Skip to main content
Erschienen in:
Buchtitelbild

2018 | OriginalPaper | Buchkapitel

Orthogonal Protein Translation Using Pyrrolysyl-tRNA Synthetases for Single- and Multiple-Noncanonical Amino Acid Mutagenesis

verfasst von : Tobias Baumann, Matthias Exner, Nediljko Budisa

Erschienen in: Synthetic Biology – Metabolic Engineering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To date, the two systems most extensively used for noncanonical amino acid (ncAA) incorporation via orthogonal translation are based on the Methanococcus jannaschii TyrRS/tRNA CUA Tyr and the Methanosarcina barkeri/Methanosarcina mazei PylRS/tRNA CUA Pyl pairs. Here, we summarize the development and usage of the pyrrolysine-based system for orthogonal translation, a process that allows for the recombinant production of site-specifically labeled proteins and peptides. Via stop codon suppression in Escherichia coli and mammalian cells, genetically encoded biomolecules can be equipped with a great diversity of chemical functionalities including click chemistry handles, post-translational modifications, and photocaged sidechains.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ivanova NN, Schwientek P, Tripp HJ, Rinke C, Pati A, Huntemann M, Visel A, Woyke T, Kyrpides NC, Rubin EM (2014) Stop codon reassignments in the wild. Science 344(6186):909–913CrossRef Ivanova NN, Schwientek P, Tripp HJ, Rinke C, Pati A, Huntemann M, Visel A, Woyke T, Kyrpides NC, Rubin EM (2014) Stop codon reassignments in the wild. Science 344(6186):909–913CrossRef
2.
Zurück zum Zitat Wang L, Brock A, Herberich B, Schultz PG (2001) Expanding the genetic code of Escherichia coli. Science 292(5516):498–500CrossRef Wang L, Brock A, Herberich B, Schultz PG (2001) Expanding the genetic code of Escherichia coli. Science 292(5516):498–500CrossRef
3.
Zurück zum Zitat Craigen WJ, Caskey CT (1987) The function, structure and regulation of E. coli peptide chain release factors. Biochimie 69(10):1031–1041CrossRef Craigen WJ, Caskey CT (1987) The function, structure and regulation of E. coli peptide chain release factors. Biochimie 69(10):1031–1041CrossRef
4.
Zurück zum Zitat Johnson DBF, Wang C, Xu J, Schultz MD, Schmitz RJ, Ecker JR, Wang L (2012) Release factor one is nonessential in Escherichia coli. ACS Chem Biol 7(8):1337–1344CrossRef Johnson DBF, Wang C, Xu J, Schultz MD, Schmitz RJ, Ecker JR, Wang L (2012) Release factor one is nonessential in Escherichia coli. ACS Chem Biol 7(8):1337–1344CrossRef
5.
Zurück zum Zitat Mukai T, Hayashi A, Iraha F, Sato A, Ohtake K, Yokoyama S, Sakamoto K (2010) Codon reassignment in the Escherichia coli genetic code. Nucleic Acids Res 38(22):8188–8195CrossRef Mukai T, Hayashi A, Iraha F, Sato A, Ohtake K, Yokoyama S, Sakamoto K (2010) Codon reassignment in the Escherichia coli genetic code. Nucleic Acids Res 38(22):8188–8195CrossRef
6.
Zurück zum Zitat Lajoie MJ, Rovner AJ, Goodman DB, Aerni H-R, Haimovich AD, Kuznetsov G, Mercer JA, Wang HH, Carr PA, Mosberg JA, Rohland N, Schultz PG, Jacobson JM, Rinehart J, Church GM, Isaacs FJ (2013) Genomically recoded organisms expand biological functions. Science 342(6156):357–360CrossRef Lajoie MJ, Rovner AJ, Goodman DB, Aerni H-R, Haimovich AD, Kuznetsov G, Mercer JA, Wang HH, Carr PA, Mosberg JA, Rohland N, Schultz PG, Jacobson JM, Rinehart J, Church GM, Isaacs FJ (2013) Genomically recoded organisms expand biological functions. Science 342(6156):357–360CrossRef
7.
Zurück zum Zitat Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410CrossRef Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410CrossRef
8.
Zurück zum Zitat McWilliam H, Li W, Uludag M, Squizzato S, Park YM, Buso N, Cowley AP, Lopez R (2013) Analysis tool web services from the EMBL-EBI. Nucleic Acids Res 41(Web Server issue):W597–W600 McWilliam H, Li W, Uludag M, Squizzato S, Park YM, Buso N, Cowley AP, Lopez R (2013) Analysis tool web services from the EMBL-EBI. Nucleic Acids Res 41(Web Server issue):W597–W600
9.
