Skip to main content

2018 | OriginalPaper | Buchkapitel

Optoelectronic Characteristics of Passivated and Non-passivated Silicon Quantum Dot

verfasst von : A. Laref

Erschienen in: Advances in Silicon Solar Cells

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter, our recent research about the impact of hydrogen passivations and size on the electronic and optical features of silicon quantum dots will be reviewed. A theoretical modeling will be presented for silicon quantum dot with spherical topologies and treating their corresponding physical properties. This recent study was conducted by means of first principle calculations to explore the energy band gap versus the radius of Si quantum dots for passivated and non-passivated surface. The optimization of the structures of quantum dots was performed for both passivated and unpassivated quantum dots with various sizes. The interesting features for the electronic characteristic, such as the energy band gaps are higher in the case of hydrogenated surface than the unpassivated case. Accordingly, both quantum confinement and surface passivation provide information concerning the electronic and optical characters of Si quantum dots. The passivation impact on the surface dangling bonds with hydrogen atoms as well as the contribution of surface states on the gap energy are also presented. The hydrogen passivation influence increases the energy gap than that of pure silicon quantum dots. The significant character of the confinement and surface passivation on the optical properties are reviewed. The previous experimental determinations have shown that the optical properties of these dots were significantly affected by the quantum confinement effects. Overall, the hydrogen saturation surface controls principally the ground-state geometry, the energy gap, and optical absorption of Si quantum dots with the change of radius size. It was inferred in our previous study that the insertion of hydrogen could lead to the alteration of the electronic structure of silicon quantum dots. The saturated surface by hydrogen atoms has also a main contribution on the spatial distribution of the highest occupied and lowest unoccupied molecular orbitals. The hydrogen effect on optical absorption spectra and the static dielectric constant are also reviewed. Exclusively, the absorption threshold relationship of Si nanoparticles on the radius and hydrogenation surmise a decrease in the quantum confinement effect. The absorption spectra illustrated that the absorption properties are intimately accompanied with the surface saturation as well the radius of the dots. This theoretical finding could assist the comprehension of the microscopic mechanism which is spectacular for the devices performance and the potential application in nanotechnologies. This could highlight the significant optical parameters of silicon quantum dots for the purpose to comprehend the optical properties in the photoluminescence process of finite-size dots. The recent work about the optical absorption showed that the nanostructured Si could possess a very high luminescence in the visible regime as reported in the experimental inspection.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. Forcales, N.J. Smith, R.G. Elliman, J. Appl. Phys. B 100, 014902 (2006)CrossRef M. Forcales, N.J. Smith, R.G. Elliman, J. Appl. Phys. B 100, 014902 (2006)CrossRef
3.
Zurück zum Zitat Z. Deng, X.D. Pi, J.J. Zhao, D. Yang, J. Mater. Sci. Technol. 29, 221 (2013)CrossRef Z. Deng, X.D. Pi, J.J. Zhao, D. Yang, J. Mater. Sci. Technol. 29, 221 (2013)CrossRef
5.
9.
Zurück zum Zitat L.E. Ramos, H.-C. Weissker, J. Furthm¨uller, F. Bechstedt, Phys. Status Solidi B 242, 3053 (2005)CrossRef L.E. Ramos, H.-C. Weissker, J. Furthm¨uller, F. Bechstedt, Phys. Status Solidi B 242, 3053 (2005)CrossRef
10.
11.
12.
Zurück zum Zitat F. Trani, G. Cantele, D. Ninno, G. Iadonisi, Phys. Rev. B 72, 075423 (2005)CrossRef F. Trani, G. Cantele, D. Ninno, G. Iadonisi, Phys. Rev. B 72, 075423 (2005)CrossRef
13.
Zurück zum Zitat L. Yao, T. Yu, L.X. Ba, H. Meng, X. Fang, Y.L. Wang, L. Li, X. Rong, S. Wang, X.Q. Wang, G.Z. Ran, X.D. Pi, G.G. Qin, J. Mater. Chem. C 4, 673 (2016)CrossRef L. Yao, T. Yu, L.X. Ba, H. Meng, X. Fang, Y.L. Wang, L. Li, X. Rong, S. Wang, X.Q. Wang, G.Z. Ran, X.D. Pi, G.G. Qin, J. Mater. Chem. C 4, 673 (2016)CrossRef
14.
