Skip to main content

2014 | OriginalPaper | Buchkapitel

4. Orientation Effects and Anisotropy of Properties in 1–3 and Related Composites

verfasst von : Vitaly Yu. Topolov, Paolo Bisegna, Christopher R. Bowen

Erschienen in: Piezo-Active Composites

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In a 1–3 composite, the first component is piezo–active (poled FC, ferroelectric SC etc.) and self-connected in one dimension, and the second component, either piezo–passive or exhibiting a low piezoelectric activity, is self-connected in three dimensions [1–3]. A typical example of such a composite consists of a system of parallel thin piezo–active rods which are regularly distributed in a large matrix [4–6], and the poling direction is parallel to each rod. The 1–3 connectivity is wide-spread due to favourable poling conditions and a variety of advantages over the piezo-active FC and SC components [2, 4–7].

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
In Chap. 4 we omit subscript “c” after square brackets in the unit-cell direction notation. It is assumed that any poling direction [hkl] of the SC component is related to the cubic (perovskite) unit-cell axes.
 
2
Their electromechanical constants are given in Table 5.​2 (see Sect. 5.​2.​1).
 
Literatur
1.
Zurück zum Zitat Newnham RE, Skinner DP, Cross LE (1978) Connectivity and piezoelectric-pyroelectric composites. Mater Res Bull 13:525–536CrossRef Newnham RE, Skinner DP, Cross LE (1978) Connectivity and piezoelectric-pyroelectric composites. Mater Res Bull 13:525–536CrossRef
2.
Zurück zum Zitat Akdogan EK, Allahverdi M, Safari A (2005) Piezoelectric composites for sensor and actuator applications. IEEE Trans Ultrason Ferroelectr Freq Control 52:746–775CrossRef Akdogan EK, Allahverdi M, Safari A (2005) Piezoelectric composites for sensor and actuator applications. IEEE Trans Ultrason Ferroelectr Freq Control 52:746–775CrossRef
3.
Zurück zum Zitat Topolov VYu, Bowen CR (2009) Electromechanical properties in composites based on ferroelectrics. Springer, London Topolov VYu, Bowen CR (2009) Electromechanical properties in composites based on ferroelectrics. Springer, London
4.
Zurück zum Zitat Chan HLW, Unsworth J (1989) Simple model for piezoelectric ceramic/polymer 1–3 composites used in ultrasonic transducer applications. IEEE Trans Ultra Ferroelectr Freq Control 36:434–441CrossRef Chan HLW, Unsworth J (1989) Simple model for piezoelectric ceramic/polymer 1–3 composites used in ultrasonic transducer applications. IEEE Trans Ultra Ferroelectr Freq Control 36:434–441CrossRef
5.
Zurück zum Zitat Taunaumang H, Guy IL, Chan HLW (1994) Electromechanical properties of 1–3 piezoelectric ceramic/piezoelectric polymer composites. J Appl Phys 76:484–489CrossRef Taunaumang H, Guy IL, Chan HLW (1994) Electromechanical properties of 1–3 piezoelectric ceramic/piezoelectric polymer composites. J Appl Phys 76:484–489CrossRef
6.
Zurück zum Zitat Wang F, He C, Tang Y (2007) Single crystal 0.7Pb(\(\text{ Mg }_{1/3}\text{ Nb }_{2/3})\text{ O }_{3}\)–\(0.3\text{ PbTiO }_{3}\) epoxy 1–3 piezoelectric composites prepared by the lamination technique. Mater Chem Phys 105:273–277CrossRef Wang F, He C, Tang Y (2007) Single crystal 0.7Pb(\(\text{ Mg }_{1/3}\text{ Nb }_{2/3})\text{ O }_{3}\)\(0.3\text{ PbTiO }_{3}\) epoxy 1–3 piezoelectric composites prepared by the lamination technique. Mater Chem Phys 105:273–277CrossRef
7.
