Skip to main content
Erschienen in: International Journal of Multimedia Information Retrieval 3/2022

16.07.2022 | Trends and Surveys

Organ segmentation from computed tomography images using the 3D convolutional neural network: a systematic review

verfasst von: Ademola E. Ilesanmi, Taiwo Ilesanmi, Oluwagbenga P. Idowu, Drew A. Torigian, Jayaram K. Udupa

Erschienen in: International Journal of Multimedia Information Retrieval | Ausgabe 3/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Computed tomography images are scans that combine a series of X-rays with computer processing techniques to display organs in the body. Recently, 3D CNN models have become effective in tasks relating to recognition, delineation, and classification. Therefore we propose a review to summarize different 3D CNN algorithms for segmenting organs in computed tomography images. This work systematically applies a two-stage procedure for review. A thorough screening of abstracts and titles to ascertain their relevance was done. Research papers published in the academic repositories were selected, analyzed, and reviewed. Insight relating to 3D organ segmentation is provided, with content such as database usage, disadvantages, and advantages. A comparison of two accuracies was carried out with a graph depicting database categories. Important insights, limitations, observations, and future directions were elucidated. After careful investigation, we observe that the encoder-decoder network is predominant for segmentation. The encoder-decoder framework provides a seamless procedure to segment CT images. A prediction of future trends with insightful recommendations for researchers is proposed. Finally, findings suggest that CNN algorithms produce good accuracies despite their limitations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Udupa JK, Odhner D, Zhao L, Tong Y, Matsumoto MM, Ciesielski KC, Falcao AX, Vaideeswaran P, Ciesielski V, Saboury B, Mohammadianrasanani S (2014) Body-wide hierarchical fuzzy modeling, recognition, and delineation of anatomy in medical images. Medi Image Anal 18(5):752–771CrossRef Udupa JK, Odhner D, Zhao L, Tong Y, Matsumoto MM, Ciesielski KC, Falcao AX, Vaideeswaran P, Ciesielski V, Saboury B, Mohammadianrasanani S (2014) Body-wide hierarchical fuzzy modeling, recognition, and delineation of anatomy in medical images. Medi Image Anal 18(5):752–771CrossRef
2.
Zurück zum Zitat Tong Y, Udupa JK, Odhner D, Caiyun Wu, Schuster SJ, Torigian DA (2019) Disease quantification on PET/CT images without explicit object delineation. Med Image Anal 51:169–183CrossRef Tong Y, Udupa JK, Odhner D, Caiyun Wu, Schuster SJ, Torigian DA (2019) Disease quantification on PET/CT images without explicit object delineation. Med Image Anal 51:169–183CrossRef
4.
Zurück zum Zitat Ecder T (2013) Early diagnosis saves lives: focus on patients with chronic kidney disease. Kidney Int Suppl 3(4):335–336CrossRef Ecder T (2013) Early diagnosis saves lives: focus on patients with chronic kidney disease. Kidney Int Suppl 3(4):335–336CrossRef
6.
Zurück zum Zitat Ji S, Xu W, Yang M, Yu K (2013) 3D convolutional neural networks for human action recognition. IEEE Trans Pattern Anal Mach Intell 35:221–231CrossRef Ji S, Xu W, Yang M, Yu K (2013) 3D convolutional neural networks for human action recognition. IEEE Trans Pattern Anal Mach Intell 35:221–231CrossRef
7.
Zurück zum Zitat Wan H, Fan Z, Xiaojun Yu, Kang M, Wang P, Zeng X (2022) A real-time branch detection and reconstruction mechanism for harvesting robot via convolutional neural network and image segmentation. Comput Electron Agric 192:106609CrossRef Wan H, Fan Z, Xiaojun Yu, Kang M, Wang P, Zeng X (2022) A real-time branch detection and reconstruction mechanism for harvesting robot via convolutional neural network and image segmentation. Comput Electron Agric 192:106609CrossRef
8.
Zurück zum Zitat Ilesanmi AE, Ilesanmi TO (2021) Methods for image denoising using convolutional neural network: a review. Complex Intell Syst 7:2179–2198CrossRef Ilesanmi AE, Ilesanmi TO (2021) Methods for image denoising using convolutional neural network: a review. Complex Intell Syst 7:2179–2198CrossRef
9.
Zurück zum Zitat Ilesanmi AE, Idowu OP, Chaumrattanakul U, Makhanov SS (2021) Multiscale hybrid algorithm for pre-processing of ultrasound images. Biomed Signal Process Control 66:102396CrossRef Ilesanmi AE, Idowu OP, Chaumrattanakul U, Makhanov SS (2021) Multiscale hybrid algorithm for pre-processing of ultrasound images. Biomed Signal Process Control 66:102396CrossRef
10.
Zurück zum Zitat Ilesanmi AE, Chaumrattanakul U, Makhanov SS (2021) A method for segmentation of tumors in breast ultrasound images using the variant enhanced deep learning. Biocybern Biomed Eng 41(2):802–818CrossRef Ilesanmi AE, Chaumrattanakul U, Makhanov SS (2021) A method for segmentation of tumors in breast ultrasound images using the variant enhanced deep learning. Biocybern Biomed Eng 41(2):802–818CrossRef
11.
