Skip to main content

2019 | OriginalPaper | Buchkapitel

5. Oxidation and Thermal Scanning Probe Lithography for High-Resolution Nanopatterning and Nanodevices

verfasst von : Yu Kyoung Ryu, Armin Wolfgang Knoll

Erschienen in: Electrical Atomic Force Microscopy for Nanoelectronics

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The strength of scanning probe lithography (SPL) lies in the operation at ambient conditions, sub-10 nm resolution capabilities, the in situ non-destructive inspection of the fabricated structures, the nanometric accuracy in positioning, the versatility in modifying any kind of materials, and the freedom in the patterning geometries. On the other hand, the tip size and lifetime-related issues hinder the achievable throughput, and a precise niche of application has yet to be determined for its implementation in technological applications. The complementarity of the high-resolution and precise positioning patterning by SPL and the high throughput and low-resolution patterning by other well-established lithographies (optical, electron beam, nanoimprint) can be achieved by the development of mix-and-match lithography strategies.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J.S. Foster, J.E. Frommer, P.C. Arnett, Molecular manipulation using a tunnelling microscope. Nature 331, 324–326 (1988)ADSCrossRef J.S. Foster, J.E. Frommer, P.C. Arnett, Molecular manipulation using a tunnelling microscope. Nature 331, 324–326 (1988)ADSCrossRef
2.
Zurück zum Zitat D.M. Eigler, E.K. Schweizer, Positioning single atoms with a scanning tunnelling microscope. Nature 344, 524–526 (1990)ADSCrossRef D.M. Eigler, E.K. Schweizer, Positioning single atoms with a scanning tunnelling microscope. Nature 344, 524–526 (1990)ADSCrossRef
3.
Zurück zum Zitat J.A. Dagata, J. Schneir, H.H. Harary, C.J. Evans, M.T. Postek, J. Bennet, Modification of hydrogen-passivated silicon by a scanning tunnelling microscope operating in air. Appl. Phys. Lett. 56, 2001–2003 (1990)ADSCrossRef J.A. Dagata, J. Schneir, H.H. Harary, C.J. Evans, M.T. Postek, J. Bennet, Modification of hydrogen-passivated silicon by a scanning tunnelling microscope operating in air. Appl. Phys. Lett. 56, 2001–2003 (1990)ADSCrossRef
4.
Zurück zum Zitat A. Majumdar, P.I. Oden, J.P. Carrejo, L.A. Nagahara, J.J. Graham, J. Alexander, Nanometer-scale lithography using the atomic force microscope. Appl. Phys. Lett. 61, 2293–2295 (1992)ADSCrossRef A. Majumdar, P.I. Oden, J.P. Carrejo, L.A. Nagahara, J.J. Graham, J. Alexander, Nanometer-scale lithography using the atomic force microscope. Appl. Phys. Lett. 61, 2293–2295 (1992)ADSCrossRef
5.
Zurück zum Zitat H.C. Day, D.R. Allee, Selective area oxidation of silicon with a scanning force microscope. Appl. Phys. Lett. 62, 2691–2693 (1993)ADSCrossRef H.C. Day, D.R. Allee, Selective area oxidation of silicon with a scanning force microscope. Appl. Phys. Lett. 62, 2691–2693 (1993)ADSCrossRef
6.
Zurück zum Zitat C. Cen, S. Thiel, G. Hammerl, C.W. Schneider, K.E. Andersen, C.S. Hellberg, J. Mannhart, J. Levy, Nanoscale control of an interfacial metal–insulator transition at room temperature. Nat. Mater. 7, 298–302 (2008)ADSCrossRef C. Cen, S. Thiel, G. Hammerl, C.W. Schneider, K.E. Andersen, C.S. Hellberg, J. Mannhart, J. Levy, Nanoscale control of an interfacial metal–insulator transition at room temperature. Nat. Mater. 7, 298–302 (2008)ADSCrossRef