Zurück zum Zitat Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27(2):221–224CrossRef Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27(2):221–224CrossRef
10.
Zurück zum Zitat Kavran JM, Gundllapalli S, O’Donoghue P, Englert M, Söll D, Steitz TA (2007) Structure of pyrrolysyl-tRNA synthetase, an archaeal enzyme for genetic code innovation. Proc Natl Acad Sci U S A 104(27):11268–11273CrossRef Kavran JM, Gundllapalli S, O’Donoghue P, Englert M, Söll D, Steitz TA (2007) Structure of pyrrolysyl-tRNA synthetase, an archaeal enzyme for genetic code innovation. Proc Natl Acad Sci U S A 104(27):11268–11273CrossRef
11.
Zurück zum Zitat Nozawa K, O’Donoghue P, Gundllapalli S, Araiso Y, Ishitani R, Umehara T, Söll D, Nureki O (2009) Pyrrolysyl-tRNA synthetase-tRNA(Pyl) structure reveals the molecular basis of orthogonality. Nature 457(7233):1163–1167CrossRef Nozawa K, O’Donoghue P, Gundllapalli S, Araiso Y, Ishitani R, Umehara T, Söll D, Nureki O (2009) Pyrrolysyl-tRNA synthetase-tRNA(Pyl) structure reveals the molecular basis of orthogonality. Nature 457(7233):1163–1167CrossRef
12.
Zurück zum Zitat James CM, Ferguson TK, Leykam JF, Krzycki JA (2001) The amber codon in the gene encoding the monomethylamine methyltransferase isolated from Methanosarcina barkeri is translated as a sense codon. J Biol Chem 276(36):34252–34258CrossRef James CM, Ferguson TK, Leykam JF, Krzycki JA (2001) The amber codon in the gene encoding the monomethylamine methyltransferase isolated from Methanosarcina barkeri is translated as a sense codon. J Biol Chem 276(36):34252–34258CrossRef
13.
Zurück zum Zitat Hao B, Gong W, Ferguson TK, James CM, Krzycki JA, Chan MK (2002) A new UAG-encoded residue in the structure of a methanogen methyltransferase. Science 296(5572):1462–1466CrossRef Hao B, Gong W, Ferguson TK, James CM, Krzycki JA, Chan MK (2002) A new UAG-encoded residue in the structure of a methanogen methyltransferase. Science 296(5572):1462–1466CrossRef
14.
Zurück zum Zitat Srinivasan G, James CM, Krzycki JA (2002) Pyrrolysine encoded by UAG in Archaea: charging of a UAG-decoding specialized tRNA. Science 296(5572):1459–1462CrossRef Srinivasan G, James CM, Krzycki JA (2002) Pyrrolysine encoded by UAG in Archaea: charging of a UAG-decoding specialized tRNA. Science 296(5572):1459–1462CrossRef
15.
Zurück zum Zitat Borrel G, Gaci N, Peyret P, O’Toole PW, Gribaldo S, Brugère J-F (2014) Unique characteristics of the pyrrolysine system in the 7th order of methanogens: implications for the evolution of a genetic code expansion cassette. Archaea 2014:374146CrossRef Borrel G, Gaci N, Peyret P, O’Toole PW, Gribaldo S, Brugère J-F (2014) Unique characteristics of the pyrrolysine system in the 7th order of methanogens: implications for the evolution of a genetic code expansion cassette. Archaea 2014:374146CrossRef
16.
Zurück zum Zitat Polycarpo C, Ambrogelly A, Bérubé A, Winbush SM, McCloskey JA, Crain PF, Wood JL, Söll D (2004) An aminoacyl-tRNA synthetase that specifically activates pyrrolysine. Proc Natl Acad Sci U S A 101(34):12450–12454CrossRef Polycarpo C, Ambrogelly A, Bérubé A, Winbush SM, McCloskey JA, Crain PF, Wood JL, Söll D (2004) An aminoacyl-tRNA synthetase that specifically activates pyrrolysine. Proc Natl Acad Sci U S A 101(34):12450–12454CrossRef
17.