Zurück zum Zitat Ilesanmi AE, Idowu OP, Makhanov SS (2020) Multiscale superpixel method for segmentation of breast ultrasound. Comput Biol Med 125:103879CrossRef Ilesanmi AE, Idowu OP, Makhanov SS (2020) Multiscale superpixel method for segmentation of breast ultrasound. Comput Biol Med 125:103879CrossRef
12.
Zurück zum Zitat Zhang C, Jingben Lu, Yang L, Li C (2021) CAAGP: Rethinking channel attention with adaptive global pooling for liver tumor segmentation. Comput Biol Med 138:104875CrossRef Zhang C, Jingben Lu, Yang L, Li C (2021) CAAGP: Rethinking channel attention with adaptive global pooling for liver tumor segmentation. Comput Biol Med 138:104875CrossRef
13.
Zurück zum Zitat Zhang C, Hua Q, Chu Y, Wang P (2021) Liver tumor segmentation using 2.5 D UV-Net with multi-scale convolution. Comput Biol Med 133:104424CrossRef Zhang C, Hua Q, Chu Y, Wang P (2021) Liver tumor segmentation using 2.5 D UV-Net with multi-scale convolution. Comput Biol Med 133:104424CrossRef
14.
Zurück zum Zitat Jiangchang Xu, Liu J, Zhang D, Zhou Z, Zhang C, Chen X (2021) A 3D segmentation network of mandible from CT scan with combination of multiple convolutional modules and edge supervision in mandibular reconstruction. Comput Biol Med 138:104925CrossRef Jiangchang Xu, Liu J, Zhang D, Zhou Z, Zhang C, Chen X (2021) A 3D segmentation network of mandible from CT scan with combination of multiple convolutional modules and edge supervision in mandibular reconstruction. Comput Biol Med 138:104925CrossRef
15.
Zurück zum Zitat Bae HJ, Hyun H, Byeon Y, Shin K, Cho Y, Song YJ, Yi S, Kuh SU, Yeom JS, Kim N (2020) Fully automated 3D segmentation and separation of multiple cervical vertebrae in CT images using a 2D convolutional neural network. Comput Methods Programs Biomed 184:105119CrossRef Bae HJ, Hyun H, Byeon Y, Shin K, Cho Y, Song YJ, Yi S, Kuh SU, Yeom JS, Kim N (2020) Fully automated 3D segmentation and separation of multiple cervical vertebrae in CT images using a 2D convolutional neural network. Comput Methods Programs Biomed 184:105119CrossRef
16.
Zurück zum Zitat Wang J, Lv P, Wang H (2021) SAR-U-Net: squeeze-and-excitation block and atrous spatial pyramid pooling based residual U-Net for automatic liver segmentation in Computed Tomography. Comput Methods Programs Biomed 208:106268CrossRef Wang J, Lv P, Wang H (2021) SAR-U-Net: squeeze-and-excitation block and atrous spatial pyramid pooling based residual U-Net for automatic liver segmentation in Computed Tomography. Comput Methods Programs Biomed 208:106268CrossRef
17.
Zurück zum Zitat Zhang Y, Wu J, Liu Y, Chen Y, Chen W, Wu EX, Tang X (2021) A deep learning framework for pancreas segmentation with multi-atlas registration and 3D level-set. Med Image Anal 68:101884CrossRef Zhang Y, Wu J, Liu Y, Chen Y, Chen W, Wu EX, Tang X (2021) A deep learning framework for pancreas segmentation with multi-atlas registration and 3D level-set. Med Image Anal 68:101884CrossRef
18.
Zurück zum Zitat Zhou X (2020) Automatic segmentation of multiple organs on 3D ct images by using deep learning approaches. Adv Exp Med Biol 1213:135–147CrossRef Zhou X (2020) Automatic segmentation of multiple organs on 3D ct images by using deep learning approaches. Adv Exp Med Biol 1213:135–147CrossRef
20.
Zurück zum Zitat You J, Philip LH, Tsang AC, Tsui EL, Woo PP, Lui CS, Leung GK, Mahboobani N, Chu CY, Chong WH, Poon WL (2021) 3D dissimilar-siamese-u-net for hyperdense Middle cerebral artery sign segmentation. Comput Med Imaging Graphics 90:101898CrossRef You J, Philip LH, Tsang AC, Tsui EL, Woo PP, Lui CS, Leung GK, Mahboobani N, Chu CY, Chong WH, Poon WL (2021) 3D dissimilar-siamese-u-net for hyperdense Middle cerebral artery sign segmentation. Comput Med Imaging Graphics 90:101898CrossRef
21.
Zurück zum Zitat Dogan RO, Dogan H, Bayrak C, Kayikcioglu T (2021) A two-phase approach using mask R-CNN and 3D U-net for high-accuracy automatic segmentation of pancreas in CT imaging. Comput Methods Programs Biomed 207:106141CrossRef Dogan RO, Dogan H, Bayrak C, Kayikcioglu T (2021) A two-phase approach using mask R-CNN and 3D U-net for high-accuracy automatic segmentation of pancreas in CT imaging. Comput Methods Programs Biomed 207:106141CrossRef
22.
Zurück zum Zitat Lyu T, Yang G, Zhao X, Shu H, Luo L, Chen D, Xiong J, Yang J, Li S, Coatrieux J-L, Chen Y (2021) Dissected aorta segmentation using convolutional neural networks. Comput Methods Programs Biomed 211:106417CrossRef Lyu T, Yang G, Zhao X, Shu H, Luo L, Chen D, Xiong J, Yang J, Li S, Coatrieux J-L, Chen Y (2021) Dissected aorta segmentation using convolutional neural networks. Comput Methods Programs Biomed 211:106417CrossRef
23.