Zurück zum Zitat Topolov VYu, Panich AE (2009) Problem of piezoelectric sensitivity of 1–3-type composites based on ferroelectric ceramics. Ferroelectrics 392:107–119CrossRef Topolov VYu, Panich AE (2009) Problem of piezoelectric sensitivity of 1–3-type composites based on ferroelectric ceramics. Ferroelectrics 392:107–119CrossRef
8.
Zurück zum Zitat Topolov VYu, Krivoruchko AV, Bisegna P (2011) Electromechanical coupling and its anisotropy in a novel 1–3–0 composite based on single-domain 0.58Pb(\(\text{ Mg }_{1/3}\text{ Nb }_{2/3})\text{ O }_{3}\)–\(0.42\text{ PbTiO }_{3}\) crystal. Compos Sci Tech 71:1082–1088CrossRef Topolov VYu, Krivoruchko AV, Bisegna P (2011) Electromechanical coupling and its anisotropy in a novel 1–3–0 composite based on single-domain 0.58Pb(\(\text{ Mg }_{1/3}\text{ Nb }_{2/3})\text{ O }_{3}\)\(0.42\text{ PbTiO }_{3}\) crystal. Compos Sci Tech 71:1082–1088CrossRef
9.
Zurück zum Zitat Zhang R, Jiang B, Cao W, Amin A (2002) Complete set of material constants of 0.93Pb(\(\text{ Zn }_{1/3}\text{ Nb }_{2/3})\text{ O }_{3 }\)–\(0.07\text{ PbTiO }_{3}\) domain engineered single crystal. J Mater Sci Lett 21:1877–1879CrossRef Zhang R, Jiang B, Cao W, Amin A (2002) Complete set of material constants of 0.93Pb(\(\text{ Zn }_{1/3}\text{ Nb }_{2/3})\text{ O }_{3 }\)\(0.07\text{ PbTiO }_{3}\) domain engineered single crystal. J Mater Sci Lett 21:1877–1879CrossRef
10.
Zurück zum Zitat Zhang R, Jiang B, Jiang W, Cao W (2002) Complete set of elastic, dielectric, and piezoelectric coefficients of 0.93Pb(\(\text{ Zn }_{1/3}\text{ Nb }_{2/3})\text{ O }_{3}\)–\(0.07\text{ PbTiO }_{3}\) single crystal poled along [011]. Appl Phys Lett 89:242908 (3 pp.) Zhang R, Jiang B, Jiang W, Cao W (2002) Complete set of elastic, dielectric, and piezoelectric coefficients of 0.93Pb(\(\text{ Zn }_{1/3}\text{ Nb }_{2/3})\text{ O }_{3}\)\(0.07\text{ PbTiO }_{3}\) single crystal poled along [011]. Appl Phys Lett 89:242908 (3 pp.)
11.
Zurück zum Zitat Topolov VYu, Krivoruchko AV, Bisegna P, Bowen CR (2008) Orientation effects in 1–3 composites based on 0.93Pb(\(\text{ Zn }_{1/3}\text{ Nb }_{2/3})\text{ O }_{3}\)–\(0.07\text{ PbTiO }_{3}\) single crystals. Ferroelectrics 376:140–152CrossRef Topolov VYu, Krivoruchko AV, Bisegna P, Bowen CR (2008) Orientation effects in 1–3 composites based on 0.93Pb(\(\text{ Zn }_{1/3}\text{ Nb }_{2/3})\text{ O }_{3}\)\(0.07\text{ PbTiO }_{3}\) single crystals. Ferroelectrics 376:140–152CrossRef
12.
Zurück zum Zitat Sessler GM (1981) Piezoelectricity in polyvinylidenefluoride. J Acoust Soc Am 70:1596–1608CrossRef Sessler GM (1981) Piezoelectricity in polyvinylidenefluoride. J Acoust Soc Am 70:1596–1608CrossRef
13.
Zurück zum Zitat Bennett J, Hayward G (1997) Design of 1–3 piezocomposite hydrophones using finite element analysis. IEEE Trans Ultrason Ferroelectr Freq Control 44:565–574CrossRef Bennett J, Hayward G (1997) Design of 1–3 piezocomposite hydrophones using finite element analysis. IEEE Trans Ultrason Ferroelectr Freq Control 44:565–574CrossRef
14.
Zurück zum Zitat Poizat C, Sester M (1997) Effective properties of composites with embedded piezoelectric fibres. Comput Mater Sci 16:89–97CrossRef Poizat C, Sester M (1997) Effective properties of composites with embedded piezoelectric fibres. Comput Mater Sci 16:89–97CrossRef
15.
Zurück zum Zitat Pettermann HE, Suresh S (2000) A comprehensive unit cell model: a study of coupled effects in piezoelectric 1–3 composites. Int J Solids Struct 37:5447–5464CrossRef Pettermann HE, Suresh S (2000) A comprehensive unit cell model: a study of coupled effects in piezoelectric 1–3 composites. Int J Solids Struct 37:5447–5464CrossRef
