime objective is to optimize the design of g-WPCNs where nodes are equipped with radio frequency (RF) energy harvesting circuitries along with constant energy supplies. This constitutes an important step towards a generalized optimization framework for more realistic systems, beyond prior studies where nodes are solely powered by the inherently limited RF energy harvesting. Towards this objective, we formulate two optimization problems with different objective functions, namely, maximizing the sum throughput and maximizing the minimum throughput (maxmin) to address fairness. First, we study the sum throughput maximization problem, investigate its complexity and solve it efficiently using an algorithm based on alternating optimization approach. Afterwards, we shift our attention to the maxmin optimization problem to improve the fairness limitations associated with the sum throughput maximization problem. The proposed problem is generalized, compared to prior work, as it seemlessly lends itself to prior formulations in the literature as special cases representing extreme scenarios, namely, conventional TDMA wireless networks (no RF energy harvesting) and standard WPCNs, with only RF energy harvesting nodes. In addition, the generalized formulation encompasses a scenario of practical interest we introduce, namely, WPCNs with two types of nodes (with and without RF energy harvesting capability) where legacy nodes without RF energy harvesting can be utilized to enhance the system sum throughput, even beyond WPCNs with all RF energy harvesting nodes studied earlier in the literature. We establish the convexity of all formulated problems which opens room for efficient solution using standard techniques. Our numerical results show that conventional TDMA wireless networks and WPCNs with only RF energy harvesting nodes are considered as lower bounds on the performance of the generalized problem setting in terms of the maximum sum throughput and maxmin throughput. Moreover, the results reveal valuable insights and throughput-fairness trade-offs unique to our new problem setting.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
Note that slot time allocations are assumed to take continuous values. This, in turn, requires accurate synchronization methods to implement such scheme in realistic systems.
 
2
The assumption that CSI is perfectly pre-estimated at the BS in the beginning of each slot is an idealization of actual practical systems. This calls for the necessity of using estimators with high accuracy to sufficiently reduce the potential estimation errors.
 
3
Note that this paper falls within the context of WPCNs where the efficiency of energy harvesting circuitries is assumed to be linear [2531]. Incorporating the assumption of non-linear energy harvesting efficiency to our model is a challenging direction of future work.
 
Literatur
1.
Zurück zum Zitat Ho, C. K., & Zhang, R. (2012). Optimal energy allocation for wireless communications with energy harvesting constraints. IEEE Transactions on Signal Processing, 60(9), 4808–4818.MathSciNetCrossRefMATH Ho, C. K., & Zhang, R. (2012). Optimal energy allocation for wireless communications with energy harvesting constraints. IEEE Transactions on Signal Processing, 60(9), 4808–4818.MathSciNetCrossRefMATH
2.
Zurück zum Zitat Ozel, O., Tutuncuoglu, K., Yang, J., Ulukus, S., & Yener, A. (2011). Transmission with energy harvesting nodes in fading wireless channels: Optimal policies. IEEE Journal on Selected Areas in Communications, 29(8), 1732–1743.CrossRef Ozel, O., Tutuncuoglu, K., Yang, J., Ulukus, S., & Yener, A. (2011). Transmission with energy harvesting nodes in fading wireless channels: Optimal policies. IEEE Journal on Selected Areas in Communications, 29(8), 1732–1743.CrossRef
3.
Zurück zum Zitat Paradiso, J., Starner, T., et al. (2005). Energy scavenging for mobile and wireless electronics. IEEE Pervasive Computing, 4(1), 18–27.CrossRef Paradiso, J., Starner, T., et al. (2005). Energy scavenging for mobile and wireless electronics. IEEE Pervasive Computing, 4(1), 18–27.CrossRef
4.
Zurück zum Zitat Rabaey, J. M., Ammer, M. J., da Silva, J. L., Patel, D., & Roundy, S. (2000). Picoradio supports ad hoc ultra-low power wireless networking. Computer, 33(7), 42–48.CrossRef Rabaey, J. M., Ammer, M. J., da Silva, J. L., Patel, D., & Roundy, S. (2000). Picoradio supports ad hoc ultra-low power wireless networking. Computer, 33(7), 42–48.CrossRef
5.