Zurück zum Zitat Yanagisawa T, Ishii R, Fukunaga R, Kobayashi T, Sakamoto K, Yokoyama S (2008) Multistep engineering of pyrrolysyl-tRNA synthetase to genetically encode N(epsilon)-(o-azidobenzyloxycarbonyl) lysine for site-specific protein modification. Chem Biol 15(11):1187–1197CrossRef Yanagisawa T, Ishii R, Fukunaga R, Kobayashi T, Sakamoto K, Yokoyama S (2008) Multistep engineering of pyrrolysyl-tRNA synthetase to genetically encode N(epsilon)-(o-azidobenzyloxycarbonyl) lysine for site-specific protein modification. Chem Biol 15(11):1187–1197CrossRef
18.
Zurück zum Zitat Takimoto JK, Dellas N, Noel JP, Wang L (2011) Stereochemical basis for engineered pyrrolysyl-tRNA synthetase and the efficient in vivo incorporation of structurally divergent non-native amino acids. ACS Chem Biol 6(7):733–743CrossRef Takimoto JK, Dellas N, Noel JP, Wang L (2011) Stereochemical basis for engineered pyrrolysyl-tRNA synthetase and the efficient in vivo incorporation of structurally divergent non-native amino acids. ACS Chem Biol 6(7):733–743CrossRef
19.
Zurück zum Zitat Kwok Y, Wong JT (1980) Evolutionary relationship between Halobacterium cutirubrum and eukaryotes determined by use of aminoacyl-tRNA synthetases as phylogenetic probes. Can J Biochem 58(3):213–218CrossRef Kwok Y, Wong JT (1980) Evolutionary relationship between Halobacterium cutirubrum and eukaryotes determined by use of aminoacyl-tRNA synthetases as phylogenetic probes. Can J Biochem 58(3):213–218CrossRef
20.
Zurück zum Zitat Furter R (1998) Expansion of the genetic code: site-directed p-fluoro-phenylalanine incorporation in Escherichia coli. Protein Sci 7(2):419–426CrossRef Furter R (1998) Expansion of the genetic code: site-directed p-fluoro-phenylalanine incorporation in Escherichia coli. Protein Sci 7(2):419–426CrossRef
21.
Zurück zum Zitat Katayama H, Nozawa K, Nureki O, Nakahara Y, Hojo H (2012) Pyrrolysine analogs as substrates for bacterial pyrrolysyl-tRNA synthetase in vitro and in vivo. Biosci Biotechnol Biochem 76(1):205–208CrossRef Katayama H, Nozawa K, Nureki O, Nakahara Y, Hojo H (2012) Pyrrolysine analogs as substrates for bacterial pyrrolysyl-tRNA synthetase in vitro and in vivo. Biosci Biotechnol Biochem 76(1):205–208CrossRef
22.
Zurück zum Zitat Ou W, Uno T, Chiu H-P, Grünewald J, Cellitti SE, Crossgrove T, Hao X, Fan Q, Quinn LL, Patterson P, Okach L, Jones DH, Lesley SA, Brock A, Geierstanger BH (2011) Site-specific protein modifications through pyrroline-carboxy-lysine residues. Proc Natl Acad Sci U S A 108(26):10437–10442CrossRef Ou W, Uno T, Chiu H-P, Grünewald J, Cellitti SE, Crossgrove T, Hao X, Fan Q, Quinn LL, Patterson P, Okach L, Jones DH, Lesley SA, Brock A, Geierstanger BH (2011) Site-specific protein modifications through pyrroline-carboxy-lysine residues. Proc Natl Acad Sci U S A 108(26):10437–10442CrossRef
23.
Zurück zum Zitat Lang K, Davis L, Torres-Kolbus J, Chou C, Deiters A, Chin JW (2012) Genetically encoded norbornene directs site-specific cellular protein labelling via a rapid bioorthogonal reaction. Nat Chem 4(4):298–304CrossRef Lang K, Davis L, Torres-Kolbus J, Chou C, Deiters A, Chin JW (2012) Genetically encoded norbornene directs site-specific cellular protein labelling via a rapid bioorthogonal reaction. Nat Chem 4(4):298–304CrossRef
24.
Zurück zum Zitat Lin S, Zhang Z, Xu H, Li L, Chen S, Li J, Hao Z, Chen PR (2011) Site-specific incorporation of photo-cross-linker and bioorthogonal amino acids into enteric bacterial pathogens. J Am Chem Soc 133(50):20581–20587CrossRef Lin S, Zhang Z, Xu H, Li L, Chen S, Li J, Hao Z, Chen PR (2011) Site-specific incorporation of photo-cross-linker and bioorthogonal amino acids into enteric bacterial pathogens. J Am Chem Soc 133(50):20581–20587CrossRef
25.