Zurück zum Zitat Sun G, Liu X, Xuefei Yu (2021) Multi-path cascaded U-net for vessel segmentation from fundus fluorescein angiography sequential images. Comput Methods Programs Biomed 211:106422CrossRef Sun G, Liu X, Xuefei Yu (2021) Multi-path cascaded U-net for vessel segmentation from fundus fluorescein angiography sequential images. Comput Methods Programs Biomed 211:106422CrossRef
24.
Zurück zum Zitat Chung M, Lee J, Park S, Lee CE, Lee J, Shin YG (2021) Liver segmentation in abdominal CT images via auto-context neural network and self-supervised contour attention. Artif Intell Med 113:102023CrossRef Chung M, Lee J, Park S, Lee CE, Lee J, Shin YG (2021) Liver segmentation in abdominal CT images via auto-context neural network and self-supervised contour attention. Artif Intell Med 113:102023CrossRef
25.
Zurück zum Zitat Jun Su, Liu Z, Zhang J, Sheng VS, Song Y, Zhu Y, Liu Yi (2021) DV-Net: accurate liver vessel segmentation via dense connection model with D-BCE loss function. Knowl-Based Syst 232:107471CrossRef Jun Su, Liu Z, Zhang J, Sheng VS, Song Y, Zhu Y, Liu Yi (2021) DV-Net: accurate liver vessel segmentation via dense connection model with D-BCE loss function. Knowl-Based Syst 232:107471CrossRef
26.
Zurück zum Zitat Yuan W, Wei J, Wang J, Ma Q, Tasdizen T (2020) Unified generative adversarial networks for multimodal segmentation from unpaired 3D medical images. Med Image Anal 64:101731CrossRef Yuan W, Wei J, Wang J, Ma Q, Tasdizen T (2020) Unified generative adversarial networks for multimodal segmentation from unpaired 3D medical images. Med Image Anal 64:101731CrossRef
27.
Zurück zum Zitat Cao Z, Bohan Yu, Lei B, Ying H, Zhang X, Chen DZ, Jian Wu (2021) Cascaded SE-ResUnet for segmentation of thoracic organs at risk. Neurocomputing 453:357–368CrossRef Cao Z, Bohan Yu, Lei B, Ying H, Zhang X, Chen DZ, Jian Wu (2021) Cascaded SE-ResUnet for segmentation of thoracic organs at risk. Neurocomputing 453:357–368CrossRef
28.
Zurück zum Zitat Diniz JOB, Ferreira JL, Diniz PHB, Silva AC, de Paiva AC (2020) Esophagus segmentation from planning CT images using an atlas-based deep learning approach. Comput Methods Programs Biomed 197:105685CrossRef Diniz JOB, Ferreira JL, Diniz PHB, Silva AC, de Paiva AC (2020) Esophagus segmentation from planning CT images using an atlas-based deep learning approach. Comput Methods Programs Biomed 197:105685CrossRef
29.
Zurück zum Zitat Shu X, Yang Y, Boying Wu (2021) Adaptive segmentation model for liver CT images based on neural network and level set method. Neurocomputing 453:438–452CrossRef Shu X, Yang Y, Boying Wu (2021) Adaptive segmentation model for liver CT images based on neural network and level set method. Neurocomputing 453:438–452CrossRef
30.
Zurück zum Zitat Altini N, De Giosa G, Fragasso N, Coscia C, Sibilano E, Prencipe B, Hussain SM, Brunetti A, Buongiorno D, Guerriero A, Tatò IS, Brunetti G, Triggiani V, Bevilacqua V (2021) Segmentation and Identification of Vertebrae in CT Scans Using CNN, k-Means Clustering and k-NN. Informatics 8(2):40. https://doi.org/10.3390/informatics8020040CrossRef Altini N, De Giosa G, Fragasso N, Coscia C, Sibilano E, Prencipe B, Hussain SM, Brunetti A, Buongiorno D, Guerriero A, Tatò IS, Brunetti G, Triggiani V, Bevilacqua V (2021) Segmentation and Identification of Vertebrae in CT Scans Using CNN, k-Means Clustering and k-NN. Informatics 8(2):40. https://​doi.​org/​10.​3390/​informatics80200​40CrossRef
31.
Zurück zum Zitat Payer C, Štern D, Bischof H, Urschler M (2020) Coarse to fine vertebrae localization and segmentation with spatial configuration-Net and U-Net. VISIGRAPP 5:124–133 Payer C, Štern D, Bischof H, Urschler M (2020) Coarse to fine vertebrae localization and segmentation with spatial configuration-Net and U-Net. VISIGRAPP 5:124–133
32.
Zurück zum Zitat Abramova V, Clèrigues A, Quiles A, Figueredo DG, Silva Y, Pedraza S, Oliver A, Lladó X (2021) Hemorrhagic stroke lesion segmentation using a 3D U-Net with squeeze-and-excitation blocks. Comput Med Imaging Graphics 90:101908CrossRef Abramova V, Clèrigues A, Quiles A, Figueredo DG, Silva Y, Pedraza S, Oliver A, Lladó X (2021) Hemorrhagic stroke lesion segmentation using a 3D U-Net with squeeze-and-excitation blocks. Comput Med Imaging Graphics 90:101908CrossRef
33.
