Skip to main content
Erschienen in: Clean Technologies and Environmental Policy 3/2013

01.06.2013 | Original Paper

Optimization of water network integrated with process models

verfasst von: Chun Deng, Xiao Feng, Zengkun Wen

Erschienen in: Clean Technologies and Environmental Policy | Ausgabe 3/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, a novel approach for the synthesis of water network incorporated with process models is introduced. The process models are utilized to relate the variables (i.e., flow rate and concentration) of process output (typically defined as internal water source) with those of process input (i.e., water sink). A generalized water network superstructure is developed to embed all possible process units and all the connections among resources, interceptors, process units, and wastes. The problem is formulated as four optimization problems (minimum freshwater flow rate, intercepted flow rate, intercepted mass load, and number of connections), and the four models are solved in sequence to locate the targets. A literature case is used to validate the proposed approach. Moreover, a sour water network of a practical refinery plant is presented to illustrate the applicability and effectiveness of the proposed approach.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Agrawal V, Shenoy UV (2006) Unified conceptual approach to targeting and design of water and hydrogen networks. AIChE J 52(3):1071–1082CrossRef Agrawal V, Shenoy UV (2006) Unified conceptual approach to targeting and design of water and hydrogen networks. AIChE J 52(3):1071–1082CrossRef
Zurück zum Zitat Ahmetović E, Grossmann IE (2011) Global superstructure optimization for the design of integrated process water networks. AIChE J 57(2):434–457CrossRef Ahmetović E, Grossmann IE (2011) Global superstructure optimization for the design of integrated process water networks. AIChE J 57(2):434–457CrossRef
Zurück zum Zitat Alva-Argáez A, Kokossis AC, Smith R (2007) The design of water-using systems in petroleum refining using a water-pinch decomposition. Chem Eng J 128(1):33–46CrossRef Alva-Argáez A, Kokossis AC, Smith R (2007) The design of water-using systems in petroleum refining using a water-pinch decomposition. Chem Eng J 128(1):33–46CrossRef
Zurück zum Zitat Alwi SRW, Manan ZA (2006) SHARPS: a new cost-screening technique to attain gost-effective minimum water network. AIChE J 52(11):3981–3988CrossRef Alwi SRW, Manan ZA (2006) SHARPS: a new cost-screening technique to attain gost-effective minimum water network. AIChE J 52(11):3981–3988CrossRef
Zurück zum Zitat Bagajewicz M (2000) A review of recent design procedures for water networks in refineries and process plants. Comput Chem Eng 24(9–10):2093–2113CrossRef Bagajewicz M (2000) A review of recent design procedures for water networks in refineries and process plants. Comput Chem Eng 24(9–10):2093–2113CrossRef
Zurück zum Zitat Bagajewicz M, Savelski M (2001) On the use of linear models for the design of water utilization systems in process plants with a single contaminant. Chem Eng Res Des 79(A5):600–610CrossRef Bagajewicz M, Savelski M (2001) On the use of linear models for the design of water utilization systems in process plants with a single contaminant. Chem Eng Res Des 79(A5):600–610CrossRef
Zurück zum Zitat Bai J, Feng X, Deng C (2007) Graphically based optimization of single-contaminant regeneration reuse water systems. Chem Eng Res Des 85(A8):1178–1187CrossRef Bai J, Feng X, Deng C (2007) Graphically based optimization of single-contaminant regeneration reuse water systems. Chem Eng Res Des 85(A8):1178–1187CrossRef
Zurück zum Zitat Bai J, Feng X, Deng C (2010) Optimal design of single-contaminant regeneration reuse water networks with process decomposition. AIChE J 56(4):915–929 Bai J, Feng X, Deng C (2010) Optimal design of single-contaminant regeneration reuse water networks with process decomposition. AIChE J 56(4):915–929