Zurück zum Zitat Lee Y-J, Wu B, Raymond JE, Zeng Y, Fang X, Wooley KL, Liu WR (2013) A genetically encoded acrylamide functionality. ACS Chem Biol 8(8):1664–1670CrossRef Lee Y-J, Wu B, Raymond JE, Zeng Y, Fang X, Wooley KL, Liu WR (2013) A genetically encoded acrylamide functionality. ACS Chem Biol 8(8):1664–1670CrossRef
26.
Zurück zum Zitat Gattner MJ, Vrabel M, Carell T (2013) Synthesis of ε-N-propionyl-, ε-N-butyryl-, and ε-N-crotonyl-lysine containing histone H3 using the pyrrolysine system. Chem Commun (Camb) 49(4):379–381CrossRef Gattner MJ, Vrabel M, Carell T (2013) Synthesis of ε-N-propionyl-, ε-N-butyryl-, and ε-N-crotonyl-lysine containing histone H3 using the pyrrolysine system. Chem Commun (Camb) 49(4):379–381CrossRef
27.
Zurück zum Zitat Lang K, Davis L, Wallace S, Mahesh M, Cox DJ, Blackman ML, Fox JM, Chin JW (2012) Genetic encoding of bicyclononynes and trans-cyclooctenes for site-specific protein labeling in vitro and in live mammalian cells via rapid fluorogenic Diels-Alder reactions. J Am Chem Soc 134(25):10317–10320CrossRef Lang K, Davis L, Wallace S, Mahesh M, Cox DJ, Blackman ML, Fox JM, Chin JW (2012) Genetic encoding of bicyclononynes and trans-cyclooctenes for site-specific protein labeling in vitro and in live mammalian cells via rapid fluorogenic Diels-Alder reactions. J Am Chem Soc 134(25):10317–10320CrossRef
28.
Zurück zum Zitat Plass T, Milles S, Koehler C, Schultz C, Lemke EA (2011) Genetically encoded copper-free click chemistry. Angew Chem Int Ed Engl 50(17):3878–3881 Plass T, Milles S, Koehler C, Schultz C, Lemke EA (2011) Genetically encoded copper-free click chemistry. Angew Chem Int Ed Engl 50(17):3878–3881
29.
Zurück zum Zitat Nguyen DP, Elliott T, Holt M, Muir TW, Chin JW (2011) Genetically encoded 1,2-aminothiols facilitate rapid and site-specific protein labeling via a bio-orthogonal cyanobenzothiazole condensation. J Am Chem Soc 133(30):11418–11421CrossRef Nguyen DP, Elliott T, Holt M, Muir TW, Chin JW (2011) Genetically encoded 1,2-aminothiols facilitate rapid and site-specific protein labeling via a bio-orthogonal cyanobenzothiazole condensation. J Am Chem Soc 133(30):11418–11421CrossRef
30.
Zurück zum Zitat Lee MM, Fekner T, Tang T-H, Wang L, Chan AH-Y, Hsu P-H, Au SW, Chan MK (2013) A click-and-release pyrrolysine analogue. Chembiochem 14(7):805–808CrossRef Lee MM, Fekner T, Tang T-H, Wang L, Chan AH-Y, Hsu P-H, Au SW, Chan MK (2013) A click-and-release pyrrolysine analogue. Chembiochem 14(7):805–808CrossRef
31.
Zurück zum Zitat Kobayashi T, Yanagisawa T, Sakamoto K, Yokoyama S (2009) Recognition of non-alpha-amino substrates by pyrrolysyl-tRNA synthetase. J Mol Biol 385(5):1352–1360CrossRef Kobayashi T, Yanagisawa T, Sakamoto K, Yokoyama S (2009) Recognition of non-alpha-amino substrates by pyrrolysyl-tRNA synthetase. J Mol Biol 385(5):1352–1360CrossRef
32.
Zurück zum Zitat Li Y-M, Yang M-Y, Huang Y-C, Li Y-T, Chen PR, Liu L (2012) Ligation of expressed protein α-hydrazides via genetic incorporation of an α-hydroxy acid. ACS Chem Biol 7(6):1015–1022CrossRef Li Y-M, Yang M-Y, Huang Y-C, Li Y-T, Chen PR, Liu L (2012) Ligation of expressed protein α-hydrazides via genetic incorporation of an α-hydroxy acid. ACS Chem Biol 7(6):1015–1022CrossRef
33.