Zurück zum Zitat Zhao W, Jiang D, Queralta JP, Westerlund T (2020) MSS U-Net: 3D segmentation of kidneys and tumors from CT images with a multi-scale supervised U-Net. Inf Med Unlocked 19:100357CrossRef Zhao W, Jiang D, Queralta JP, Westerlund T (2020) MSS U-Net: 3D segmentation of kidneys and tumors from CT images with a multi-scale supervised U-Net. Inf Med Unlocked 19:100357CrossRef
34.
Zurück zum Zitat Belal SL, Sadik M, Kaboteh R, Enqvist O, Ulén J, Poulsen MH, Simonsen J, Høilund-Carlsen PF, Edenbrandt L, Trägårdh E (2019) Deep learning for segmentation of 49 selected bones in CT scans: First step in automated PET/CT-based 3D quantification of skeletal metastases. Eur J Radiol 113:89–95CrossRef Belal SL, Sadik M, Kaboteh R, Enqvist O, Ulén J, Poulsen MH, Simonsen J, Høilund-Carlsen PF, Edenbrandt L, Trägårdh E (2019) Deep learning for segmentation of 49 selected bones in CT scans: First step in automated PET/CT-based 3D quantification of skeletal metastases. Eur J Radiol 113:89–95CrossRef
35.
Zurück zum Zitat Cao Y, Ding Y, Jia M, Tian R (2021) A novel temporal convolutional network with residual self-attention mechanism for remaining useful life prediction of rolling bearings. Reliab Eng Syst Saf 215:107813CrossRef Cao Y, Ding Y, Jia M, Tian R (2021) A novel temporal convolutional network with residual self-attention mechanism for remaining useful life prediction of rolling bearings. Reliab Eng Syst Saf 215:107813CrossRef
36.
Zurück zum Zitat Hu J, Shen L, Sun G (2018) Squeeze-and-excitation networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR) Hu J, Shen L, Sun G (2018) Squeeze-and-excitation networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR)
37.
Zurück zum Zitat Glorot X, Bordes A, Bengio Y (2011) AISTATS ’11: proceedings of the 14th international conference on artificial intelligence and statistics. 15:315–323 Glorot X, Bordes A, Bengio Y (2011) AISTATS ’11: proceedings of the 14th international conference on artificial intelligence and statistics. 15:315–323
38.
Zurück zum Zitat Krizhevsky A, Sutskever I, Hinton G (2012) ImageNet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 1:1097–1105 Krizhevsky A, Sutskever I, Hinton G (2012) ImageNet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 1:1097–1105
39.
Zurück zum Zitat Gao W, Zhang X, Yang L, Liu H (2010) An improved Sobel edge detection, computer science and information Technology (ICCSIT). In: 2010 3rd IEEE international conference, 5(71): 9–11 Gao W, Zhang X, Yang L, Liu H (2010) An improved Sobel edge detection, computer science and information Technology (ICCSIT). In: 2010 3rd IEEE international conference, 5(71): 9–11
40.
Zurück zum Zitat Lin T, Goyal P, Girshick R, He K, Dollar P (2020) Focal loss for dense object detection. IEEE Trans Pattern Anal Mach Intell 42(2):318–327CrossRef Lin T, Goyal P, Girshick R, He K, Dollar P (2020) Focal loss for dense object detection. IEEE Trans Pattern Anal Mach Intell 42(2):318–327CrossRef
41.
Zurück zum Zitat Xie X, Zhang W, Wang H, Li L, Feng Z, Wang Z, Wang Z, Pan X (2021) Dynamic adaptive residual network for liver CT image segmentation. Comput Electr Eng 91:107024CrossRef Xie X, Zhang W, Wang H, Li L, Feng Z, Wang Z, Wang Z, Pan X (2021) Dynamic adaptive residual network for liver CT image segmentation. Comput Electr Eng 91:107024CrossRef
42.
Zurück zum Zitat Ruiz-Sarmiento J, Galindo C, Gonzalez-Jimenez J et al (2015) UPGMpp: a software library for contextual object recognition. Proc REACTS 2015:1–14 Ruiz-Sarmiento J, Galindo C, Gonzalez-Jimenez J et al (2015) UPGMpp: a software library for contextual object recognition. Proc REACTS 2015:1–14
43.
Zurück zum Zitat Kong B, Wang X, Bai J, Yi Lu, Gao F, Cao K, Xia J, Song Qi, Yin Y (2020) Learning tree-structured representation for 3D coronary artery segmentation. Comput Med Imaging Graph 80:101688CrossRef Kong B, Wang X, Bai J, Yi Lu, Gao F, Cao K, Xia J, Song Qi, Yin Y (2020) Learning tree-structured representation for 3D coronary artery segmentation. Comput Med Imaging Graph 80:101688CrossRef
44.
Zurück zum Zitat Lahoud P, EzEldeen M, Beznik T, Willems H, Leite A, Van Gerven A, Jacobs R (2021) Artificial intelligence for fast and accurate 3-dimensional tooth segmentation on cone-beam computed tomography. J Endod 47(5):827–835CrossRef Lahoud P, EzEldeen M, Beznik T, Willems H, Leite A, Van Gerven A, Jacobs R (2021) Artificial intelligence for fast and accurate 3-dimensional tooth segmentation on cone-beam computed tomography. J Endod 47(5):827–835CrossRef
45.