Zurück zum Zitat B.B. Sahu, Y. Yin, J.G. Han, M. Shiratanib, Phys. Chem. Chem. Phys. 18, 15697 (2016)CrossRef B.B. Sahu, Y. Yin, J.G. Han, M. Shiratanib, Phys. Chem. Chem. Phys. 18, 15697 (2016)CrossRef
15.
Zurück zum Zitat S. Askari, M. Macias-Montero, T. Velusamy, P. Maguire, V. Svrcek, D. Mariotti, J. Phys. D: Appl. Phys. 314002, 48 (2015) S. Askari, M. Macias-Montero, T. Velusamy, P. Maguire, V. Svrcek, D. Mariotti, J. Phys. D: Appl. Phys. 314002, 48 (2015)
16.
Zurück zum Zitat L. Eleonora, I. Federico, M. Rita, P. Olivia, O. Stefano, D. Elena, O. Valerio, Phys. Rev. B 75, 033303 (2007)CrossRef L. Eleonora, I. Federico, M. Rita, P. Olivia, O. Stefano, D. Elena, O. Valerio, Phys. Rev. B 75, 033303 (2007)CrossRef
17.
Zurück zum Zitat F. Sangghaleh, I. Sychugov, Z. Yang, J.G.C. Veinot, J. Linnros, J. ACS Nano 9, 7097 (2015)CrossRef F. Sangghaleh, I. Sychugov, Z. Yang, J.G.C. Veinot, J. Linnros, J. ACS Nano 9, 7097 (2015)CrossRef
19.
Zurück zum Zitat S. Ossicini, L. Pavesi, F. Priolo, Light Emitting Silicon for Microphotonics (Springer, Berlin, 2004) S. Ossicini, L. Pavesi, F. Priolo, Light Emitting Silicon for Microphotonics (Springer, Berlin, 2004)
21.
Zurück zum Zitat M. Miyano, S. Endo, H. Takenouchi, S. Nakamura, Y. Iwabuti, O. Shiino, T. Nakanishi, Y. Hasegawa, J. Phys. Chem. C 118, 19778 (2014)CrossRef M. Miyano, S. Endo, H. Takenouchi, S. Nakamura, Y. Iwabuti, O. Shiino, T. Nakanishi, Y. Hasegawa, J. Phys. Chem. C 118, 19778 (2014)CrossRef
22.
Zurück zum Zitat G. Shen, D. Chen, K. Tang, Y. Qian, S. Zhang, Chem. Phys. Lett. 375, 177 (2003)CrossRef G. Shen, D. Chen, K. Tang, Y. Qian, S. Zhang, Chem. Phys. Lett. 375, 177 (2003)CrossRef
23.
Zurück zum Zitat D. Zhang, A. Alkhateeb, H. Han, H. Mahmood, D.N. Mcllroy, M. Grant Norton, Nano Lett. 3, 983 (2003)CrossRef D. Zhang, A. Alkhateeb, H. Han, H. Mahmood, D.N. Mcllroy, M. Grant Norton, Nano Lett. 3, 983 (2003)CrossRef
24.
Zurück zum Zitat G.W. Ho, A.S.W. Wong, D.J. Kang, M.E. Welland, Nanotechnology 15, 996 (2004)CrossRef G.W. Ho, A.S.W. Wong, D.J. Kang, M.E. Welland, Nanotechnology 15, 996 (2004)CrossRef
27.
28.
Zurück zum Zitat X. Liu, Y. Zhang, Y. Ting, X. Qiao, R. Gresback, X. Pi, D. Yang, Part. Part. Syst. Charact. 33, 44 (2016)CrossRef X. Liu, Y. Zhang, Y. Ting, X. Qiao, R. Gresback, X. Pi, D. Yang, Part. Part. Syst. Charact. 33, 44 (2016)CrossRef
29.