Zurück zum Zitat Neumann H, Hancock SM, Buning R, Routh A, Chapman L, Somers J, Owen-Hughes T, van Noort J, Rhodes D, Chin JW (2009) A method for genetically installing site-specific acetylation in recombinant histones defines the effects of H3 K56 acetylation. Mol Cell 36(1):153–163CrossRef Neumann H, Hancock SM, Buning R, Routh A, Chapman L, Somers J, Owen-Hughes T, van Noort J, Rhodes D, Chin JW (2009) A method for genetically installing site-specific acetylation in recombinant histones defines the effects of H3 K56 acetylation. Mol Cell 36(1):153–163CrossRef
34.
Zurück zum Zitat Ai H-W, Lee JW, Schultz PG (2010) A method to site-specifically introduce methyllysine into proteins in E. coli. Chem Commun (Camb) 46(30):5506–5508CrossRef Ai H-W, Lee JW, Schultz PG (2010) A method to site-specifically introduce methyllysine into proteins in E. coli. Chem Commun (Camb) 46(30):5506–5508CrossRef
35.
Zurück zum Zitat Virdee S, Kapadnis PB, Elliott T, Lang K, Madrzak J, Nguyen DP, Riechmann L, Chin JW (2011) Traceless and site-specific ubiquitination of recombinant proteins. J Am Chem Soc 133(28):10708–10711CrossRef Virdee S, Kapadnis PB, Elliott T, Lang K, Madrzak J, Nguyen DP, Riechmann L, Chin JW (2011) Traceless and site-specific ubiquitination of recombinant proteins. J Am Chem Soc 133(28):10708–10711CrossRef
36.
Zurück zum Zitat Umehara T, Kim J, Lee S, Guo L-T, Söll D, Park H-S (2012) N-Acetyl lysyl-tRNA synthetases evolved by a CcdB-based selection possess N-acetyl lysine specificity in vitro and in vivo. FEBS Lett 586(6):729–733CrossRef Umehara T, Kim J, Lee S, Guo L-T, Söll D, Park H-S (2012) N-Acetyl lysyl-tRNA synthetases evolved by a CcdB-based selection possess N-acetyl lysine specificity in vitro and in vivo. FEBS Lett 586(6):729–733CrossRef
37.
Zurück zum Zitat Hancock SM, Uprety R, Deiters A, Chin JW (2010) Expanding the genetic code of yeast for incorporation of diverse unnatural amino acids via a pyrrolysyl-tRNA synthetase/tRNA pair. J Am Chem Soc 132(42):14819–14824CrossRef Hancock SM, Uprety R, Deiters A, Chin JW (2010) Expanding the genetic code of yeast for incorporation of diverse unnatural amino acids via a pyrrolysyl-tRNA synthetase/tRNA pair. J Am Chem Soc 132(42):14819–14824CrossRef
38.
Zurück zum Zitat Ai H, Shen W, Sagi A, Chen PR, Schultz PG (2011) Probing protein-protein interactions with a genetically encoded photo-crosslinking amino acid. Chembiochem 12(12):1854–1857CrossRef Ai H, Shen W, Sagi A, Chen PR, Schultz PG (2011) Probing protein-protein interactions with a genetically encoded photo-crosslinking amino acid. Chembiochem 12(12):1854–1857CrossRef
39.
Zurück zum Zitat Schmidt MJ, Summerer D (2013) Red-light-controlled protein-RNA crosslinking with a genetically encoded furan. Angew Chem Int Ed Engl 52(17):4690–4693CrossRef Schmidt MJ, Summerer D (2013) Red-light-controlled protein-RNA crosslinking with a genetically encoded furan. Angew Chem Int Ed Engl 52(17):4690–4693CrossRef
40.
Zurück zum Zitat Wang Y-S, Wu B, Wang Z, Huang Y, Wan W, Russell WK, Pai P-J, Moe YN, Russell DH, Liu WR (2010) A genetically encoded photocaged Nepsilon-methyl-L-lysine. Mol Biosyst 6(9):1557–1560CrossRef Wang Y-S, Wu B, Wang Z, Huang Y, Wan W, Russell WK, Pai P-J, Moe YN, Russell DH, Liu WR (2010) A genetically encoded photocaged Nepsilon-methyl-L-lysine. Mol Biosyst 6(9):1557–1560CrossRef
41.
Zurück zum Zitat Gautier A, Nguyen DP, Lusic H, An W, Deiters A, Chin JW (2010) Genetically encoded photocontrol of protein localization in mammalian cells. J Am Chem Soc 132(12):4086–4088CrossRef Gautier A, Nguyen DP, Lusic H, An W, Deiters A, Chin JW (2010) Genetically encoded photocontrol of protein localization in mammalian cells. J Am Chem Soc 132(12):4086–4088CrossRef
42.