Zurück zum Zitat He K, Gkioxari G, Dollár P, Girshick R (2017) Mask r-CNN. In: Proceedings of the IEEE international conference on computer vision, pp 2961–2969 He K, Gkioxari G, Dollár P, Girshick R (2017) Mask r-CNN. In: Proceedings of the IEEE international conference on computer vision, pp 2961–2969
46.
Zurück zum Zitat Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv:1502.03167 Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv:​1502.​03167
47.
Zurück zum Zitat Litjens G, Kooi T, Bejnordi BE, Setio AA, Ciompi F, Ghafoorian M, Van Der Laak JA, Van Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88CrossRef Litjens G, Kooi T, Bejnordi BE, Setio AA, Ciompi F, Ghafoorian M, Van Der Laak JA, Van Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88CrossRef
48.
Zurück zum Zitat Xie S, Tu Z (2015) Holistically-nested edge detection. In: Proceedings of the IEEE international conference on computer vision, pp 1395–1403 Xie S, Tu Z (2015) Holistically-nested edge detection. In: Proceedings of the IEEE international conference on computer vision, pp 1395–1403
49.
Zurück zum Zitat Chen W, Yang F, Zhang X, Xin Xu, Qiao Xu (2021) MAU-Net: multiple attention 3D U-Net for lung cancer segmentation on CT images. Procedia Comput Sci 192:543–552CrossRef Chen W, Yang F, Zhang X, Xin Xu, Qiao Xu (2021) MAU-Net: multiple attention 3D U-Net for lung cancer segmentation on CT images. Procedia Comput Sci 192:543–552CrossRef
50.
Zurück zum Zitat Hubbard LD, Brothers RJ, King WN et al (1999) Methods for evaluation of retinal microvascular abnormalities associated with hypertension/sclerosis in the atherosclerosis risk in communities study. Ophthalmology 106(12):2269–2280CrossRef Hubbard LD, Brothers RJ, King WN et al (1999) Methods for evaluation of retinal microvascular abnormalities associated with hypertension/sclerosis in the atherosclerosis risk in communities study. Ophthalmology 106(12):2269–2280CrossRef
51.
Zurück zum Zitat Tan J, Jing L, Huo Y, Li L, Akin O (2021) LGAN: lung segmentation in CT scans using generative adversarial network. Comput Med Imaging Graph 87:101817CrossRef Tan J, Jing L, Huo Y, Li L, Akin O (2021) LGAN: lung segmentation in CT scans using generative adversarial network. Comput Med Imaging Graph 87:101817CrossRef
52.
Zurück zum Zitat Yang J, Bo Wu, Li L, Cao P (2021) MSDS-UNet: a multi-scale deeply supervised 3D U-Net for automatic segmentation of lung tumor in CT. Comput Med Imaging Graph 92:101957CrossRef Yang J, Bo Wu, Li L, Cao P (2021) MSDS-UNet: a multi-scale deeply supervised 3D U-Net for automatic segmentation of lung tumor in CT. Comput Med Imaging Graph 92:101957CrossRef
53.
Zurück zum Zitat Yang Y, Wu B (2012) Split Bregman method for minimization of improved active contour model combining local and global information dynamically. J Math Anal Appl 389(1):351–366MathSciNetMATHCrossRef Yang Y, Wu B (2012) Split Bregman method for minimization of improved active contour model combining local and global information dynamically. J Math Anal Appl 389(1):351–366MathSciNetMATHCrossRef
54.
55.
Zurück zum Zitat Chi J, Han X, Chengdong Wu, Wang H, Ji P (2021) X-Net: multi-branch UNet-like network for liver and tumor segmentation from 3D abdominal CT scans. Neurocomputing 459:81–96CrossRef Chi J, Han X, Chengdong Wu, Wang H, Ji P (2021) X-Net: multi-branch UNet-like network for liver and tumor segmentation from 3D abdominal CT scans. Neurocomputing 459:81–96CrossRef
56.
Zurück zum Zitat Tu Z, Bai X (2010) Auto-context and its application to high-level vision tasks and 3d brain image segmentation. IEEE Trans Pattern Anal Mach Intell 32(10):1744–1757CrossRef Tu Z, Bai X (2010) Auto-context and its application to high-level vision tasks and 3d brain image segmentation. IEEE Trans Pattern Anal Mach Intell 32(10):1744–1757CrossRef
58.
Zurück zum Zitat Ulyanov D, Vedaldi A, Lempitsky V (2016) Instance normalization: the missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022. Ulyanov D, Vedaldi A, Lempitsky V (2016) Instance normalization: the missing ingredient for fast stylization. arXiv preprint arXiv:​1607.​08022.
60.
Zurück zum Zitat Huang G et al. (2017) Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition Huang G et al. (2017) Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition
61.
Zurück zum Zitat Sánchez JCG, Magnusson M, Sandborg M, Tedgren ÅC, Malusek A (2020) Segmentation of bones in medical dual-energy computed tomography volumes using the 3D U-Net. Phys Med 69:241–247CrossRef Sánchez JCG, Magnusson M, Sandborg M, Tedgren ÅC, Malusek A (2020) Segmentation of bones in medical dual-energy computed tomography volumes using the 3D U-Net. Phys Med 69:241–247CrossRef
62.