Zurück zum Zitat Bandyopadhyay S, Cormos CC (2008) Water management in process industries incorporating regeneration and recycle through a single treatment unit. Ind Eng Chem Res 47(4):1111–1119CrossRef Bandyopadhyay S, Cormos CC (2008) Water management in process industries incorporating regeneration and recycle through a single treatment unit. Ind Eng Chem Res 47(4):1111–1119CrossRef
Zurück zum Zitat Bandyopadhyay S, Ghanekar MD, Pillai HK (2006) Process water management. Ind Eng Chem Res 45(15):5287–5297CrossRef Bandyopadhyay S, Ghanekar MD, Pillai HK (2006) Process water management. Ind Eng Chem Res 45(15):5287–5297CrossRef
Zurück zum Zitat Castro P, Matos H, Fernandes MC, Nunes CP (1999) Improvements for mass-exchange networks design. Chem Eng Sci 54(11):1649–1665CrossRef Castro P, Matos H, Fernandes MC, Nunes CP (1999) Improvements for mass-exchange networks design. Chem Eng Sci 54(11):1649–1665CrossRef
Zurück zum Zitat Chan JH, Foo DCY, Kumaresan S, Aziz RA, Abu-Hassan MA (2008) An integrated approach for water minimisation in a PVC manufacturing process. Clean Technol Environ Policy 10(1):67–79CrossRef Chan JH, Foo DCY, Kumaresan S, Aziz RA, Abu-Hassan MA (2008) An integrated approach for water minimisation in a PVC manufacturing process. Clean Technol Environ Policy 10(1):67–79CrossRef
Zurück zum Zitat Chen C-L, Lee J-Y, Ng DKS, Foo DCY (2010) Synthesis of resource conservation network with sink–source interaction. Clean Technol Environ Policy 12(6):613–625CrossRef Chen C-L, Lee J-Y, Ng DKS, Foo DCY (2010) Synthesis of resource conservation network with sink–source interaction. Clean Technol Environ Policy 12(6):613–625CrossRef
Zurück zum Zitat Deng C, Feng X (2011) Targeting for conventional and property-based water network with multiple resources. Ind Eng Chem Res 50(7):3722–3737CrossRef Deng C, Feng X (2011) Targeting for conventional and property-based water network with multiple resources. Ind Eng Chem Res 50(7):3722–3737CrossRef
Zurück zum Zitat Deng C, Feng X, Bai J (2008) Graphically based analysis of water system with zero liquid discharge. Chem Eng Res Des 86(A2):165–171CrossRef Deng C, Feng X, Bai J (2008) Graphically based analysis of water system with zero liquid discharge. Chem Eng Res Des 86(A2):165–171CrossRef
Zurück zum Zitat Deng C, Feng X, Ng DKS, Foo DCY (2011) Process-based graphical approach for simultaneous targeting and design of water network. AIChE J 57(11):3085–3104CrossRef Deng C, Feng X, Ng DKS, Foo DCY (2011) Process-based graphical approach for simultaneous targeting and design of water network. AIChE J 57(11):3085–3104CrossRef
Zurück zum Zitat Dhole VR, Ramchandani N, Tainsh RA, Wasilewski M (1996) Make your process water pay for itself. Chem Eng 103(1):100–103 Dhole VR, Ramchandani N, Tainsh RA, Wasilewski M (1996) Make your process water pay for itself. Chem Eng 103(1):100–103
Zurück zum Zitat El-Halwagi MM, Gabriel F, Harell D (2003) Rigorous graphical targeting for resource conservation via material recycle/reuse networks. Ind Eng Chem Res 42(19):4319–4328CrossRef El-Halwagi MM, Gabriel F, Harell D (2003) Rigorous graphical targeting for resource conservation via material recycle/reuse networks. Ind Eng Chem Res 42(19):4319–4328CrossRef
Zurück zum Zitat Faria DC, Bagajewicz MJ (2010) On the appropriate modeling of process plant water systems. AIChE J 56(3):668–689 Faria DC, Bagajewicz MJ (2010) On the appropriate modeling of process plant water systems. AIChE J 56(3):668–689
Zurück zum Zitat Feng X, Bai J, Zheng XS (2007) On the use of graphical method to determine the targets of single-contaminant regeneration recycling water systems. Chem Eng Sci 62(8):2127–2138CrossRef Feng X, Bai J, Zheng XS (2007) On the use of graphical method to determine the targets of single-contaminant regeneration recycling water systems. Chem Eng Sci 62(8):2127–2138CrossRef