Zurück zum Zitat Raghunathan, V., Schurgers, C., Park, S., & Srivastava, M. B. (2002). Energy-aware wireless microsensor networks. IEEE Signal Processing Magazine, 19(2), 40–50.CrossRef Raghunathan, V., Schurgers, C., Park, S., & Srivastava, M. B. (2002). Energy-aware wireless microsensor networks. IEEE Signal Processing Magazine, 19(2), 40–50.CrossRef
6.
Zurück zum Zitat Roundy, S. J. (2003). Energy scavenging for wireless sensor nodes with a focus on vibration to electricity conversion, Ph.D. dissertation, University of California, Berkeley. Roundy, S. J. (2003). Energy scavenging for wireless sensor nodes with a focus on vibration to electricity conversion, Ph.D. dissertation, University of California, Berkeley.
7.
Zurück zum Zitat Zhao, N., Yu, F. R., & Leung, V. C. (2015). Opportunistic communications in interference alignment networks with wireless power transfer. IEEE Wireless Communications, 22, 88–95.CrossRef Zhao, N., Yu, F. R., & Leung, V. C. (2015). Opportunistic communications in interference alignment networks with wireless power transfer. IEEE Wireless Communications, 22, 88–95.CrossRef
8.
Zurück zum Zitat Zhao, N., Yu, F. R., & Leung, V. C. (2015). Wireless energy harvesting in interference alignment networks. IEEE Communications Magazine, 53, 72–78.CrossRef Zhao, N., Yu, F. R., & Leung, V. C. (2015). Wireless energy harvesting in interference alignment networks. IEEE Communications Magazine, 53, 72–78.CrossRef
9.
Zurück zum Zitat Guo, J., Zhao, N., Yu, F. R., Liu, X., & Leung, V. C. (2017). Exploiting adversarial jamming signals for energy harvesting in interference networks. IEEE Transactions on Wireless Communications, 16, 1267–1280.CrossRef Guo, J., Zhao, N., Yu, F. R., Liu, X., & Leung, V. C. (2017). Exploiting adversarial jamming signals for energy harvesting in interference networks. IEEE Transactions on Wireless Communications, 16, 1267–1280.CrossRef
10.
Zurück zum Zitat Zhao, N., Zhang, S., Yu, R., Chen, Y., Nallanathan, A., & Leung, V. (2017). Exploiting interference for energy harvesting: A survey, research issues and challenges. IEEE Access, 5, 10403–10421.CrossRef Zhao, N., Zhang, S., Yu, R., Chen, Y., Nallanathan, A., & Leung, V. (2017). Exploiting interference for energy harvesting: A survey, research issues and challenges. IEEE Access, 5, 10403–10421.CrossRef
11.
Zurück zum Zitat Varshney, L. R. (2008). Transporting information and energy simultaneously. In IEEE international symposium on information theory (pp. 1612–1616). Varshney, L. R. (2008). Transporting information and energy simultaneously. In IEEE international symposium on information theory (pp. 1612–1616).
12.
Zurück zum Zitat Grover, P., & Sahai, A. (2010). Shannon meets Tesla: Wireless information and power transfer. In IEEE international symposium on information theory (pp. 2363–2367). Grover, P., & Sahai, A. (2010). Shannon meets Tesla: Wireless information and power transfer. In IEEE international symposium on information theory (pp. 2363–2367).
13.
Zurück zum Zitat Huang, K., & Larsson, E. (2013). Simultaneous information and power transfer for broadband wireless systems. IEEE Transactions on Signal Processing, 61(23), 5972–5986.MathSciNetCrossRefMATH Huang, K., & Larsson, E. (2013). Simultaneous information and power transfer for broadband wireless systems. IEEE Transactions on Signal Processing, 61(23), 5972–5986.MathSciNetCrossRefMATH
14.