16.
Zurück zum Zitat Kar-Gupta R, Venkatesh TA (2005) Electromechanical response of 1–3 piezoelectric composites: effect of poling characteristics. J Appl Phys 98:054102 (14 pp.)CrossRef Kar-Gupta R, Venkatesh TA (2005) Electromechanical response of 1–3 piezoelectric composites: effect of poling characteristics. J Appl Phys 98:054102 (14 pp.)CrossRef
17.
Zurück zum Zitat Kar-Gupta R, Marcheselli C, Venkatesh TA (2008) Electromechanical response of 1–3 piezoelectric composites: effect of fiber shape. J Appl Phys 104:024105 (17 pp.) Kar-Gupta R, Marcheselli C, Venkatesh TA (2008) Electromechanical response of 1–3 piezoelectric composites: effect of fiber shape. J Appl Phys 104:024105 (17 pp.)
18.
Zurück zum Zitat Kar-Gupta R, Venkatesh TA (2008) Electromechanical response of piezoelectric composites: effects of geometric connectivity and grain size. Acta Mater 56:3810–3823 Kar-Gupta R, Venkatesh TA (2008) Electromechanical response of piezoelectric composites: effects of geometric connectivity and grain size. Acta Mater 56:3810–3823
19.
Zurück zum Zitat Topolov VYu, Bisegna P, Krivoruchko AV (2008) Features of electromechanical properties of 1–3 composites based on \(\text{ PbTiO }_{3}\)–\(\text{ type }\) ceramics. J Phys D Appl Phys 41:035406 (8 pp.)CrossRef Topolov VYu, Bisegna P, Krivoruchko AV (2008) Features of electromechanical properties of 1–3 composites based on \(\text{ PbTiO }_{3}\)\(\text{ type }\) ceramics. J Phys D Appl Phys 41:035406 (8 pp.)CrossRef
21.
Zurück zum Zitat Kar-Gupta R, Venkatesh TA (2007) Electromechanical response of 1–3 piezoelectric composites: an analytical model. Acta Mater 55:1093–1108CrossRef Kar-Gupta R, Venkatesh TA (2007) Electromechanical response of 1–3 piezoelectric composites: an analytical model. Acta Mater 55:1093–1108CrossRef
22.
Zurück zum Zitat Choy SH, Chan HLW, Ng MW, Liu PCK (2004) Study of 1–3 PZT fibre/epoxy composites with low volume fraction of ceramics. Integr Ferroelectr 63:109–115CrossRef Choy SH, Chan HLW, Ng MW, Liu PCK (2004) Study of 1–3 PZT fibre/epoxy composites with low volume fraction of ceramics. Integr Ferroelectr 63:109–115CrossRef
23.
Zurück zum Zitat Ikeda T (1990) Fundamentals of piezoelectricity. Oxford University Press, Oxford, New York, Toronto Ikeda T (1990) Fundamentals of piezoelectricity. Oxford University Press, Oxford, New York, Toronto
24.
Zurück zum Zitat Asakawa K, Hiraoka T, Akasaka Y, Hotta Y, (2004) Method for manufacturing porous structure and method for forming pattern. US Patent 6,565,763 Asakawa K, Hiraoka T, Akasaka Y, Hotta Y, (2004) Method for manufacturing porous structure and method for forming pattern. US Patent 6,565,763
25.
Zurück zum Zitat Clark P, Moya W (2003) Three dimensional patterned porous structures. US Patent 6,627,291 Clark P, Moya W (2003) Three dimensional patterned porous structures. US Patent 6,627,291
26.
Zurück zum Zitat Huang JH, Yu S (1994) Electroelastic Eshelby tensors for an ellipsoidal piezoelectric inclusion. Compos Eng 4:1169–1182CrossRef Huang JH, Yu S (1994) Electroelastic Eshelby tensors for an ellipsoidal piezoelectric inclusion. Compos Eng 4:1169–1182CrossRef
27.
Zurück zum Zitat Dunn ML, Taya M (1993) Electromechanical properties of porous piezoelectric ceramics. J Am Ceram Soc 76:1697–1706CrossRef Dunn ML, Taya M (1993) Electromechanical properties of porous piezoelectric ceramics. J Am Ceram Soc 76:1697–1706CrossRef