Zurück zum Zitat Feng X, Bai J, Wang HM, Zheng XS (2008) Grass-roots design of regeneration recycling water networks. Comput Chem Eng 32(8):1892–1907CrossRef Feng X, Bai J, Wang HM, Zheng XS (2008) Grass-roots design of regeneration recycling water networks. Comput Chem Eng 32(8):1892–1907CrossRef
Zurück zum Zitat Foo DCY (2009) State-of-the-art review of pinch analysis techniques for water network synthesis. Ind Eng Chem Res 48(11):5125–5159CrossRef Foo DCY (2009) State-of-the-art review of pinch analysis techniques for water network synthesis. Ind Eng Chem Res 48(11):5125–5159CrossRef
Zurück zum Zitat Foo DCY (2012) Process integration for resource conservation. CRC Press, Boca Raton Foo DCY (2012) Process integration for resource conservation. CRC Press, Boca Raton
Zurück zum Zitat Foo DCY (2013) A generalised guideline for process changes for resource conservation networks. Clean Technol Environ Policy 15(1):45–53CrossRef Foo DCY (2013) A generalised guideline for process changes for resource conservation networks. Clean Technol Environ Policy 15(1):45–53CrossRef
Zurück zum Zitat Foo DCY, Manan ZA, El-Halwagi MM (2006a) Correct identification of limiting water data for water network synthesis. Clean Technol Environ Policy 8(2):96–104CrossRef Foo DCY, Manan ZA, El-Halwagi MM (2006a) Correct identification of limiting water data for water network synthesis. Clean Technol Environ Policy 8(2):96–104CrossRef
Zurück zum Zitat Foo DCY, Manan ZA, Tan YL (2006b) Use cascade analysis to optimize water networks. Chem Eng Prog 102(7):45–52 Foo DCY, Manan ZA, Tan YL (2006b) Use cascade analysis to optimize water networks. Chem Eng Prog 102(7):45–52
Zurück zum Zitat Gunaratnam M, Alva-Argáez A, Kokossis A, Kim JK, Smith R (2005) Automated design of total water systems. Ind Eng Chem Res 44(3):588–599CrossRef Gunaratnam M, Alva-Argáez A, Kokossis A, Kim JK, Smith R (2005) Automated design of total water systems. Ind Eng Chem Res 44(3):588–599CrossRef
Zurück zum Zitat Hallale N (2002) A new graphical targeting method for water minimisation. Adv Environ Res 6(3):377–390CrossRef Hallale N (2002) A new graphical targeting method for water minimisation. Adv Environ Res 6(3):377–390CrossRef
Zurück zum Zitat Handani ZB, Wan Alwi SR, Hashim H, Manan ZA (2010) Holistic approach for design of minimum water networks using the mixed integer linear programming (MILP) technique. Ind Eng Chem Res 49(12):5742–5751CrossRef Handani ZB, Wan Alwi SR, Hashim H, Manan ZA (2010) Holistic approach for design of minimum water networks using the mixed integer linear programming (MILP) technique. Ind Eng Chem Res 49(12):5742–5751CrossRef
Zurück zum Zitat Handani ZB, Wan Alwi SR, Hashim H, Manan ZA, Sayid Abdullah SHY (2011) Optimal design of water networks involving multiple contaminants for global water operations. Asia-Pac J Chem Eng 6(5):771–777CrossRef Handani ZB, Wan Alwi SR, Hashim H, Manan ZA, Sayid Abdullah SHY (2011) Optimal design of water networks involving multiple contaminants for global water operations. Asia-Pac J Chem Eng 6(5):771–777CrossRef
Zurück zum Zitat Hu N, Feng X, Deng C (2011) Optimal design of multiple-contaminant regeneration reuse water networks with process decomposition. Chem Eng J 173(1):80–91CrossRef Hu N, Feng X, Deng C (2011) Optimal design of multiple-contaminant regeneration reuse water networks with process decomposition. Chem Eng J 173(1):80–91CrossRef
Zurück zum Zitat Huang CH, Chang CT, Ling HC, Chang CC (1999) A mathematical programming model for water usage and treatment network design. Ind Eng Chem Res 38(7):2666–2679CrossRef Huang CH, Chang CT, Ling HC, Chang CC (1999) A mathematical programming model for water usage and treatment network design. Ind Eng Chem Res 38(7):2666–2679CrossRef
Zurück zum Zitat Jezowski J (2010) Review of water network design methods with literature annotations. Ind Eng Chem Res 49(10):4475–4516CrossRef Jezowski J (2010) Review of water network design methods with literature annotations. Ind Eng Chem Res 49(10):4475–4516CrossRef