Zurück zum Zitat Zhang, R., & Ho, C. K. (2013). Mimo broadcasting for simultaneous wireless information and power transfer. IEEE Transactions on Wireless Communications, 12(5), 1989–2001.CrossRef Zhang, R., & Ho, C. K. (2013). Mimo broadcasting for simultaneous wireless information and power transfer. IEEE Transactions on Wireless Communications, 12(5), 1989–2001.CrossRef
15.
Zurück zum Zitat Huang, K., & Larsson, E. (2013). Simultaneous information-and-power transfer for broadband downlink systems. In IEEE acoustics speech and signal processing conference (pp. 4444–4448). Huang, K., & Larsson, E. (2013). Simultaneous information-and-power transfer for broadband downlink systems. In IEEE acoustics speech and signal processing conference (pp. 4444–4448).
16.
Zurück zum Zitat Zhou, X., Zhang, R., & Ho, C. K. (2013). Wireless information and power transfer: Architecture design and rate-energy tradeoff. IEEE Transactions on Communications, 61(11), 4754–4767.CrossRef Zhou, X., Zhang, R., & Ho, C. K. (2013). Wireless information and power transfer: Architecture design and rate-energy tradeoff. IEEE Transactions on Communications, 61(11), 4754–4767.CrossRef
17.
Zurück zum Zitat Park, S., Heo, J., Kim, B., Chung, W., Wang, H., & Hong, D. (2012). Optimal mode selection for cognitive radio sensor networks with RF energy harvesting. In IEEE international symposium on personal indoor and mobile radio communications (PIMRC). IEEE (pp. 2155–2159). Park, S., Heo, J., Kim, B., Chung, W., Wang, H., & Hong, D. (2012). Optimal mode selection for cognitive radio sensor networks with RF energy harvesting. In IEEE international symposium on personal indoor and mobile radio communications (PIMRC). IEEE (pp. 2155–2159).
18.
Zurück zum Zitat Park, S., Kim, H., & Hong, D. (2013). Cognitive radio networks with energy harvesting. IEEE Transactions on Wireless Communications, 12(3), 1386–1397.CrossRef Park, S., Kim, H., & Hong, D. (2013). Cognitive radio networks with energy harvesting. IEEE Transactions on Wireless Communications, 12(3), 1386–1397.CrossRef
19.
Zurück zum Zitat Lee, S., Zhang, R., & Huang, K. (2013). Opportunistic wireless energy harvesting in cognitive radio networks. IEEE Transactions on Wireless Communications, 12(9), 4788–4799.CrossRef Lee, S., Zhang, R., & Huang, K. (2013). Opportunistic wireless energy harvesting in cognitive radio networks. IEEE Transactions on Wireless Communications, 12(9), 4788–4799.CrossRef
20.
Zurück zum Zitat Huang, K., & Lau, V. K. (2014). Enabling wireless power transfer in cellular networks: Architecture, modeling and deployment. IEEE Transactions on Wireless Communications, 13(2), 902–912.CrossRef Huang, K., & Lau, V. K. (2014). Enabling wireless power transfer in cellular networks: Architecture, modeling and deployment. IEEE Transactions on Wireless Communications, 13(2), 902–912.CrossRef
21.
Zurück zum Zitat Xie, L., Shi, Y., Hou, Y. T., Lou, W., Sherali, H. D., & Midkiff, S. F. (2012). On renewable sensor networks with wireless energy transfer: The multi-node case. In IEEE communications society conference on sensor, mesh and ad hoc communications and networks. IEEE (pp. 10–18). Xie, L., Shi, Y., Hou, Y. T., Lou, W., Sherali, H. D., & Midkiff, S. F. (2012). On renewable sensor networks with wireless energy transfer: The multi-node case. In IEEE communications society conference on sensor, mesh and ad hoc communications and networks. IEEE (pp. 10–18).
22.
Zurück zum Zitat Ko, S.-W., Yu, S. M., & Kim, S.-L. (2013). The capacity of energy-constrained mobile networks with wireless power transfer. IEEE Communications Letters, 17(3), 529–532.CrossRef Ko, S.-W., Yu, S. M., & Kim, S.-L. (2013). The capacity of energy-constrained mobile networks with wireless power transfer. IEEE Communications Letters, 17(3), 529–532.CrossRef
23.