Zurück zum Zitat Zhou Y, Xie L, Shen W, Wang Y, Fishman EK, Yuille AL (2017) A fixed–point model for pancreas segmentation in abdominal CT scans. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 693–701 Zhou Y, Xie L, Shen W, Wang Y, Fishman EK, Yuille AL (2017) A fixed–point model for pancreas segmentation in abdominal CT scans. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 693–701
63.
Zurück zum Zitat Zhu Z, Xia Y, Shen W, Fishman E, Yuille A (2018) A 3D coarse-to-fine framework for volumetric medical image segmentation. In: International conference on 3D vision, IEEE, pp 682–690 Zhu Z, Xia Y, Shen W, Fishman E, Yuille A (2018) A 3D coarse-to-fine framework for volumetric medical image segmentation. In: International conference on 3D vision, IEEE, pp 682–690
64.
Zurück zum Zitat Salah MB, Mitiche A, Ayed IB (2009) Effective level set image segmentation with a kernel induced data term. IEEE Trans Image Process 19(1):220–232MathSciNetMATHCrossRef Salah MB, Mitiche A, Ayed IB (2009) Effective level set image segmentation with a kernel induced data term. IEEE Trans Image Process 19(1):220–232MathSciNetMATHCrossRef
65.
Zurück zum Zitat Dutande P, Baid U, Talbar S (2021) LNCDS: A 2D–3D cascaded CNN approach for lung nodule classification, detection and segmentation. Biomed Signal Process Control 67:102527CrossRef Dutande P, Baid U, Talbar S (2021) LNCDS: A 2D–3D cascaded CNN approach for lung nodule classification, detection and segmentation. Biomed Signal Process Control 67:102527CrossRef
66.
Zurück zum Zitat Zhang G, Yang Y, Shangliang Xu, Nan Y, Lv C, Wei L, Qian T, Han J, Xie G (2022) Autonomous localization and segmentation for body composition quantization on abdominal CT. Biomed Signal Process Control 71:103172CrossRef Zhang G, Yang Y, Shangliang Xu, Nan Y, Lv C, Wei L, Qian T, Han J, Xie G (2022) Autonomous localization and segmentation for body composition quantization on abdominal CT. Biomed Signal Process Control 71:103172CrossRef
71.
Zurück zum Zitat Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. In: Conference on medical image computing and computer assisted intervention (MICCAI) Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. In: Conference on medical image computing and computer assisted intervention (MICCAI)
72.
Zurück zum Zitat Milletari F, Navab N, Ahmadi SA (2016) V-Net, Fully convolutional neural networks for volumetric medical image segmentation. In: Proceedings of the IEEE fourth international conference on 3D vision, pp 565–571 Milletari F, Navab N, Ahmadi SA (2016) V-Net, Fully convolutional neural networks for volumetric medical image segmentation. In: Proceedings of the IEEE fourth international conference on 3D vision, pp 565–571
73.
Zurück zum Zitat Isensee F, Petersen J, Klein A, Zimmerer D, Jaeger PF, Kohl S, Wasserthal J, Koehler G, Norajitra T, Wirkert S, et al. (2018) nnu-net: self-adapting framework for u-net-based medical image segmentation. arXiv preprint arXiv:1809.10486 Isensee F, Petersen J, Klein A, Zimmerer D, Jaeger PF, Kohl S, Wasserthal J, Koehler G, Norajitra T, Wirkert S, et al. (2018) nnu-net: self-adapting framework for u-net-based medical image segmentation. arXiv preprint arXiv:​1809.​10486
74.
Zurück zum Zitat Pascanu R, Mikolov T, Bengio Y (2013) On the difficulty of training recurrent neural networks. In: ICML, pp 1310–1318 Pascanu R, Mikolov T, Bengio Y (2013) On the difficulty of training recurrent neural networks. In: ICML, pp 1310–1318
75.
Zurück zum Zitat Girshick R (2015) Fast R-CNN. In: 2015 IEEE international conference on computer vision (ICCV), Santiago, Chile Girshick R (2015) Fast R-CNN. In: 2015 IEEE international conference on computer vision (ICCV), Santiago, Chile
76.
Zurück zum Zitat Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. Adv Neural Inf Process Syst 2672–2680 Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. Adv Neural Inf Process Syst 2672–2680
77.
Zurück zum Zitat Chen Y, Wang K, Liao X, Qian Y, Wang Q, Yuan Z, Heng P-A (2019) Channel-unet: a spatial channel-wise convolutional neural network for liver and tumors segmentation. Front Genet 10:1110CrossRef Chen Y, Wang K, Liao X, Qian Y, Wang Q, Yuan Z, Heng P-A (2019) Channel-unet: a spatial channel-wise convolutional neural network for liver and tumors segmentation. Front Genet 10:1110CrossRef
78.
Zurück zum Zitat Xingjian S, Chen Z, Wang H, Yeung D-Y, Wong W-K, Woo W-C (2015) Convolutional LSTM network: a machine learning approach for precipitation nowcasting. Adv Neural Inf Process Syst 802–810 Xingjian S, Chen Z, Wang H, Yeung D-Y, Wong W-K, Woo W-C (2015) Convolutional LSTM network: a machine learning approach for precipitation nowcasting. Adv Neural Inf Process Syst 802–810
79.
Zurück zum Zitat Qayyum A, Lalande A, Meriaudeau F (2020) Automatic segmentation of tumors and affected organs in the abdomen using a 3D hybrid model for computed tomography imaging. Comput Biol Med 127:104097CrossRef Qayyum A, Lalande A, Meriaudeau F (2020) Automatic segmentation of tumors and affected organs in the abdomen using a 3D hybrid model for computed tomography imaging. Comput Biol Med 127:104097CrossRef
80.