Zurück zum Zitat Karuppiah R, Grossmann IE (2006) Global optimization for the synthesis of integrated water systems in chemical processes. Comput Chem Eng 30(4):650–673CrossRef Karuppiah R, Grossmann IE (2006) Global optimization for the synthesis of integrated water systems in chemical processes. Comput Chem Eng 30(4):650–673CrossRef
Zurück zum Zitat Khor CS, Chachuat B, Shah N (2012) A superstructure optimization approach for water network synthesis with membrane separation-based regenerators. Comput Chem Eng 42:48–63CrossRef Khor CS, Chachuat B, Shah N (2012) A superstructure optimization approach for water network synthesis with membrane separation-based regenerators. Comput Chem Eng 42:48–63CrossRef
Zurück zum Zitat Kim J-K (2012) System analysis of total water systems for water minimization. Chem Eng J 193–194:304–317CrossRef Kim J-K (2012) System analysis of total water systems for water minimization. Chem Eng J 193–194:304–317CrossRef
Zurück zum Zitat Klemeš JJ (2012) Industrial water recycle/reuse. Curr Opin Chem Eng 1(3):238–245CrossRef Klemeš JJ (2012) Industrial water recycle/reuse. Curr Opin Chem Eng 1(3):238–245CrossRef
Zurück zum Zitat Liu Y, Feng X, Chu KH, Deng C (2012) Optimization of water network with single and two outflow water-using processes. Chem Eng J 192:49–57CrossRef Liu Y, Feng X, Chu KH, Deng C (2012) Optimization of water network with single and two outflow water-using processes. Chem Eng J 192:49–57CrossRef
Zurück zum Zitat Manan ZA, Tan YL, Foo DCY (2004) Targeting the minimum water flow rate using water cascade analysis technique. AIChE J 50(12):3169–3183CrossRef Manan ZA, Tan YL, Foo DCY (2004) Targeting the minimum water flow rate using water cascade analysis technique. AIChE J 50(12):3169–3183CrossRef
Zurück zum Zitat Mann JG, Liu YA (1999) Industrial water reuse and wastewater minimization. McGraw-Hill Professional, New York Mann JG, Liu YA (1999) Industrial water reuse and wastewater minimization. McGraw-Hill Professional, New York
Zurück zum Zitat Meyer CA, Floudas CA (2006) Global optimization of a combinatorially complex generalized pooling problem. AIChE J 52(3):1027–1037CrossRef Meyer CA, Floudas CA (2006) Global optimization of a combinatorially complex generalized pooling problem. AIChE J 52(3):1027–1037CrossRef
Zurück zum Zitat Misener R, Floudas CA (2010) Global optimization of large-scale generalized pooling problems: quadratically constrained MINLP models. Ind Eng Chem Res 49(11):5424–5438CrossRef Misener R, Floudas CA (2010) Global optimization of large-scale generalized pooling problems: quadratically constrained MINLP models. Ind Eng Chem Res 49(11):5424–5438CrossRef
Zurück zum Zitat Ng DKS, Foo DCY, Tan RR (2009a) Automated targeting technique for single-impurity resource conservation networks. Part 1: direct reuse/recycle. Ind Eng Chem Res 48(16):7637–7646CrossRef Ng DKS, Foo DCY, Tan RR (2009a) Automated targeting technique for single-impurity resource conservation networks. Part 1: direct reuse/recycle. Ind Eng Chem Res 48(16):7637–7646CrossRef
Zurück zum Zitat Ng DKS, Foo DCY, Tan RR (2009b) Automated targeting technique for single-impurity resource conservation networks. Part 2: single-pass and partitioning waste-interception systems. Ind Eng Chem Res 48(16):7647–7661CrossRef Ng DKS, Foo DCY, Tan RR (2009b) Automated targeting technique for single-impurity resource conservation networks. Part 2: single-pass and partitioning waste-interception systems. Ind Eng Chem Res 48(16):7647–7661CrossRef
Zurück zum Zitat Polley GT, Polley HL (2000) Design better water networks. Chem Eng Prog 96(2):47–52 Polley GT, Polley HL (2000) Design better water networks. Chem Eng Prog 96(2):47–52