Zurück zum Zitat Nguyen DP, Mahesh M, Elsässer SJ, Hancock SM, Uttamapinant C, Chin JW (2014) Genetic encoding of photocaged cysteine allows photoactivation of TEV protease in live mammalian cells. J Am Chem Soc 136(6):2240–2243CrossRef Nguyen DP, Mahesh M, Elsässer SJ, Hancock SM, Uttamapinant C, Chin JW (2014) Genetic encoding of photocaged cysteine allows photoactivation of TEV protease in live mammalian cells. J Am Chem Soc 136(6):2240–2243CrossRef
43.
Zurück zum Zitat Nguyen DP, Lusic H, Neumann H, Kapadnis PB, Deiters A, Chin JW (2009) Genetic encoding and labeling of aliphatic azides and alkynes in recombinant proteins via a pyrrolysyl-tRNA synthetase/tRNA(CUA) pair and click chemistry. J Am Chem Soc 131(25):8720–8721CrossRef Nguyen DP, Lusic H, Neumann H, Kapadnis PB, Deiters A, Chin JW (2009) Genetic encoding and labeling of aliphatic azides and alkynes in recombinant proteins via a pyrrolysyl-tRNA synthetase/tRNA(CUA) pair and click chemistry. J Am Chem Soc 131(25):8720–8721CrossRef
44.
Zurück zum Zitat Hao Z, Song Y, Lin S, Yang M, Liang Y, Wang J, Chen PR (2011) A readily synthesized cyclic pyrrolysine analogue for site-specific protein ‘click’ labeling. Chem Commun (Camb) 47(15):4502–4504CrossRef Hao Z, Song Y, Lin S, Yang M, Liang Y, Wang J, Chen PR (2011) A readily synthesized cyclic pyrrolysine analogue for site-specific protein ‘click’ labeling. Chem Commun (Camb) 47(15):4502–4504CrossRef
45.
Zurück zum Zitat Wang Y-S, Fang X, Wallace AL, Wu B, Liu WR (2012) A rationally designed pyrrolysyl-tRNA synthetase mutant with a broad substrate spectrum. J Am Chem Soc 134(6):2950–2953CrossRef Wang Y-S, Fang X, Wallace AL, Wu B, Liu WR (2012) A rationally designed pyrrolysyl-tRNA synthetase mutant with a broad substrate spectrum. J Am Chem Soc 134(6):2950–2953CrossRef
46.
Zurück zum Zitat Kaya E, Vrabel M, Deiml C, Prill S, Fluxa VS, Carell T (2012) A genetically encoded norbornene amino acid for the mild and selective modification of proteins in a copper-free click reaction. Angew Chem Int Ed Engl 51(18):4466–4469CrossRef Kaya E, Vrabel M, Deiml C, Prill S, Fluxa VS, Carell T (2012) A genetically encoded norbornene amino acid for the mild and selective modification of proteins in a copper-free click reaction. Angew Chem Int Ed Engl 51(18):4466–4469CrossRef
47.
Zurück zum Zitat Yu Z, Pan Y, Wang Z, Wang J, Lin Q (2012) Genetically encoded cyclopropene directs rapid, photoclick-chemistry-mediated protein labeling in mammalian cells. Angew Chem Int Ed Engl 51(42):10600–10604CrossRef Yu Z, Pan Y, Wang Z, Wang J, Lin Q (2012) Genetically encoded cyclopropene directs rapid, photoclick-chemistry-mediated protein labeling in mammalian cells. Angew Chem Int Ed Engl 51(42):10600–10604CrossRef
48.
Zurück zum Zitat Li Y, Pan M, Li Y, Huang Y, Guo Q (2013) Thiol-yne radical reaction mediated site-specific protein labeling via genetic incorporation of an alkynyl-L-lysine analogue. Org Biomol Chem 11(16):2624–2629CrossRef Li Y, Pan M, Li Y, Huang Y, Guo Q (2013) Thiol-yne radical reaction mediated site-specific protein labeling via genetic incorporation of an alkynyl-L-lysine analogue. Org Biomol Chem 11(16):2624–2629CrossRef
49.