7.
Zurück zum Zitat P. Irvin, Y. Ma, D.F. Bogorin, C. Cen, C.W. Bark, C.M. Folkman, C.-B. Eom, J. Levy, Rewritable nanoscale oxide photodetector. Nat. Photonics 4, 849–852 (2010)ADSCrossRef P. Irvin, Y. Ma, D.F. Bogorin, C. Cen, C.W. Bark, C.M. Folkman, C.-B. Eom, J. Levy, Rewritable nanoscale oxide photodetector. Nat. Photonics 4, 849–852 (2010)ADSCrossRef
8.
Zurück zum Zitat P. Irvin, J.P. Veazey, G. Cheng, S. Lu, C.-W. Bark, S. Ryu, C.-B. Eom, J. Levy, Anomalous high mobility in LaAlO3/SrTiO3 nanowires. Nano Lett. 13, 364–368 (2013)ADSCrossRef P. Irvin, J.P. Veazey, G. Cheng, S. Lu, C.-W. Bark, S. Ryu, C.-B. Eom, J. Levy, Anomalous high mobility in LaAlO3/SrTiO3 nanowires. Nano Lett. 13, 364–368 (2013)ADSCrossRef
9.
Zurück zum Zitat M. Tomczyk, G. Cheng, H. Lee, S. Lu, A. Annadi, J.P. Veazey, M. Huang, P. Irvin, S. Ryu, C.-B. Eom, J. Levy, Micrometer-scale ballistic transport of electron pairs in LaAlO3/SrTiO3 nanowires. Phys. Rev. Lett. 117, 096801-1–096801-6 (2016) M. Tomczyk, G. Cheng, H. Lee, S. Lu, A. Annadi, J.P. Veazey, M. Huang, P. Irvin, S. Ryu, C.-B. Eom, J. Levy, Micrometer-scale ballistic transport of electron pairs in LaAlO3/SrTiO3 nanowires. Phys. Rev. Lett. 117, 096801-1–096801-6 (2016)
10.
Zurück zum Zitat E. Albisetti, D. Petti, M. Pancaldi, M. Madami, S. Tacchi, J. Curtis, W.P. King, A. Papp, G. Csaba, W. Porod, P. Vavassori, E. Riedo, R. Bertacco, Nanopatterning reconfigurable magnetic landscapes via thermally assisted scanning probe lithography. Nat. Nanotechnol. 11, 545–552 (2016)ADSCrossRef E. Albisetti, D. Petti, M. Pancaldi, M. Madami, S. Tacchi, J. Curtis, W.P. King, A. Papp, G. Csaba, W. Porod, P. Vavassori, E. Riedo, R. Bertacco, Nanopatterning reconfigurable magnetic landscapes via thermally assisted scanning probe lithography. Nat. Nanotechnol. 11, 545–552 (2016)ADSCrossRef
11.
Zurück zum Zitat S.N.G. Corder, X. Chen, S. Zhang, F. Hu, J. Zhang, Y. Luan, J.A. Logan, T. Ciavatti, H.A. Bechtel, M.C. Martin, M. Aronson, H.S. Suzuki, S. Kimura, T. Lizuka, Z. Fei, K. Imura, N.K. Sato, T.H. Tao, M. Liu, Near-field spectroscopic investigation of dual-band heavy fermion metamaterials. Nat. Commun. 8, 2262-1–2262-7 (2017) S.N.G. Corder, X. Chen, S. Zhang, F. Hu, J. Zhang, Y. Luan, J.A. Logan, T. Ciavatti, H.A. Bechtel, M.C. Martin, M. Aronson, H.S. Suzuki, S. Kimura, T. Lizuka, Z. Fei, K. Imura, N.K. Sato, T.H. Tao, M. Liu, Near-field spectroscopic investigation of dual-band heavy fermion metamaterials. Nat. Commun. 8, 2262-1–2262-7 (2017)
12.
Zurück zum Zitat W.P. King, B. Bhatia, J.R. Felts, H.J. Kim, B. Kwon, B. Lee, S. Somnath, M. Rosenberger, Heated atomic force microscope cantilevers and their applications. Annu. Rev. Heat Transfer 16, 287–326 (2013)CrossRef W.P. King, B. Bhatia, J.R. Felts, H.J. Kim, B. Kwon, B. Lee, S. Somnath, M. Rosenberger, Heated atomic force microscope cantilevers and their applications. Annu. Rev. Heat Transfer 16, 287–326 (2013)CrossRef
13.