Zurück zum Zitat Roy AG, Navab N, Wachinger C (2018) Concurrent spatial and channel ‘squeeze & excitation in fully convolutional networks. In: International conference on medical image computing and computer-assisted intervention. Springer, Cham pp 421–429 Roy AG, Navab N, Wachinger C (2018) Concurrent spatial and channel ‘squeeze & excitation in fully convolutional networks. In: International conference on medical image computing and computer-assisted intervention. Springer, Cham pp 421–429
81.
Zurück zum Zitat Liu Z, Liu X, Xiao B, Wang S, Miao Z, Suna Y, Zhang F (2021) Segmentation of organs-at-risk in cervical cancer CT images with a convolutional neural network. Comput Methods Programs Biomed 205:106070CrossRef Liu Z, Liu X, Xiao B, Wang S, Miao Z, Suna Y, Zhang F (2021) Segmentation of organs-at-risk in cervical cancer CT images with a convolutional neural network. Comput Methods Programs Biomed 205:106070CrossRef
82.
Zurück zum Zitat Heinrich MP, Oktay O, Bouteldja N (2019) OBELISK-Net: fewer layers to solve 3D multi-organ segmentation with sparse deformable convolutions Medical Image Analysis. 54:1–9 Heinrich MP, Oktay O, Bouteldja N (2019) OBELISK-Net: fewer layers to solve 3D multi-organ segmentation with sparse deformable convolutions Medical Image Analysis. 54:1–9
83.
Zurück zum Zitat Heinrich MP (2015) Multi-organ segmentation using deeds, self-similarity context and joint fusion. In: MICCAI challenge workshop on multiatlas segmentation beyond the cranial Vault Heinrich MP (2015) Multi-organ segmentation using deeds, self-similarity context and joint fusion. In: MICCAI challenge workshop on multiatlas segmentation beyond the cranial Vault
84.
Zurück zum Zitat Heinrich MP, Oktay O (2017) BRIEFnet: deep pancreas segmentation using binary sparse convolutions. In: International conference on medical image computing and computer-assisted intervention (MICCAI), Springer, New York pp 329–337 Heinrich MP, Oktay O (2017) BRIEFnet: deep pancreas segmentation using binary sparse convolutions. In: International conference on medical image computing and computer-assisted intervention (MICCAI), Springer, New York pp 329–337
85.
Zurück zum Zitat Huang G, Liu Z, Weinberger KQ, van der Maaten L (2017) Densely connected convolutional networks. In: IEEE conference on computer vision and pattern recognition (CVPR), 1:3 Huang G, Liu Z, Weinberger KQ, van der Maaten L (2017) Densely connected convolutional networks. In: IEEE conference on computer vision and pattern recognition (CVPR), 1:3
86.
Zurück zum Zitat Gao Y, Huang R, Yang Y, Zhang J, Shao K, Tao C, Chen Y, Metaxas DN, Li H, Chen M (2021) FocusNetv2: imbalanced large and small organ segmentation with adversarial shape constraint for head and neck CT images. Med Image Anal 67:101831CrossRef Gao Y, Huang R, Yang Y, Zhang J, Shao K, Tao C, Chen Y, Metaxas DN, Li H, Chen M (2021) FocusNetv2: imbalanced large and small organ segmentation with adversarial shape constraint for head and neck CT images. Med Image Anal 67:101831CrossRef
87.
Zurück zum Zitat Li X, Gong Z, Yin H, Zhang H, Wang Z, Zhuo Li (2020) A 3D deep supervised densely network for small organs of human temporal bone segmentation in CT images. Neural Netw 124:75–85CrossRef Li X, Gong Z, Yin H, Zhang H, Wang Z, Zhuo Li (2020) A 3D deep supervised densely network for small organs of human temporal bone segmentation in CT images. Neural Netw 124:75–85CrossRef
88.
Zurück zum Zitat Huang Z, Wang J, Xuesong Fu, Tao Yu, Guo Y, Wang R (2020) DC-SPP-YOLO: dense connection and spatial pyramid pooling based YOLO for object detection. Inf Sci 522:241–258MathSciNetCrossRef Huang Z, Wang J, Xuesong Fu, Tao Yu, Guo Y, Wang R (2020) DC-SPP-YOLO: dense connection and spatial pyramid pooling based YOLO for object detection. Inf Sci 522:241–258MathSciNetCrossRef
89.
Zurück zum Zitat Chen X, Zhang R, Yan P (2019) Feature fusion encoder-decoder network for automatic liver lesion segmentation. arXiv preprint arXiv:1903.11834 Chen X, Zhang R, Yan P (2019) Feature fusion encoder-decoder network for automatic liver lesion segmentation. arXiv preprint arXiv:​1903.​11834
90.
Zurück zum Zitat Zhang Z, Zhang X, Peng C, Xue X, Sun J (2018) Exfuse: enhancing feature fusion for semantic segmentation. In: Proceedings of the European conference on computer vision 269–284 Zhang Z, Zhang X, Peng C, Xue X, Sun J (2018) Exfuse: enhancing feature fusion for semantic segmentation. In: Proceedings of the European conference on computer vision 269–284
91.
