Skip to main content
Erschienen in: Optical and Quantum Electronics 14/2023

01.12.2023

Optimizing CBTSSe solar cells for indoor applications through numerical simulation

verfasst von: Saif M. H. Qaid, Ahmed Shaker, Mohamed Okil, Muath Alkadi, Abdullah Ahmed Ali Ahmed, Walid Zein

Erschienen in: Optical and Quantum Electronics | Ausgabe 14/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Solar cell technologies are pivotal in the transition towards sustainable energy sources. This paper delves into the design and optimization of CBTSSe solar cells for efficient indoor energy harvesting. The tunable bandgap nature of CBTSSe aligns well with the emission spectra of indoor LED lighting, making it a promising candidate for such applications. Our investigations in this paper commence with the design validation of a solar cell device structure, in line with experimental work, ensuring the accuracy of our models and simulation software. Through systematic simulations, we explore the dependence of absorber bandgap on the indoor LED color temperature. The study progresses into a multi-step optimization process, targeting crucial aspects of solar cell design. Investigating interface parameters, we analyze the interplay between the conduction band offset and surface recombination velocity. Subsequently, the influence of absorber layer properties on efficiency is examined, uncovering substantial improvements by optimizing thickness and bulk defect density. Further, we scrutinize the impact of electron transport layer thickness and doping, presenting avenues for performance enhancement. Quantitative results underscore the potency of our approach. Under warm and cool LED illumination, the proposed optimizations elevate the power conversion efficiency from 10.05 to 25.58% and 9.08 to 25%, respectively, validating the effectiveness of our strategies. These findings not only underscore the viability of earth-abundant CBTSSe-based solar cells for indoor applications but also pave the way for tailored, high-efficiency low-cost energy harvesting in various indoor environments.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Cui, X., Sun, K., Huang, J., Lee, C.-Y., Yan, C., Sun, H., Zhang, Y., Liu, F., Hossain, M.A., Zakaria, Y., Wong, L.H., Green, M., Hoex, B., Hao, X.: Enhanced heterojunction interface quality to achieve 93% efficient Cd-free Cu2ZnSnS4 solar cells using atomic layer deposition ZnSnO buffer layer. Chem. Mater. 30, 7860–7871 (2018). https://doi.org/10.1021/acs.chemmater.8b03398CrossRef Cui, X., Sun, K., Huang, J., Lee, C.-Y., Yan, C., Sun, H., Zhang, Y., Liu, F., Hossain, M.A., Zakaria, Y., Wong, L.H., Green, M., Hoex, B., Hao, X.: Enhanced heterojunction interface quality to achieve 93% efficient Cd-free Cu2ZnSnS4 solar cells using atomic layer deposition ZnSnO buffer layer. Chem. Mater. 30, 7860–7871 (2018). https://​doi.​org/​10.​1021/​acs.​chemmater.​8b03398CrossRef
Zurück zum Zitat Ge, J., Roland, P.J., Koirala, P., Meng, W., Young, J.L., Petersen, R., Deutsch, T.G., Teeter, G., Ellingson, R.J., Collins, R.W., Yan, Y.: Employing overlayers to improve the performance of Cu2BaSnS4 Thin film based photoelectrochemical water reduction devices. Chem. Mater. 29, 916–920 (2017a). https://doi.org/10.1021/acs.chemmater.6b03347CrossRef Ge, J., Roland, P.J., Koirala, P., Meng, W., Young, J.L., Petersen, R., Deutsch, T.G., Teeter, G., Ellingson, R.J., Collins, R.W., Yan, Y.: Employing overlayers to improve the performance of Cu2BaSnS4 Thin film based photoelectrochemical water reduction devices. Chem. Mater. 29, 916–920 (2017a). https://​doi.​org/​10.​1021/​acs.​chemmater.​6b03347CrossRef
Zurück zum Zitat Ge, J., Koirala, P., Grice, C.R., Roland, P.J., Yu, Y., Tan, X., Ellingson, R.J., Collins, R.W., Yan, Y.: Oxygenated CdS buffer layers enabling high open-circuit voltages in earth-abundant Cu2BaSnS4 thin-film solar cells. Adv. Energy Mater. 7, 1601803 (2017b). https://doi.org/10.1002/aenm.201601803CrossRef Ge, J., Koirala, P., Grice, C.R., Roland, P.J., Yu, Y., Tan, X., Ellingson, R.J., Collins, R.W., Yan, Y.: Oxygenated CdS buffer layers enabling high open-circuit voltages in earth-abundant Cu2BaSnS4 thin-film solar cells. Adv. Energy Mater. 7, 1601803 (2017b). https://​doi.​org/​10.​1002/​aenm.​201601803CrossRef
Zurück zum Zitat Huang, X.: Design and development of high performance III-nitrides photovoltaics. PhD dissertation, Arizona State University (2020) Huang, X.: Design and development of high performance III-nitrides photovoltaics. PhD dissertation, Arizona State University (2020)
Zurück zum Zitat Sun, J.-P., Márquez, J.A., Stange, H., Mainz, R., Mitzi, D.B.: Phase and film formation pathway for vacuum-deposited Cu2BaSn(S,Se)4 absorber layers. Phys. Rev. Mater. 3, 55402 (2019)CrossRef Sun, J.-P., Márquez, J.A., Stange, H., Mainz, R., Mitzi, D.B.: Phase and film formation pathway for vacuum-deposited Cu2BaSn(S,Se)4 absorber layers. Phys. Rev. Mater. 3, 55402 (2019)CrossRef
Metadaten
Titel
Optimizing CBTSSe solar cells for indoor applications through numerical simulation
verfasst von
Saif M. H. Qaid
Ahmed Shaker
Mohamed Okil
Muath Alkadi
Abdullah Ahmed Ali Ahmed
Walid Zein
Publikationsdatum
01.12.2023
Verlag
Springer US
Erschienen in
Optical and Quantum Electronics / Ausgabe 14/2023
Print ISSN: 0306-8919
Elektronische ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-023-05541-x

Weitere Artikel der Ausgabe 14/2023

Optical and Quantum Electronics 14/2023 Zur Ausgabe

Neuer Inhalt