Zurück zum Zitat Wang Y-S, Russell WK, Wang Z, Wan W, Dodd LE, Pai P-J, Russell DH, Liu WR (2011) The de novo engineering of pyrrolysyl-tRNA synthetase for genetic incorporation of L-phenylalanine and its derivatives. Mol Biosyst 7(3):714–717CrossRef Wang Y-S, Russell WK, Wang Z, Wan W, Dodd LE, Pai P-J, Russell DH, Liu WR (2011) The de novo engineering of pyrrolysyl-tRNA synthetase for genetic incorporation of L-phenylalanine and its derivatives. Mol Biosyst 7(3):714–717CrossRef
50.
Zurück zum Zitat Tuley A, Wang Y-S, Fang X, Kurra Y, Rezenom YH, Liu WR (2014) The genetic incorporation of thirteen novel non-canonical amino acids. Chem Commun (Camb) 50(20):2673–2675CrossRef Tuley A, Wang Y-S, Fang X, Kurra Y, Rezenom YH, Liu WR (2014) The genetic incorporation of thirteen novel non-canonical amino acids. Chem Commun (Camb) 50(20):2673–2675CrossRef
51.
Zurück zum Zitat Xiao H, Peters FB, Yang P-Y, Reed S, Chittuluru JR, Schultz PG (2014) Genetic incorporation of histidine derivatives using an engineered pyrrolysyl-tRNA synthetase. ACS Chem Biol 9(5):1092–1096CrossRef Xiao H, Peters FB, Yang P-Y, Reed S, Chittuluru JR, Schultz PG (2014) Genetic incorporation of histidine derivatives using an engineered pyrrolysyl-tRNA synthetase. ACS Chem Biol 9(5):1092–1096CrossRef
52.
Zurück zum Zitat Guo L, Wang Y, Nakamura A, Eiler D, Kavran JM, Wong M, Kiessling LL, Steitz TA, O’Donoghue P, Söll D (2014) Polyspecific pyrrolysyl-tRNA synthetases from directed evolution. Proc Natl Acad Sci U S A 111(47):16724–16729CrossRef Guo L, Wang Y, Nakamura A, Eiler D, Kavran JM, Wong M, Kiessling LL, Steitz TA, O’Donoghue P, Söll D (2014) Polyspecific pyrrolysyl-tRNA synthetases from directed evolution. Proc Natl Acad Sci U S A 111(47):16724–16729CrossRef
53.
Zurück zum Zitat John AA, Ramil CP, Tian Y, Cheng G, Lin Q (2015) Synthesis and site-specific incorporation of red-shifted azobenzene amino acids into proteins. Org Lett 17(24):6258–6261CrossRef John AA, Ramil CP, Tian Y, Cheng G, Lin Q (2015) Synthesis and site-specific incorporation of red-shifted azobenzene amino acids into proteins. Org Lett 17(24):6258–6261CrossRef
54.
Zurück zum Zitat Hoppmann C, Lacey VK, Louie GV, Wei J, Noel JP, Wang L (2014) Genetically encoding photoswitchable click amino acids in Escherichia coli and mammalian cells. Angew Chem Int Ed Engl 53(15):3932–3936CrossRef Hoppmann C, Lacey VK, Louie GV, Wei J, Noel JP, Wang L (2014) Genetically encoding photoswitchable click amino acids in Escherichia coli and mammalian cells. Angew Chem Int Ed Engl 53(15):3932–3936CrossRef
55.
Zurück zum Zitat Lammers C, Hahn LE, Neumann H (2014) Optimized plasmid systems for the incorporation of multiple different unnatural amino acids by evolved orthogonal ribosomes. Chembiochem 15(12):1800–1804CrossRef Lammers C, Hahn LE, Neumann H (2014) Optimized plasmid systems for the incorporation of multiple different unnatural amino acids by evolved orthogonal ribosomes. Chembiochem 15(12):1800–1804CrossRef
56.
Zurück zum Zitat Fan C, Xiong H, Reynolds NM, Söll D (2015) Rationally evolving tRNAPyl for efficient incorporation of noncanonical amino acids. Nucleic Acids Res 43(22):e156 Fan C, Xiong H, Reynolds NM, Söll D (2015) Rationally evolving tRNAPyl for efficient incorporation of noncanonical amino acids. Nucleic Acids Res 43(22):e156
57.
Zurück zum Zitat Wu I-L, Patterson MA, Carpenter Desai HE, Mehl RA, Giorgi G, Conticello VP (2013) Multiple site-selective insertions of noncanonical amino acids into sequence-repetitive polypeptides. Chembiochem 14(8):968–978CrossRef Wu I-L, Patterson MA, Carpenter Desai HE, Mehl RA, Giorgi G, Conticello VP (2013) Multiple site-selective insertions of noncanonical amino acids into sequence-repetitive polypeptides. Chembiochem 14(8):968–978CrossRef
58.