Zurück zum Zitat Lee C-Y, Xie S, Gallagher P, Zhang Z, Tu Z (2015) Deeply-supervised nets. Artif Intell Stat 562–570 Lee C-Y, Xie S, Gallagher P, Zhang Z, Tu Z (2015) Deeply-supervised nets. Artif Intell Stat 562–570
92.
Zurück zum Zitat Roth HR, Oda H, Zhou X, Shimizu N, Yang Y, Hayashi Y, Oda M, Fujiwara M, Misawa K, Mori K (2018) An application of cascaded 3D fully convolutional networks for medical image segmentation. Comput Med Imaging Graphics 66:90–99CrossRef Roth HR, Oda H, Zhou X, Shimizu N, Yang Y, Hayashi Y, Oda M, Fujiwara M, Misawa K, Mori K (2018) An application of cascaded 3D fully convolutional networks for medical image segmentation. Comput Med Imaging Graphics 66:90–99CrossRef
93.
Zurück zum Zitat Linyan Gu, Cai X-C (2021) Fusing 2D and 3D convolutional neural networks for the segmentation of aorta and coronary arteries from CT images. Artif Intell Med 121:102189CrossRef Linyan Gu, Cai X-C (2021) Fusing 2D and 3D convolutional neural networks for the segmentation of aorta and coronary arteries from CT images. Artif Intell Med 121:102189CrossRef
94.
Zurück zum Zitat Zhou Z, Siddiquee MMR, Tajbakhsh N, Liang J (2018) Unet++: a nested U-net architecture for medical image segmentation. Deep learning in medical image analysis and multimodal learning for clinical decision support. Springer, Cham, pp 3–11CrossRef Zhou Z, Siddiquee MMR, Tajbakhsh N, Liang J (2018) Unet++: a nested U-net architecture for medical image segmentation. Deep learning in medical image analysis and multimodal learning for clinical decision support. Springer, Cham, pp 3–11CrossRef
95.
Zurück zum Zitat Chen L-C, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2017) Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans Pattern Anal Mach Intell 40(4):834–848CrossRef Chen L-C, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2017) Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans Pattern Anal Mach Intell 40(4):834–848CrossRef
96.
Zurück zum Zitat Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the thirteenth international conference on artificial intelligence and statistics 249–256 Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the thirteenth international conference on artificial intelligence and statistics 249–256
97.
Zurück zum Zitat Koesten LM, Kacprzak E, Tennison JFA, Simperl E (2017) The trials and tribulations of working with structured data: -a study on information seeking behavior. In: Proceedings of the 2017 CHI conference on human factors in computing systems, ACM, New York, NY, USA, pp 1277–1289 https://doi.org/10.1145/3025453.3025838 Koesten LM, Kacprzak E, Tennison JFA, Simperl E (2017) The trials and tribulations of working with structured data: -a study on information seeking behavior. In: Proceedings of the 2017 CHI conference on human factors in computing systems, ACM, New York, NY, USA, pp 1277–1289 https://​doi.​org/​10.​1145/​3025453.​3025838
98.
Zurück zum Zitat Udupa JK, Odhner D, Zhao L, Tong Y, Matsumoto MM, Ciesielski KC, Falcao AX, Vaideeswaran P, Ciesielski V, Saboury B, Mohammadianrasanani S (2014) Body-wide hierarchical fuzzy modeling, recognition, and delineation of anatomy in medical images. Med Image Anal 18(5):752–771CrossRef Udupa JK, Odhner D, Zhao L, Tong Y, Matsumoto MM, Ciesielski KC, Falcao AX, Vaideeswaran P, Ciesielski V, Saboury B, Mohammadianrasanani S (2014) Body-wide hierarchical fuzzy modeling, recognition, and delineation of anatomy in medical images. Med Image Anal 18(5):752–771CrossRef
101.
Zurück zum Zitat Jianyun Cao, Haoran Lai, Jiawei Zhang, Junde Zhang, Tao Xie, Heqing Wang, Junguo Bu,Qianjin Feng, Meiyan Huang (2020)2D–3D cascade network for glioma segmentation in multisequence MRI images using multiscale information,Computers in Biology and Medicine, 21:106894. Jianyun Cao, Haoran Lai, Jiawei Zhang, Junde Zhang, Tao Xie, Heqing Wang, Junguo Bu,Qianjin Feng, Meiyan Huang (2020)2D–3D cascade network for glioma segmentation in multisequence MRI images using multiscale information,Computers in Biology and Medicine, 21:106894.
102.
Zurück zum Zitat Zhao H, Shi J, Qi X, Wang X, Jia J (2017) Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2881–2890 Zhao H, Shi J, Qi X, Wang X, Jia J (2017) Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2881–2890
Metadaten
Titel
Organ segmentation from computed tomography images using the 3D convolutional neural network: a systematic review
verfasst von
Ademola E. Ilesanmi
Taiwo Ilesanmi
Oluwagbenga P. Idowu
Drew A. Torigian
Jayaram K. Udupa
Publikationsdatum
16.07.2022
Verlag
Springer London
Erschienen in
International Journal of Multimedia Information Retrieval / Ausgabe 3/2022
Print ISSN: 2192-6611
Elektronische ISSN: 2192-662X
DOI
https://doi.org/10.1007/s13735-022-00242-9

Weitere Artikel der Ausgabe 3/2022

International Journal of Multimedia Information Retrieval 3/2022 Zur Ausgabe

Premium Partner