Zurück zum Zitat Doost, R., Chowdhury, K. R., & Felice, M. D. (2010). Routing and link layer protocol design for sensor networks with wireless energy transfer. In IEEE global telecommunications conference (GLOBECOM). IEEE (pp. 1–5). Doost, R., Chowdhury, K. R., & Felice, M. D. (2010). Routing and link layer protocol design for sensor networks with wireless energy transfer. In IEEE global telecommunications conference (GLOBECOM). IEEE (pp. 1–5).
24.
Zurück zum Zitat Nintanavongsa, P., Naderi, M. Y., & Chowdhury, K. R. (2013). Medium access control protocol design for sensors powered by wireless energy transfer. In IEEE INFOCOM. IEEE (pp. 150–154). Nintanavongsa, P., Naderi, M. Y., & Chowdhury, K. R. (2013). Medium access control protocol design for sensors powered by wireless energy transfer. In IEEE INFOCOM. IEEE (pp. 150–154).
25.
Zurück zum Zitat Ju, H., & Zhang, R. (2014). Throughput maximization in wireless powered communication networks. IEEE Transactions on Wireless Communications, 13(1), 418–428.CrossRef Ju, H., & Zhang, R. (2014). Throughput maximization in wireless powered communication networks. IEEE Transactions on Wireless Communications, 13(1), 418–428.CrossRef
26.
Zurück zum Zitat Ju, H., & Zhang, R. (2014). User cooperation in wireless powered communication networks. In IEEE global telecommunications conference (GLOBECOM) (pp. 1430–1435). Ju, H., & Zhang, R. (2014). User cooperation in wireless powered communication networks. In IEEE global telecommunications conference (GLOBECOM) (pp. 1430–1435).
27.
Zurück zum Zitat Ju, H., & Zhang, R. (2014). Optimal resource allocation in full-duplex wireless-powered communication network. IEEE Transactions on Communications, 62(10), 3528–3540.CrossRef Ju, H., & Zhang, R. (2014). Optimal resource allocation in full-duplex wireless-powered communication network. IEEE Transactions on Communications, 62(10), 3528–3540.CrossRef
28.
Zurück zum Zitat Kang, X., Ho, C. K., & Sun, S. (2015). Full-duplex wireless-powered communication network with energy causality. IEEE Transactions on Wireless Communications, 14(10), 5539–5551.CrossRef Kang, X., Ho, C. K., & Sun, S. (2015). Full-duplex wireless-powered communication network with energy causality. IEEE Transactions on Wireless Communications, 14(10), 5539–5551.CrossRef
29.
Zurück zum Zitat Lee, S., & Zhang, R. (2015). Cognitive wireless powered network: Spectrum sharing models and throughput maximization. IEEE Transactions on Cognitive Communications and Networking, PP(99), 1–11. Lee, S., & Zhang, R. (2015). Cognitive wireless powered network: Spectrum sharing models and throughput maximization. IEEE Transactions on Cognitive Communications and Networking, PP(99), 1–11.
30.
Zurück zum Zitat Bi, S., & Zhang, R. (2015). Node placement optimization in wireless powered communication networks. ArXiv preprint arXiv:1505.06530. Bi, S., & Zhang, R. (2015). Node placement optimization in wireless powered communication networks. ArXiv preprint arXiv:​1505.​06530.
31.
Zurück zum Zitat Abd-Elmagid, M. A., ElBatt, T., & Seddik, K. G. (2015). Optimization of wireless powered communication networks with heterogeneous nodes. In IEEE global communications conference (GLOBECOM). Abd-Elmagid, M. A., ElBatt, T., & Seddik, K. G. (2015). Optimization of wireless powered communication networks with heterogeneous nodes. In IEEE global communications conference (GLOBECOM).
32.