Zurück zum Zitat Hong SH, Ntai I, Haimovich AD, Kelleher NL, Isaacs FJ, Jewett MC (2014) Cell-free protein synthesis from a release factor 1 deficient Escherichia coli activates efficient and multiple site-specific nonstandard amino acid incorporation. ACS Synth Biol 3(6):398–409CrossRef Hong SH, Ntai I, Haimovich AD, Kelleher NL, Isaacs FJ, Jewett MC (2014) Cell-free protein synthesis from a release factor 1 deficient Escherichia coli activates efficient and multiple site-specific nonstandard amino acid incorporation. ACS Synth Biol 3(6):398–409CrossRef
59.
Zurück zum Zitat Johnson DBF, Xu J, Shen Z, Takimoto JK, Schultz MD, Schmitz RJ, Xiang Z, Ecker JR, Briggs SP, Wang L (2011) RF1 knockout allows ribosomal incorporation of unnatural amino acids at multiple sites. Nat Chem Biol 7(11):779–786CrossRef Johnson DBF, Xu J, Shen Z, Takimoto JK, Schultz MD, Schmitz RJ, Xiang Z, Ecker JR, Briggs SP, Wang L (2011) RF1 knockout allows ribosomal incorporation of unnatural amino acids at multiple sites. Nat Chem Biol 7(11):779–786CrossRef
60.
Zurück zum Zitat Zheng Y, Lajoie MJ, Italia JS, Chin MA, Church GM, Chatterjee A (2016) Performance of optimized noncanonical amino acid mutagenesis systems in the absence of release factor 1. Mol Biosyst 12(6):1746–1749CrossRef Zheng Y, Lajoie MJ, Italia JS, Chin MA, Church GM, Chatterjee A (2016) Performance of optimized noncanonical amino acid mutagenesis systems in the absence of release factor 1. Mol Biosyst 12(6):1746–1749CrossRef
61.
Zurück zum Zitat Mukai T, Hoshi H, Ohtake K, Takahashi M, Yamaguchi A, Hayashi A, Yokoyama S, Sakamoto K (2015) Highly reproductive Escherichia coli cells with no specific assignment to the UAG codon. Sci Rep 5:9699CrossRef Mukai T, Hoshi H, Ohtake K, Takahashi M, Yamaguchi A, Hayashi A, Yokoyama S, Sakamoto K (2015) Highly reproductive Escherichia coli cells with no specific assignment to the UAG codon. Sci Rep 5:9699CrossRef
62.
Zurück zum Zitat Wang J, Kwiatkowski M, Forster AC (2016) Kinetics of tRNA(Pyl)-mediated amber suppression in Escherichia coli translation reveals unexpected limiting steps and competing reactions. Biotechnol Bioeng 113(7):1552–1559CrossRef Wang J, Kwiatkowski M, Forster AC (2016) Kinetics of tRNA(Pyl)-mediated amber suppression in Escherichia coli translation reveals unexpected limiting steps and competing reactions. Biotechnol Bioeng 113(7):1552–1559CrossRef
63.
Zurück zum Zitat Wang N, Ju T, Niu W, Guo J (2015) Fine-tuning interaction between aminoacyl-tRNA synthetase and tRNA for efficient synthesis of proteins containing unnatural amino acids. ACS Synth Biol 4(3):207–212 Wang N, Ju T, Niu W, Guo J (2015) Fine-tuning interaction between aminoacyl-tRNA synthetase and tRNA for efficient synthesis of proteins containing unnatural amino acids. ACS Synth Biol 4(3):207–212
64.
Zurück zum Zitat Neumann H (2012) Rewiring translation - genetic code expansion and its applications. FEBS Lett 586(15):2057–2064CrossRef Neumann H (2012) Rewiring translation - genetic code expansion and its applications. FEBS Lett 586(15):2057–2064CrossRef
65.
Zurück zum Zitat Liu CC, Schultz PG (2010) Adding new chemistries to the genetic code. Annu Rev Biochem 79:413–444CrossRef Liu CC, Schultz PG (2010) Adding new chemistries to the genetic code. Annu Rev Biochem 79:413–444CrossRef
Metadaten
Titel
Orthogonal Protein Translation Using Pyrrolysyl-tRNA Synthetases for Single- and Multiple-Noncanonical Amino Acid Mutagenesis
verfasst von
Tobias Baumann
Matthias Exner
Nediljko Budisa
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/10_2016_37