28.
Zurück zum Zitat Cao H, Hugo Schmidt V (2004) Elastic, piezoelectric, and dielectric properties of 0.58Pb(\(\text{ Mg }_{1/3}\text{ Nb }_{2/3})\text{ O }_{3}\)–\(0.42\text{ PbTiO }_{3}\) single crystal. J Appl Phys 96:549–554CrossRef Cao H, Hugo Schmidt V (2004) Elastic, piezoelectric, and dielectric properties of 0.58Pb(\(\text{ Mg }_{1/3}\text{ Nb }_{2/3})\text{ O }_{3}\)\(0.42\text{ PbTiO }_{3}\) single crystal. J Appl Phys 96:549–554CrossRef
29.
Zurück zum Zitat Gibiansky LV, Torquato S (1997) On the use of homogenization theory to design optimal piezocomposites for hydrophone applications. J Mech Phys Solids 45:689–708CrossRef Gibiansky LV, Torquato S (1997) On the use of homogenization theory to design optimal piezocomposites for hydrophone applications. J Mech Phys Solids 45:689–708CrossRef
30.
Zurück zum Zitat Ikegami S, Ueda I, Nagata T (1971) Electromechanical properties of \(\text{ PbTiO }_{3}\) ceramics containing La and Mn. J Acoust Soc Am 50:1060–1066CrossRef Ikegami S, Ueda I, Nagata T (1971) Electromechanical properties of \(\text{ PbTiO }_{3}\) ceramics containing La and Mn. J Acoust Soc Am 50:1060–1066CrossRef
31.
Zurück zum Zitat Dantsiger AYa, Razumovskaya ON, Reznitchenko LA, Grineva LD, Devlikanova RU, Dudkina SI, Gavrilyatchenko SV, Dergunova NV, Klevtsov AN, (1994) Highly effective piezoceramic materials (Handbook). Kniga, Rostov-on-Don (in Russian) Dantsiger AYa, Razumovskaya ON, Reznitchenko LA, Grineva LD, Devlikanova RU, Dudkina SI, Gavrilyatchenko SV, Dergunova NV, Klevtsov AN, (1994) Highly effective piezoceramic materials (Handbook). Kniga, Rostov-on-Don (in Russian)
32.
Zurück zum Zitat Topolov VYu, Turik AV (2001) Porous piezoelectric composites with extremely high reception parameters. Tech Phys 46:1093–1100CrossRef Topolov VYu, Turik AV (2001) Porous piezoelectric composites with extremely high reception parameters. Tech Phys 46:1093–1100CrossRef
33.
Zurück zum Zitat Haun MJ, Newnham RE (1986) An experimental and theoretical study of 1–3 and 1–3–0 piezoelectric PZT-polymer composites for hydrophone applications. Ferroelectrics 68:123–139CrossRef Haun MJ, Newnham RE (1986) An experimental and theoretical study of 1–3 and 1–3–0 piezoelectric PZT-polymer composites for hydrophone applications. Ferroelectrics 68:123–139CrossRef
34.
Zurück zum Zitat Topolov VYu, Bisegna P (2010) Anisotropic piezoelectric properties of 1–3 ceramic/polymer composites comprising rods with elliptic cross section. J Electroceram 25:26–37CrossRef Topolov VYu, Bisegna P (2010) Anisotropic piezoelectric properties of 1–3 ceramic/polymer composites comprising rods with elliptic cross section. J Electroceram 25:26–37CrossRef
35.
Zurück zum Zitat Ng KL, Chan HLW, Choy CL (2000) Piezoelectric and pyroelectric properties of PZT/P(VDF-TrFE) composites with constituent phases poled in parallel or antiparallel directions. IEEE Trans Ultrason Ferroelectr Freq Control 47:1308–1315CrossRef Ng KL, Chan HLW, Choy CL (2000) Piezoelectric and pyroelectric properties of PZT/P(VDF-TrFE) composites with constituent phases poled in parallel or antiparallel directions. IEEE Trans Ultrason Ferroelectr Freq Control 47:1308–1315CrossRef
36.
Zurück zum Zitat Sessler GM (1994) Poling and properties of polarization of ferroelectric polymers and composites. Key Eng Mater 92–93:249–274CrossRef Sessler GM (1994) Poling and properties of polarization of ferroelectric polymers and composites. Key Eng Mater 92–93:249–274CrossRef