Zurück zum Zitat Knopp, R., & Humblet, P. A. (1995). Information capacity and power control in single-cell multiuser communications. In IEEE international conference on communications (Vol. 1, pp. 331–335). Knopp, R., & Humblet, P. A. (1995). Information capacity and power control in single-cell multiuser communications. In IEEE international conference on communications (Vol. 1, pp. 331–335).
33.
Zurück zum Zitat Li, L., & Goldsmith, A. J. (2001). Capacity and optimal resource allocation for fading broadcast channels. I. Ergodic capacity. IEEE Transactions on Information Theory, 47, 1083–1102.MathSciNetCrossRefMATH Li, L., & Goldsmith, A. J. (2001). Capacity and optimal resource allocation for fading broadcast channels. I. Ergodic capacity. IEEE Transactions on Information Theory, 47, 1083–1102.MathSciNetCrossRefMATH
34.
Zurück zum Zitat Tse, D. N., & Hanly, S. V. (1998). Multiaccess fading channels. I. Polymatroid structure, optimal resource allocation and throughput capacities. IEEE Transactions on Information Theory, 44(7), 2796–2815.MathSciNetCrossRefMATH Tse, D. N., & Hanly, S. V. (1998). Multiaccess fading channels. I. Polymatroid structure, optimal resource allocation and throughput capacities. IEEE Transactions on Information Theory, 44(7), 2796–2815.MathSciNetCrossRefMATH
35.
Zurück zum Zitat Nintanavongsa, P., Muncuk, U., Lewis, D. R., & Chowdhury, K. R. (2012). Design optimization and implementation for rf energy harvesting circuits. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2(1), 24–33.CrossRef Nintanavongsa, P., Muncuk, U., Lewis, D. R., & Chowdhury, K. R. (2012). Design optimization and implementation for rf energy harvesting circuits. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2(1), 24–33.CrossRef
36.
Zurück zum Zitat Roberg, M., Reveyrand, T., Ramos, I., Falkenstein, E. A., & Popovic, Z. (2012). High-efficiency harmonically terminated diode and transistor rectifiers. IEEE Transactions on Microwave Theory and Techniques, 60(12), 4043–4052.CrossRef Roberg, M., Reveyrand, T., Ramos, I., Falkenstein, E. A., & Popovic, Z. (2012). High-efficiency harmonically terminated diode and transistor rectifiers. IEEE Transactions on Microwave Theory and Techniques, 60(12), 4043–4052.CrossRef
37.
Zurück zum Zitat Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.CrossRefMATH Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.CrossRefMATH
38.
Zurück zum Zitat Boyd, S. (2011). Alternating direction method of multipliers. In Talk at NIPS workshop on optimization and machine learning. Boyd, S. (2011). Alternating direction method of multipliers. In Talk at NIPS workshop on optimization and machine learning.
39.
Zurück zum Zitat Jain, R., Chiu, D.-M., & Hawe, W. (1984). A quantitative measure of fairness and discrimination for resource allocation in shared computer systems. DEC Research Report, Technical Report TR-301. Jain, R., Chiu, D.-M., & Hawe, W. (1984). A quantitative measure of fairness and discrimination for resource allocation in shared computer systems. DEC Research Report, Technical Report TR-301.
40.
Zurück zum Zitat Julian, D., Chiang, M., O’Neill, D., & Boyd, S. (2002). QoS and fairness constrained convex optimization of resource allocation for wireless cellular and ad hoc networks. In IEEE INFOCOM (pp. 477–486). Julian, D., Chiang, M., O’Neill, D., & Boyd, S. (2002). QoS and fairness constrained convex optimization of resource allocation for wireless cellular and ad hoc networks. In IEEE INFOCOM (pp. 477–486).
Metadaten
Titel
Optimization of energy-constrained wireless powered communication networks with heterogeneous nodes
verfasst von
Mohamed A. Abd-Elmagid
Tamer ElBatt
Karim G. Seddik
Publikationsdatum
25.09.2017
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 2/2019
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-017-1587-x

Weitere Artikel der Ausgabe 2/2019

Wireless Networks 2/2019 Zur Ausgabe

Neuer Inhalt