Skip to main content

2017 | OriginalPaper | Buchkapitel

3. Overview of Logic CMOS Processes

verfasst von : Yanjun Ma, Edwin Kan

Erschienen in: Non-logic Devices in Logic Processes

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter, we review the process steps of a generic, planar logic CMOS process. The fabrication of I/O devices, which has a different gate oxide from that of the core devices, is shown in parallel with the core devices. We also discussed the fabrication of native devices and potential use of spacer for charge storage—two features that will see use in later chapters. The basics of mask design, process monitoring, and wafer fabrication economics are then reviewed to highlight the best practices discussed in Chap. 2, i.e., the advantages and trade-offs to use the simplest and basic CMOS process.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
As opposed to the finFET process below ~2 0 nm process node, which makes 3D FETs. Chapter 13 contains a brief description of the process.
 
2
Silicon-on-insulator (SOI) wafers have been used in some applications.
 
Literatur
Zurück zum Zitat Das, A. (2016). How finFETs ended the service contract of silicide process. Solid State Technology, 59(3), 22–26. Das, A. (2016). How finFETs ended the service contract of silicide process. Solid State Technology, 59(3), 22–26.
Zurück zum Zitat Deal, B., & Grove, A. (1965). General relationship for the thermal oxidation of silicon. J Applied Physics, 36, 3770–3778.CrossRef Deal, B., & Grove, A. (1965). General relationship for the thermal oxidation of silicon. J Applied Physics, 36, 3770–3778.CrossRef
Zurück zum Zitat Jessing, J. (2007). CMOS fabrication. In W. Chen (Ed.), The VLSI handbook (pp. 12–41). Boca Raton: CRC Press. Jessing, J. (2007). CMOS fabrication. In W. Chen (Ed.), The VLSI handbook (pp. 12–41). Boca Raton: CRC Press.
Zurück zum Zitat Klass, F., Jain, A., & Hess, G. (2009). An on-chip process control monitor for process variability measurements in nanometer technologies. In ICICDT ‘09. IEEE International Conference on IC Design and Technology (pp. 203–206). IEEE. Klass, F., Jain, A., & Hess, G. (2009). An on-chip process control monitor for process variability measurements in nanometer technologies. In ICICDT ‘09. IEEE International Conference on IC Design and Technology (pp. 203–206). IEEE.
Zurück zum Zitat Kumagai, M., Uchiyama, N., Ohmura, E., Sugiura, R., Atsumi, K., & Fukumitsu, K. (2007). Advanced dicing technology for semiconductor wafer—Stealth dicing. IEEE Transactions on Semiconductor Manufacturing, 20(3), 259–265.CrossRef Kumagai, M., Uchiyama, N., Ohmura, E., Sugiura, R., Atsumi, K., & Fukumitsu, K. (2007). Advanced dicing technology for semiconductor wafer—Stealth dicing. IEEE Transactions on Semiconductor Manufacturing, 20(3), 259–265.CrossRef
Zurück zum Zitat Ma, Y., Evans, D., Hguyen, T., Ono, Y., & Hsu, S. (1999). Fabrication and characterization of sub-quarter-micron MOSFETs with a copper gate electrode. IEEE Electron Device Letters, 20, 254–255.CrossRef Ma, Y., Evans, D., Hguyen, T., Ono, Y., & Hsu, S. (1999). Fabrication and characterization of sub-quarter-micron MOSFETs with a copper gate electrode. IEEE Electron Device Letters, 20, 254–255.CrossRef
Zurück zum Zitat Mistry, K., Allen, C., Auth, C., & Zawadzki, K. (2007). A 45nm logic technology with high-k+metal gate transistors, strained silicon, 9 Cu interconnect layers, 193nm dry patterning, and 100% Pb-free packaging. IEDM Technical Digest, 247–250. Mistry, K., Allen, C., Auth, C., & Zawadzki, K. (2007). A 45nm logic technology with high-k+metal gate transistors, strained silicon, 9 Cu interconnect layers, 193nm dry patterning, and 100% Pb-free packaging. IEDM Technical Digest, 247–250.
Zurück zum Zitat Peng, J. Z., & Fliesler, M. (2005). High density semiconductor memory cell and memory array using a single transistor and having variable gate oxide breakdown. US Patent 6,940,751. Peng, J. Z., & Fliesler, M. (2005). High density semiconductor memory cell and memory array using a single transistor and having variable gate oxide breakdown. US Patent 6,940,751.
Zurück zum Zitat Yamasaki, K., Asai, K., & Kuramada, L. (1982). GaAs LSI-directed MESFETs with self-aligned implantation for n+ layer technology (SAINT). IEEE Transactions on Electron Devices, 29, 1772–1777.CrossRef Yamasaki, K., Asai, K., & Kuramada, L. (1982). GaAs LSI-directed MESFETs with self-aligned implantation for n+ layer technology (SAINT). IEEE Transactions on Electron Devices, 29, 1772–1777.CrossRef
Metadaten
Titel
Overview of Logic CMOS Processes
verfasst von
Yanjun Ma
Edwin Kan
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-48339-9_3

Neuer Inhalt