37.
Zurück zum Zitat Levassort F, Lethiecq M, Certon D, Patat F (1997) A matrix method for modeling electroelastic moduli of 0–3 piezo-composites. IEEE Trans Ultrason Ferroelectr Freq Control 44:445–452CrossRef Levassort F, Lethiecq M, Certon D, Patat F (1997) A matrix method for modeling electroelastic moduli of 0–3 piezo-composites. IEEE Trans Ultrason Ferroelectr Freq Control 44:445–452CrossRef
38.
Zurück zum Zitat Grekov AA, Kramarov SO, Kuprienko AA (1989) Effective properties of a transversely isotropic piezoelectric composite with cylindrical inclusions. Mech Compos Mater 25:54–61CrossRef Grekov AA, Kramarov SO, Kuprienko AA (1989) Effective properties of a transversely isotropic piezoelectric composite with cylindrical inclusions. Mech Compos Mater 25:54–61CrossRef
39.
Zurück zum Zitat Lakes R (1987) Foam structures with a negative Poisson’s ratio. Science 235:1038–1040CrossRef Lakes R (1987) Foam structures with a negative Poisson’s ratio. Science 235:1038–1040CrossRef
40.
Zurück zum Zitat Friis EA, Lakes RS, Park JB (1988) Negative Poisson’s ratio polymeric and metallic foams. J Mater Sci 23:4406–4414CrossRef Friis EA, Lakes RS, Park JB (1988) Negative Poisson’s ratio polymeric and metallic foams. J Mater Sci 23:4406–4414CrossRef
41.
Zurück zum Zitat Choi JB, Lakes R (1992) Nonlinear properties of polymer cellular materials with a negative Poisson’s ratio. J Mater Sci 27:4678–4684CrossRef Choi JB, Lakes R (1992) Nonlinear properties of polymer cellular materials with a negative Poisson’s ratio. J Mater Sci 27:4678–4684CrossRef
42.
Zurück zum Zitat Evans KE, Alderson KL (1992) The static and dynamic moduli of auxetic microporous polyethylene. J Mater Sci Lett 11:1721–1724CrossRef Evans KE, Alderson KL (1992) The static and dynamic moduli of auxetic microporous polyethylene. J Mater Sci Lett 11:1721–1724CrossRef
43.
Zurück zum Zitat Smith WA, (1991) Optimizing electromechanical coupling in piezocomposites using polymers with negative Poisson’s ratio. In: Proceedings of the IEEE ultrasonics symposium, December 8–11, 1991, Lake Buena Vista, FL, USA. V. 1. IEEE, New York, pp 661–666 Smith WA, (1991) Optimizing electromechanical coupling in piezocomposites using polymers with negative Poisson’s ratio. In: Proceedings of the IEEE ultrasonics symposium, December 8–11, 1991, Lake Buena Vista, FL, USA. V. 1. IEEE, New York, pp 661–666
44.
Zurück zum Zitat Liu Y, Hu H (2010) A review on auxetic structures and polymeric materials. Sci Res Essays 5:1052–1063 Liu Y, Hu H (2010) A review on auxetic structures and polymeric materials. Sci Res Essays 5:1052–1063
45.
Zurück zum Zitat Topolov VYu, Bowen CR (2008) Characteristics of 1–3-type ferroelectric ceramic/auxetic polymer composites. Modell Simul Mater Sci Eng 16:015007 (12 pp.)CrossRef Topolov VYu, Bowen CR (2008) Characteristics of 1–3-type ferroelectric ceramic/auxetic polymer composites. Modell Simul Mater Sci Eng 16:015007 (12 pp.)CrossRef
46.
Zurück zum Zitat Groznov IN, (1983) Dielectric permittivity. In: Physics encyclopaedia. Sovetskaya Entsiklopediya, Moscow, pp 178–179 (in Russian) Groznov IN, (1983) Dielectric permittivity. In: Physics encyclopaedia. Sovetskaya Entsiklopediya, Moscow, pp 178–179 (in Russian)
Metadaten
Titel
Orientation Effects and Anisotropy of Properties in 1–3 and Related Composites
verfasst von
Vitaly Yu. Topolov
Paolo Bisegna
Christopher R. Bowen
Copyright-Jahr
2014
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-38354-0_4

Neuer Inhalt