Zurück zum Zitat N. Kurra, R.G. Reifenberger, G.U. Kulkarni, Nanocarbon-scanning probe microscopy synergy: fundamental aspects to nanoscale devices. ACS Appl. Mater. Interfaces 6, 6147–6163 (2014)CrossRef N. Kurra, R.G. Reifenberger, G.U. Kulkarni, Nanocarbon-scanning probe microscopy synergy: fundamental aspects to nanoscale devices. ACS Appl. Mater. Interfaces 6, 6147–6163 (2014)CrossRef
14.
Zurück zum Zitat R. Garcia, A.W. Knoll, E. Riedo, Advanced scanning probe lithography. Nat. Nanotechnol. 9, 577–587 (2014)ADSCrossRef R. Garcia, A.W. Knoll, E. Riedo, Advanced scanning probe lithography. Nat. Nanotechnol. 9, 577–587 (2014)ADSCrossRef
15.
Zurück zum Zitat Y.K. Ryu, R. Garcia, Advanced oxidation scanning probe lithography. Nanotechnology 28, 142003-1–142003-17 (2017)ADSCrossRef Y.K. Ryu, R. Garcia, Advanced oxidation scanning probe lithography. Nanotechnology 28, 142003-1–142003-17 (2017)ADSCrossRef
16.
Zurück zum Zitat S.-R. Jian, T.-H. Fang, D.-S. Chuu, Mechanisms of p-GaAs (100) surface by atomic force microscope nano-oxidation. J. Phys. D Appl. Phys. 38, 2424–2432 (2005)ADSCrossRef S.-R. Jian, T.-H. Fang, D.-S. Chuu, Mechanisms of p-GaAs (100) surface by atomic force microscope nano-oxidation. J. Phys. D Appl. Phys. 38, 2424–2432 (2005)ADSCrossRef
17.
Zurück zum Zitat S. Ross, A. Sussman, Surface oxidation of molybdenum disulphide. J. Phys. Chem. 59, 889–892 (1955)CrossRef S. Ross, A. Sussman, Surface oxidation of molybdenum disulphide. J. Phys. Chem. 59, 889–892 (1955)CrossRef
18.
Zurück zum Zitat A. Heidelberg, C. Rozenkranz, J.W. Schultze, Schäpers, G. Staikov, Localized electrochemical oxidation of thin Nb films in microscopic and nanoscopic dimensions. Surf. Sci. 597, 173–180 (2005)ADSCrossRef A. Heidelberg, C. Rozenkranz, J.W. Schultze, Schäpers, G. Staikov, Localized electrochemical oxidation of thin Nb films in microscopic and nanoscopic dimensions. Surf. Sci. 597, 173–180 (2005)ADSCrossRef
19.
Zurück zum Zitat M. Lazzarino, S. Heun, B. Ressel, K.C. Prince, P. Pingue, C. Ascoli, Atomic force microscope anodic oxidation studied by spectroscopic microscopy. Appl. Phys. Lett. 81, 2842–2844 (2002)ADSCrossRef M. Lazzarino, S. Heun, B. Ressel, K.C. Prince, P. Pingue, C. Ascoli, Atomic force microscope anodic oxidation studied by spectroscopic microscopy. Appl. Phys. Lett. 81, 2842–2844 (2002)ADSCrossRef
20.
Zurück zum Zitat M. Tello, R. Garcia, J.A. Martín-Gago, N.F. Martínez, M.S. Martín-González, L. Aballe, A. Baranov, L. Gregoratti, Bottom-up fabrication of carbon-rich silicon carbide nanowires by manipulation of nanometer-sized ethanol menisci. Adv. Mater. 17, 1480–1483 (2005)CrossRef M. Tello, R. Garcia, J.A. Martín-Gago, N.F. Martínez, M.S. Martín-González, L. Aballe, A. Baranov, L. Gregoratti, Bottom-up fabrication of carbon-rich silicon carbide nanowires by manipulation of nanometer-sized ethanol menisci. Adv. Mater. 17, 1480–1483 (2005)CrossRef
21.
Zurück zum Zitat M. Donarelli, F. Perrozzi, F. Bisti, F. Paparella, V. Feyer, A. Ponzoni, M. Gonchigsuren, L. Ottaviano, Few layered MoS2 lithography with an AFM tip: description of the technique and nanospectroscopy investigations. Nanoscale 7, 11453 (2015)CrossRef M. Donarelli, F. Perrozzi, F. Bisti, F. Paparella, V. Feyer, A. