Skip to main content

2016 | OriginalPaper | Buchkapitel

11. Organ on Chip

verfasst von : N. Beißner, T. Lorenz, S. Reichl

Erschienen in: Microsystems for Pharmatechnology

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The process of new drug development is both time and cost intensive. Therefore, all test systems, in particular during the pre-clinical phase, have to provide reliable results to minimize the risk of failure at a later stage of drug development. However, current pre-clinical studies are mainly performed using experimental animals and in vitro cell culture models, which both are not able to reliably emulate human physiology. As a consequence, the common test procedures may be one reason for late-stage drug failures. Hence, improved test systems are needed, which mimic the diverse and dynamic human physiology and are well controllable and suitable for high-throughput screening.
High expectations have been raised by the development of organ on chip (OOC) systems. These novel microdevices combine the benefits of an engineered, physiological-like microenvironment with the advantages of well-characterized human cells. Furthermore, due to the small dimensions of OOCs, it is possible to work with small amounts of drugs, so OOCs are suitable for high-throughput screening. Moreover, OOCs can include biosensors that allow online measurements of the viability and functionality of the cells in real time. Additionally, OOCs containing tissues from different origins can be connected by microfluidic techniques to form multiple OOCs.
This chapter takes a closer look at the technical as well as the cellular aspects of OOC technology. Subsequently, the presentation of various already developed OOCs and promising future applications in pharmaceutical research and development shall underline the enormous potential of OOCs in the reduction of animal experiments and the precise emulation of human physiology.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Achyuta AKH, Conway AJ, Crouse RB, Bannister EC, Lee RN, Katnik CP, Behensky AA, Cuevas J, Sundaram SS (2013) A modular approach to create a neurovascular unit-on-a-chip. Lab Chip 13(4):542–553CrossRef Achyuta AKH, Conway AJ, Crouse RB, Bannister EC, Lee RN, Katnik CP, Behensky AA, Cuevas J, Sundaram SS (2013) A modular approach to create a neurovascular unit-on-a-chip. Lab Chip 13(4):542–553CrossRef
2.
Zurück zum Zitat Ataç B, Wagner I, Horland R, Lauster R, Marx U, Tonevitsky AG, Azar RP, Lindner G (2013) Skin and hair on-a-chip: in vitro skin models versus ex vivo tissue maintenance with dynamic perfusion. Lab Chip 13(18):3555–3561CrossRef Ataç B, Wagner I, Horland R, Lauster R, Marx U, Tonevitsky AG, Azar RP, Lindner G (2013) Skin and hair on-a-chip: in vitro skin models versus ex vivo tissue maintenance with dynamic perfusion. Lab Chip 13(18):3555–3561CrossRef
3.
Zurück zum Zitat Booth R, Kim H (2012) Characterization of a microfluidic in vitro model of the blood-brain barrier (μBBB). Lab Chip 12(10):1784–1792CrossRef Booth R, Kim H (2012) Characterization of a microfluidic in vitro model of the blood-brain barrier (μBBB). Lab Chip 12(10):1784–1792CrossRef
4.
Zurück zum Zitat Capulli AK, Tian K, Mehandru N, Bukhta A, Choudhury SF, Suchyta M, Parker KK (2014) Approaching the in vitro clinical trial: engineering organs on chips. Lab Chip 14(17):3181–3186CrossRef Capulli AK, Tian K, Mehandru N, Bukhta A, Choudhury SF, Suchyta M, Parker KK (2014) Approaching the in vitro clinical trial: engineering organs on chips. Lab Chip 14(17):3181–3186CrossRef
5.
Zurück zum Zitat Chueh B, Huh D, Kyrtsos CR, Houssin T, Futai N, Takayama S (2007) Leakage-free bonding of porous membranes into layered microfluidic array systems. Anal Chem 79(9):3504–3508CrossRef Chueh B, Huh D, Kyrtsos CR, Houssin T, Futai N, Takayama S (2007) Leakage-free bonding of porous membranes into layered microfluidic array systems. Anal Chem 79(9):3504–3508CrossRef
6.
Zurück zum Zitat Darvishi S, Cubaud T, Longtin JP (2012) Ultrafast laser machining of tapered microchannels in glass and PDMS. Opt Lasers Eng 50(2):210–214CrossRef Darvishi S, Cubaud T, Longtin JP (2012) Ultrafast laser machining of tapered microchannels in glass and PDMS. Opt Lasers Eng 50(2):210–214CrossRef
7.
Zurück zum Zitat Dash A, Inman W, Hoffmaster K, Sevidal S, Kelly J, Obach RS, Griffith LG, Tannenbaum SR (2009) Liver tissue engineering in the evaluation of drug safety. Expert Opin Drug Metab Toxicol 5(10):1159–1174CrossRef Dash A, Inman W, Hoffmaster K, Sevidal S, Kelly J, Obach RS, Griffith LG, Tannenbaum SR (2009) Liver tissue engineering in the evaluation of drug safety. Expert Opin Drug Metab Toxicol 5(10):1159–1174CrossRef
8.
Zurück zum Zitat Deiss F, Mazzeo A, Hong E, Ingber DE, Derda R, Whitesides G (2013) Platform for high-throughput testing of the effect of soluble compounds on 3D cell cultures. Anal Chem 85(17):8085–8094CrossRef Deiss F, Mazzeo A, Hong E, Ingber DE, Derda R, Whitesides G (2013) Platform for high-throughput testing of the effect of soluble compounds on 3D cell cultures. Anal Chem 85(17):8085–8094CrossRef
9.
Zurück zum Zitat Domansky K, Inman W, Serdy J, Dash A, Lim M, Griffith LG (2010) Perfused multiwell plate for 3D liver tissue engineering. Lab Chip 10(1):51–58CrossRef Domansky K, Inman W, Serdy J, Dash A, Lim M, Griffith LG (2010) Perfused multiwell plate for 3D liver tissue engineering. Lab Chip 10(1):51–58CrossRef
10.
Zurück zum Zitat Griep LM, Wolbers F, de Wagenaar B, Ter Braak PM, Weksler BB, Romero IA, Couraud PO, Vermes I, Van Der Meer AD, Van Den Berg A (2013) BBB on chip: microfluidic platform to mechanically and biochemically modulate blood-brain barrier function. Biomed Microdevices 15(1):145–150CrossRef Griep LM, Wolbers F, de Wagenaar B, Ter Braak PM, Weksler BB, Romero IA, Couraud PO, Vermes I, Van Der Meer AD, Van Den Berg A (2013) BBB on chip: microfluidic platform to mechanically and biochemically modulate blood-brain barrier function. Biomed Microdevices 15(1):145–150CrossRef
11.
Zurück zum Zitat Grosberg A, Alford PW, McCain ML, Parker KK (2011) Ensembles of engineered cardiac tissues for physiological and pharmacological study: heart on a chip. Lab Chip 11(24):4165–4173CrossRef Grosberg A, Alford PW, McCain ML, Parker KK (2011) Ensembles of engineered cardiac tissues for physiological and pharmacological study: heart on a chip. Lab Chip 11(24):4165–4173CrossRef
12.
Zurück zum Zitat Grosberg A, Nesmith AP, Goss JA, Brigham MD, McCain ML, Parker KK (2012) Muscle on a chip: in vitro contractility assays for smooth and striated muscle. J Pharmacol Toxicol Methods 65(3):126–135CrossRef Grosberg A, Nesmith AP, Goss JA, Brigham MD, McCain ML, Parker KK (2012) Muscle on a chip: in vitro contractility assays for smooth and striated muscle. J Pharmacol Toxicol Methods 65(3):126–135CrossRef
13.
Zurück zum Zitat Huh D, Hamilton GA, Ingber DE (2011) From 3D cell culture to organs-on-chips. Trends Cell Biol 21(12):745–754CrossRef Huh D, Hamilton GA, Ingber DE (2011) From 3D cell culture to organs-on-chips. Trends Cell Biol 21(12):745–754CrossRef
14.
Zurück zum Zitat Huh D, Leslie DC, Matthews BD, Fraser JP, Jurek S, Hamilton GA, Thorneloe KS, McAlexander MA, Ingber DE (2012) A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice. Sci Transl Med 4(159):159ra147CrossRef Huh D, Leslie DC, Matthews BD, Fraser JP, Jurek S, Hamilton GA, Thorneloe KS, McAlexander MA, Ingber DE (2012) A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice. Sci Transl Med 4(159):159ra147CrossRef
15.
Zurück zum Zitat Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Yuan Hsin H, Ingber DE (2010) Reconstituting organ-level lung functions on a chip. Science 328(5986):1662–1668CrossRef Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Yuan Hsin H, Ingber DE (2010) Reconstituting organ-level lung functions on a chip. Science 328(5986):1662–1668CrossRef
16.
Zurück zum Zitat Huh D, Torisawa Y, Hamilton GA, Kim HJ, Ingber DE (2012) Microengineered physiological biomimicry: organs-on-chips. Lab Chip 12(12):2156–2164CrossRef Huh D, Torisawa Y, Hamilton GA, Kim HJ, Ingber DE (2012) Microengineered physiological biomimicry: organs-on-chips. Lab Chip 12(12):2156–2164CrossRef
17.
Zurück zum Zitat Jang K, Mehr AP, Hamilton GA, McPartlin LA, Chung S, Suh K, Ingber DE (2013) Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment. Integr Biol (Camb) 5(9):1119–1129CrossRef Jang K, Mehr AP, Hamilton GA, McPartlin LA, Chung S, Suh K, Ingber DE (2013) Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment. Integr Biol (Camb) 5(9):1119–1129CrossRef
18.
Zurück zum Zitat Jang K, Suh K (2010) A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells. Lab Chip 10(1):36–42CrossRef Jang K, Suh K (2010) A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells. Lab Chip 10(1):36–42CrossRef
19.
Zurück zum Zitat Kim HJ, Huh D, Hamilton G, Ingber DE (2012) Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 12(12):2165–2174CrossRef Kim HJ, Huh D, Hamilton G, Ingber DE (2012) Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 12(12):2165–2174CrossRef
20.
Zurück zum Zitat Kimlin L, Kassis J, Virador V (2013) 3D in vitro tissue models and their potential for drug screening. Expert Opin Drug Discov 8(12):1455–1466CrossRef Kimlin L, Kassis J, Virador V (2013) 3D in vitro tissue models and their potential for drug screening. Expert Opin Drug Discov 8(12):1455–1466CrossRef
21.
Zurück zum Zitat Marx U, Walles H, Hoffmann S, Lindner G, Horland R, Sonntag F, Klotzbach U, Sakharov D, Tonevitsky A, Lauster R (2012) ’Human-on-a-chip’ developments: a translational cutting edge alternative to systemic safety assessment and efficiency evaluation of substances in laboratory animals and man? Altern Lab Anim 40(5):235–257 Marx U, Walles H, Hoffmann S, Lindner G, Horland R, Sonntag F, Klotzbach U, Sakharov D, Tonevitsky A, Lauster R (2012) ’Human-on-a-chip’ developments: a translational cutting edge alternative to systemic safety assessment and efficiency evaluation of substances in laboratory animals and man? Altern Lab Anim 40(5):235–257
22.
Zurück zum Zitat Maschmeyer I, Lorenz AK, Schimek K, Hasenberg T, Ramme AP, Hubner J, Lindner M, Drewell C, Bauer S, Thomas A, Sambo NS, Sonntag F, Lauster R, Marx U (2015) A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents. Lab Chip 15(12):2688–2699CrossRef Maschmeyer I, Lorenz AK, Schimek K, Hasenberg T, Ramme AP, Hubner J, Lindner M, Drewell C, Bauer S, Thomas A, Sambo NS, Sonntag F, Lauster R, Marx U (2015) A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents. Lab Chip 15(12):2688–2699CrossRef
23.
Zurück zum Zitat Mauleon G, Fall CP, Eddington DT (2012) Precise spatial and temporal control of oxygen within in vitro brain slices via microfluidic gas channels. PLoS One 7(8) Mauleon G, Fall CP, Eddington DT (2012) Precise spatial and temporal control of oxygen within in vitro brain slices via microfluidic gas channels. PLoS One 7(8)
24.
Zurück zum Zitat Nesmith AP, Agarwal A, McCain ML, Parker KK (2014) Human airway musculature on a chip: an in vitro model of allergic asthmatic bronchoconstriction and bronchodilation. Lab Chip 14(20):3925–3936CrossRef Nesmith AP, Agarwal A, McCain ML, Parker KK (2014) Human airway musculature on a chip: an in vitro model of allergic asthmatic bronchoconstriction and bronchodilation. Lab Chip 14(20):3925–3936CrossRef
25.
Zurück zum Zitat Olsen MH, Hjortø GM, Hansen M, Met Ö, Svane IM, Larsen NB (2013) In-chip fabrication of free-form 3D constructs for directed cell migration analysis. Lab Chip 13(24):4800–4809CrossRef Olsen MH, Hjortø GM, Hansen M, Met Ö, Svane IM, Larsen NB (2013) In-chip fabrication of free-form 3D constructs for directed cell migration analysis. Lab Chip 13(24):4800–4809CrossRef
26.
Zurück zum Zitat Park J, Koito H, Li J, Han A (2009) Microfluidic compartmentalized co-culture platform for CNS axon myelination research. Biomed Microdevices 11(6):1145–1153CrossRef Park J, Koito H, Li J, Han A (2009) Microfluidic compartmentalized co-culture platform for CNS axon myelination research. Biomed Microdevices 11(6):1145–1153CrossRef
27.
Zurück zum Zitat Polini A, Prodanov L, Bhise NS, Manoharan V, Dokmeci MR, Khademhosseini A (2014) Organs-on-a-chip: a new tool for drug discovery. Expert Opin Drug Discov 9(4):335–352CrossRef Polini A, Prodanov L, Bhise NS, Manoharan V, Dokmeci MR, Khademhosseini A (2014) Organs-on-a-chip: a new tool for drug discovery. Expert Opin Drug Discov 9(4):335–352CrossRef
28.
Zurück zum Zitat Prabhakarpandian B, Shen M, Nichols JB, Mills IR, Sidoryk-Wegrzynowicz M, Aschner M, Pant K (2013) SyM-BBB: a microfluidic blood brain barrier model. Lab Chip 13(6):1093–1101CrossRef Prabhakarpandian B, Shen M, Nichols JB, Mills IR, Sidoryk-Wegrzynowicz M, Aschner M, Pant K (2013) SyM-BBB: a microfluidic blood brain barrier model. Lab Chip 13(6):1093–1101CrossRef
29.
Zurück zum Zitat Reichl S (2008) Cell culture models of the human cornea—a comparative evaluation of their usefulness to determine ocular drug absorption in-vitro. J Pharm Pharmacol 60(3):299–307CrossRef Reichl S (2008) Cell culture models of the human cornea—a comparative evaluation of their usefulness to determine ocular drug absorption in-vitro. J Pharm Pharmacol 60(3):299–307CrossRef
30.
Zurück zum Zitat Rigat-Brugarolas LG, Bernabeu M, Elizalde A, Niz M, Martin-Jaular L, Fernandez-Becerra C, Homs-Corbera A, Del Portillo HA, Samitier J (2014) Human splenon-on-a-chip: design and validation of a microfluidic model resembling the interstitial slits and the close/fast and open/slow microcirculations. In: IFMBE Proceedings, vol 41 Rigat-Brugarolas LG, Bernabeu M, Elizalde A, Niz M, Martin-Jaular L, Fernandez-Becerra C, Homs-Corbera A, Del Portillo HA, Samitier J (2014) Human splenon-on-a-chip: design and validation of a microfluidic model resembling the interstitial slits and the close/fast and open/slow microcirculations. In: IFMBE Proceedings, vol 41
31.
Zurück zum Zitat Robinton DA, Daley GQ (2012) The promise of induced pluripotent stem cells in research and therapy. Nature 481(7381):295–305CrossRef Robinton DA, Daley GQ (2012) The promise of induced pluripotent stem cells in research and therapy. Nature 481(7381):295–305CrossRef
32.
Zurück zum Zitat Rubin LL (2008) Stem cells and drug discovery: the beginning of a new era? Cell 132(4):549–552CrossRef Rubin LL (2008) Stem cells and drug discovery: the beginning of a new era? Cell 132(4):549–552CrossRef
33.
Zurück zum Zitat Schimek K, Busek M, Brincker S, Groth B, Hoffmann S, Lauster R, Lindner G, Lorenz A, Menzel U, Sonntag F, Marx U, Horland R (2013) Integrating biological vasculature into a multi-organ-chip microsystem. Lab Chip 13(18):3588–3598CrossRef Schimek K, Busek M, Brincker S, Groth B, Hoffmann S, Lauster R, Lindner G, Lorenz A, Menzel U, Sonntag F, Marx U, Horland R (2013) Integrating biological vasculature into a multi-organ-chip microsystem. Lab Chip 13(18):3588–3598CrossRef
34.
Zurück zum Zitat Schmitz S (2011) Der Experimentator Zellkultur, 3. Aufl. Experimentator. Spektrum Akademischer Verlag, HeidelbergCrossRef Schmitz S (2011) Der Experimentator Zellkultur, 3. Aufl. Experimentator. Spektrum Akademischer Verlag, HeidelbergCrossRef
35.
Zurück zum Zitat Selimović S, Dokmeci MR, Khademhosseini A (2013) Organs-on-a-chip for drug discovery. Curr Opin Pharmacol 13(5):829–833CrossRef Selimović S, Dokmeci MR, Khademhosseini A (2013) Organs-on-a-chip for drug discovery. Curr Opin Pharmacol 13(5):829–833CrossRef
36.
Zurück zum Zitat Sugioka K, Cheng Y (2011) Integrated microchips for biological analysis fabricated by femtosecond laser direct writing. MRS Bull 36(12):1020–1027CrossRef Sugioka K, Cheng Y (2011) Integrated microchips for biological analysis fabricated by femtosecond laser direct writing. MRS Bull 36(12):1020–1027CrossRef
37.
Zurück zum Zitat Taylor AM, Blurton-Jones M, Rhee SW, Cribbs DH, Cotman CW, Jeon NL (2005) A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nat Methods 2(8):599–605CrossRef Taylor AM, Blurton-Jones M, Rhee SW, Cribbs DH, Cotman CW, Jeon NL (2005) A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nat Methods 2(8):599–605CrossRef
38.
Zurück zum Zitat Toepke MW, Beebe DJ (2006) PDMS absorption of small molecules and consequences in microfluidic applications. Lab Chip 6(12):1484–1486CrossRef Toepke MW, Beebe DJ (2006) PDMS absorption of small molecules and consequences in microfluidic applications. Lab Chip 6(12):1484–1486CrossRef
39.
Zurück zum Zitat Torisawa Y, Spina CS, Mammoto T, Mammoto A, Weaver JC, Tat T, Collins JJ, Ingber DE (2014) Bone marrow-on-a-chip replicates hematopoietic niche physiology in vitro. Nat Methods 11(6):663–669CrossRef Torisawa Y, Spina CS, Mammoto T, Mammoto A, Weaver JC, Tat T, Collins JJ, Ingber DE (2014) Bone marrow-on-a-chip replicates hematopoietic niche physiology in vitro. Nat Methods 11(6):663–669CrossRef
40.
Zurück zum Zitat Van Der Meer AD, Van Den Berg A (2012) Organs-on-chips: breaking the in vitro impasse. Integr Biol 4(5):461–470CrossRef Van Der Meer AD, Van Den Berg A (2012) Organs-on-chips: breaking the in vitro impasse. Integr Biol 4(5):461–470CrossRef
41.
Zurück zum Zitat Van Midwoud PM, Groothuis G, Merema MT, Verpoorte E (2010) Microfluidic biochip for the perifusion of precision-cut rat liver slices for metabolism and toxicology studies. Biotechnol Bioeng 105(1):184–194CrossRef Van Midwoud PM, Groothuis G, Merema MT, Verpoorte E (2010) Microfluidic biochip for the perifusion of precision-cut rat liver slices for metabolism and toxicology studies. Biotechnol Bioeng 105(1):184–194CrossRef
42.
Zurück zum Zitat Van Midwoud PM, Verpoorte E, Groothuis G (2011) Microfluidic devices for in vitro studies on liver drug metabolism and toxicity. Integr Biol 3(5):509–521CrossRef Van Midwoud PM, Verpoorte E, Groothuis G (2011) Microfluidic devices for in vitro studies on liver drug metabolism and toxicity. Integr Biol 3(5):509–521CrossRef
43.
Zurück zum Zitat Wagner I, Materne E, Brincker S, Süßbier U, Frädrich C, Busek M, Sonntag F, Sakharov DA, Trushkin EV, Tonevitsky AG, Lauster R, Marx U (2013) A dynamic multi-organ-chip for long-term cultivation and substance testing proven by 3D human liver and skin tissue co-culture. Lab Chip 13(18):3538–3547CrossRef Wagner I, Materne E, Brincker S, Süßbier U, Frädrich C, Busek M, Sonntag F, Sakharov DA, Trushkin EV, Tonevitsky AG, Lauster R, Marx U (2013) A dynamic multi-organ-chip for long-term cultivation and substance testing proven by 3D human liver and skin tissue co-culture. Lab Chip 13(18):3538–3547CrossRef
44.
Zurück zum Zitat Wikswo JP, Block FE, Cliffel DE, Goodwin CR, Marasco CC, Markov DA, McLean DL, McLean JA, McKenzie JR, Reiserer RS, Samson PC, Schaffer DK, Seale KT, Sherrod SD (2013) Engineering challenges for instrumenting and controlling integrated organ-on-chip systems. IEEE Trans Biomed Eng 60(3):682–690CrossRef Wikswo JP, Block FE, Cliffel DE, Goodwin CR, Marasco CC, Markov DA, McLean DL, McLean JA, McKenzie JR, Reiserer RS, Samson PC, Schaffer DK, Seale KT, Sherrod SD (2013) Engineering challenges for instrumenting and controlling integrated organ-on-chip systems. IEEE Trans Biomed Eng 60(3):682–690CrossRef
45.
Zurück zum Zitat Wikswo JP, Curtis EL, Eagleton ZE, Evans BC, Kole A, Hofmeister LH, Matloff WJ (2013) Scaling and systems biology for integrating multiple organs-on-a-chip. Lab Chip 13(18):3496–3511CrossRef Wikswo JP, Curtis EL, Eagleton ZE, Evans BC, Kole A, Hofmeister LH, Matloff WJ (2013) Scaling and systems biology for integrating multiple organs-on-a-chip. Lab Chip 13(18):3496–3511CrossRef
46.
Zurück zum Zitat Williamson A, Singh S, Fernekorn U, Schober A (2013) The future of the patient-specific Body-on-a-chip. Lab Chip 13(18):3471–3480CrossRef Williamson A, Singh S, Fernekorn U, Schober A (2013) The future of the patient-specific Body-on-a-chip. Lab Chip 13(18):3471–3480CrossRef
47.
Zurück zum Zitat Wolff A, Antfolk M, Brodin B, Tenje M (2015) In vitro blood-brain barrier models—an overview of established models and new microfluidic approaches. J Pharm Sci 104(9):2727–2746CrossRef Wolff A, Antfolk M, Brodin B, Tenje M (2015) In vitro blood-brain barrier models—an overview of established models and new microfluidic approaches. J Pharm Sci 104(9):2727–2746CrossRef
48.
Zurück zum Zitat Yeon JH, Na D, Choi K, Ryu S, Choi C, Park J (2012) Reliable permeability assay system in a microfluidic device mimicking cerebral vasculatures. Biomed Microdevices 14(6):1141–1148CrossRef Yeon JH, Na D, Choi K, Ryu S, Choi C, Park J (2012) Reliable permeability assay system in a microfluidic device mimicking cerebral vasculatures. Biomed Microdevices 14(6):1141–1148CrossRef
49.
Zurück zum Zitat Young EWK (2013) Cells, tissues, and organs on chips: challenges and opportunities for the cancer tumor microenvironment. Integr Biol 5(9):1096–1109CrossRef Young EWK (2013) Cells, tissues, and organs on chips: challenges and opportunities for the cancer tumor microenvironment. Integr Biol 5(9):1096–1109CrossRef
50.
Zurück zum Zitat Ziółkowska K, Kwapiszewski R, Brzózka Z (2011) Microfluidic devices as tools for mimicking the in vivo environment. New J Chem 35(5):979–990CrossRef Ziółkowska K, Kwapiszewski R, Brzózka Z (2011) Microfluidic devices as tools for mimicking the in vivo environment. New J Chem 35(5):979–990CrossRef
Metadaten
Titel
Organ on Chip
verfasst von
N. Beißner
T. Lorenz
S. Reichl
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-26920-7_11

Neuer Inhalt