Zurück zum Zitat Ponce-Ortega JM, Hortua AC, El-Halwagi M, Jimenez-Gutierrez A (2009) A property-based optimization of direct recycle networks and wastewater treatment processes. AIChE J 55(9):2329–2344CrossRef Ponce-Ortega JM, Hortua AC, El-Halwagi M, Jimenez-Gutierrez A (2009) A property-based optimization of direct recycle networks and wastewater treatment processes. AIChE J 55(9):2329–2344CrossRef
Zurück zum Zitat Ponce-Ortega JM, Mosqueda-Jiménez FW, Serna-González M, Jiménez-Gutiérrez A, El-Halwagi MM (2011) A property-based approach to the synthesis of material conservation networks with economic and environmental objectives. AIChE J 57(9):2369–2387CrossRef Ponce-Ortega JM, Mosqueda-Jiménez FW, Serna-González M, Jiménez-Gutiérrez A, El-Halwagi MM (2011) A property-based approach to the synthesis of material conservation networks with economic and environmental objectives. AIChE J 57(9):2369–2387CrossRef
Zurück zum Zitat Ponce-Ortega J, Nápoles-Rivera F, El-Halwagi M, Jiménez-Gutiérrez A (2012) An optimization approach for the synthesis of recycle and reuse water integration networks. Clean Technol Environ Policy 14(1):133–151CrossRef Ponce-Ortega J, Nápoles-Rivera F, El-Halwagi M, Jiménez-Gutiérrez A (2012) An optimization approach for the synthesis of recycle and reuse water integration networks. Clean Technol Environ Policy 14(1):133–151CrossRef
Zurück zum Zitat Prakash R, Shenoy UV (2005) Targeting and design of water networks for fixed flowrate and fixed contaminant load operations. Chem Eng Sci 60(1):255–268CrossRef Prakash R, Shenoy UV (2005) Targeting and design of water networks for fixed flowrate and fixed contaminant load operations. Chem Eng Sci 60(1):255–268CrossRef
Zurück zum Zitat Smith R (2005) Chemical process design and integration, 2nd edn. Wiley, Chichester Smith R (2005) Chemical process design and integration, 2nd edn. Wiley, Chichester
Zurück zum Zitat Takama N, Kuriyama T, Shiroko K, Umeda T (1980) Optimal water allocation in a petroleum refinery. Comput Chem Eng 4(4):251–258CrossRef Takama N, Kuriyama T, Shiroko K, Umeda T (1980) Optimal water allocation in a petroleum refinery. Comput Chem Eng 4(4):251–258CrossRef
Zurück zum Zitat Tan YL, Manan ZA (2006) Retrofit of water network with optimization of existing regeneration units. Ind Eng Chem Res 45(22):7592–7602CrossRef Tan YL, Manan ZA (2006) Retrofit of water network with optimization of existing regeneration units. Ind Eng Chem Res 45(22):7592–7602CrossRef
Zurück zum Zitat Wagialla KM, El-Halwagi MM, Ponce-Ortega J (2012) An integrated approach to the optimization of in-plant wastewater interception with mass and property constraints. Clean Technol Environ Policy 14(2):257–265CrossRef Wagialla KM, El-Halwagi MM, Ponce-Ortega J (2012) An integrated approach to the optimization of in-plant wastewater interception with mass and property constraints. Clean Technol Environ Policy 14(2):257–265CrossRef
Zurück zum Zitat Wang YP, Smith R (1994) Wastewater minimisation. Chem Eng Sci 49(7):981–1006CrossRef Wang YP, Smith R (1994) Wastewater minimisation. Chem Eng Sci 49(7):981–1006CrossRef
Zurück zum Zitat Wang YP, Smith R (1995) Wastewater minimization with flowrate constraints. Chem Eng Res Des 73(A8):889–904 Wang YP, Smith R (1995) Wastewater minimization with flowrate constraints. Chem Eng Res Des 73(A8):889–904
Zurück zum Zitat Zheng PY, Feng X, Qian F, Cao DL (2006) Water system integration of a chemical plant. Energy Convers Manage 47(15–16):2470–2478CrossRef Zheng PY, Feng X, Qian F, Cao DL (2006) Water system integration of a chemical plant. Energy Convers Manage 47(15–16):2470–2478CrossRef
Metadaten
Titel
Optimization of water network integrated with process models
verfasst von
Chun Deng
Xiao Feng
Zengkun Wen
Publikationsdatum
01.06.2013
Verlag
Springer-Verlag
Erschienen in
Clean Technologies and Environmental Policy / Ausgabe 3/2013
Print ISSN: 1618-954X
Elektronische ISSN: 1618-9558
DOI
https://doi.org/10.1007/s10098-013-0609-3

Weitere Artikel der Ausgabe 3/2013

Clean Technologies and Environmental Policy 3/2013 Zur Ausgabe

Webwatch

Webwatch