Zurück zum Zitat S. Ossicini, M. Amato, R. Guerra, M. Palummo, O. Pulci, Nanoscale. Res. Lett 5, 1637 (2010)CrossRef S. Ossicini, M. Amato, R. Guerra, M. Palummo, O. Pulci, Nanoscale. Res. Lett 5, 1637 (2010)CrossRef
30.
31.
Zurück zum Zitat P. Giannozzi et al., J. Phys.: Condens. Matter 21, 395502 (2009) P. Giannozzi et al., J. Phys.: Condens. Matter 21, 395502 (2009)
32.
Zurück zum Zitat A. Laref, N. Alshammari, S. Laref, S.J. Luo, Sol. Energy Mater. Sol. Cells 120, 622 (2014)CrossRef A. Laref, N. Alshammari, S. Laref, S.J. Luo, Sol. Energy Mater. Sol. Cells 120, 622 (2014)CrossRef
33.
Zurück zum Zitat J.P. Proot, C. Delerue, G. Allan, Appl. Phys. Lett. 61(16), 1948 (1992)CrossRef J.P. Proot, C. Delerue, G. Allan, Appl. Phys. Lett. 61(16), 1948 (1992)CrossRef
34.
Zurück zum Zitat J.S. Biteen, D.P. Pacifici, N.S. Lewis, H.A. Atwater, Nano Lett. 5, 1768 (2005)CrossRef J.S. Biteen, D.P. Pacifici, N.S. Lewis, H.A. Atwater, Nano Lett. 5, 1768 (2005)CrossRef
35.
Zurück zum Zitat B. Delley, E. F. Steigmeier, Phys. Rev. B 47, 1397 (1993); Appl. Phys. Lett. 67, 2370 (1995) B. Delley, E. F. Steigmeier, Phys. Rev. B 47, 1397 (1993); Appl. Phys. Lett. 67, 2370 (1995)
36.
Zurück zum Zitat T. Trupke, J. Zhao, A. Wang, R. Corkish, M. Green, Appl. Phys. Lett. 82, 2996 (2003)CrossRef T. Trupke, J. Zhao, A. Wang, R. Corkish, M. Green, Appl. Phys. Lett. 82, 2996 (2003)CrossRef
38.
Zurück zum Zitat A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, Nature 427, 615 (2004)CrossRef A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, Nature 427, 615 (2004)CrossRef
39.
Zurück zum Zitat F. Bruneval, F. Sottile, V. Olevano, R.D. Sole, L. Reining, Phys. Rev. Lett. 94, 186402 (2005)CrossRef F. Bruneval, F. Sottile, V. Olevano, R.D. Sole, L. Reining, Phys. Rev. Lett. 94, 186402 (2005)CrossRef
40.
Zurück zum Zitat I. Vasiliev, S. Ogut, J.R. Chelikowsky, Phys. Rev. Lett. 86, 1813 (2001); A.J. Williamson, J.C. Grossman, R.Q. Hood, A. Puzder, G. Galli, Phys. Rev. Lett. 89, 196803 (2002) I. Vasiliev, S. Ogut, J.R. Chelikowsky, Phys. Rev. Lett. 86, 1813 (2001); A.J. Williamson, J.C. Grossman, R.Q. Hood, A. Puzder, G. Galli, Phys. Rev. Lett. 89, 196803 (2002)
41.
42.
Zurück zum Zitat C.S. Garoufalis, A.D. Zdetsis, S. Grimme, Phys. Rev. Lett. 87, 276402 (2001)CrossRef C.S. Garoufalis, A.D. Zdetsis, S. Grimme, Phys. Rev. Lett. 87, 276402 (2001)CrossRef
44.
Zurück zum Zitat R.M. Martin, Electronic Structure (Cambridge University Press, Cambridge, 2004)CrossRef R.M. Martin, Electronic Structure (Cambridge University Press, Cambridge, 2004)CrossRef
45.
46.
47.
48.
Zurück zum Zitat A.D. Zdetsis, C.S. Garoufalis, S. Grimme, in NATO Advanced Research Workshop on “Quantum Dots: Fundamentals, Applications, and Frontiers” (Crete 2003), ed. by B.A. Joyce et al. (Springer, Heidelberg, 2005), pp. 317–332 A.D. Zdetsis, C.S. Garoufalis, S. Grimme, in NATO Advanced Research Workshop on “Quantum Dots: Fundamentals, Applications, and Frontiers” (Crete 2003), ed. by B.A. Joyce et al. (Springer, Heidelberg, 2005), pp. 317–332
50.
Zurück zum Zitat Y. Liu, Z.Y. Zhang, Y.F. Hu, C.H. Jin, L.-M. Peng, J. Nanosci. Nanotechnol. 8, 252 (2008)CrossRef Y. Liu, Z.Y. Zhang, Y.F. Hu, C.H. Jin, L.-M. Peng, J. Nanosci. Nanotechnol. 8, 252 (2008)CrossRef
51.
Zurück zum Zitat Y.-Y. Noh, X. Cheng, H. Sirringhaus, J.I. Sohn, M.E. Welland, D.J. Kang, Appl. Phys. Lett. 91, 043109 (2007)CrossRef Y.-Y. Noh, X. Cheng, H. Sirringhaus, J.I. Sohn, M.E. Welland, D.J. Kang, Appl. Phys. Lett. 91, 043109 (2007)CrossRef
52.
Zurück zum Zitat B. Ghosh et al., Adv. Funct. Mater. 24, 7151 (2014) B. Ghosh et al., Adv. Funct. Mater. 24, 7151 (2014)
55.
56.
Zurück zum Zitat G. Conibeer, M. Green, M. Cho, et al., Thin Solid Films. 516, 6748 (2008); C.S. Garoufalis, A.D. Zdetsis, J. Math. Chem. 46, 952 (2009) G. Conibeer, M. Green, M. Cho, et al., Thin Solid Films. 516, 6748 (2008); C.S. Garoufalis, A.D. Zdetsis, J. Math. Chem. 46, 952 (2009)
57.
Zurück zum Zitat S.Z. Bisri, et al., Adv. Mater. 26, 5639–5645 (2014); R. Guerra, E. Degoli, et al., Phys. Rev. B. 80, 155332-1—155332-5 (2009) S.Z. Bisri, et al., Adv. Mater. 26, 5639–5645 (2014); R. Guerra, E. Degoli, et al., Phys. Rev. B. 80, 155332-1—155332-5 (2009)
58.
Zurück zum Zitat D. König, J. Rudd, et al., Sol. Energy Mater. Sol. Cells 93, 753 (2009)CrossRef D. König, J. Rudd, et al., Sol. Energy Mater. Sol. Cells 93, 753 (2009)CrossRef
60.
Zurück zum Zitat J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)CrossRef J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)CrossRef
61.
Zurück zum Zitat M. Ribeiro Jr., L.R.C. Fonseca, L.G. Ferreira, Phys. Rev. B 241312(R), 79 (2009) M. Ribeiro Jr., L.R.C. Fonseca, L.G. Ferreira, Phys. Rev. B 241312(R), 79 (2009)
63.
Zurück zum Zitat M. Stupca, M. Alsalhi, T. Al-Saud, A. Almuhanna, M. Nayfeh, Appl. Phys. Lett. 91, 063107 (2007)CrossRef M. Stupca, M. Alsalhi, T. Al-Saud, A. Almuhanna, M. Nayfeh, Appl. Phys. Lett. 91, 063107 (2007)CrossRef
64.
Zurück zum Zitat F.A. Reboredo, A. Franceschetti, A. Zunger, Phys. Rev. B 61, 13073 (2000)CrossRef F.A. Reboredo, A. Franceschetti, A. Zunger, Phys. Rev. B 61, 13073 (2000)CrossRef
66.
68.
70.
Zurück zum Zitat C. Tserbak, H.M. Polatoglou, G. Theodorou, Phys. Rev. B 47, 7104 (1993)CrossRef C. Tserbak, H.M. Polatoglou, G. Theodorou, Phys. Rev. B 47, 7104 (1993)CrossRef
Metadaten
Titel
Optoelectronic Characteristics of Passivated and Non-passivated Silicon Quantum Dot
verfasst von
A. Laref
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-69703-1_2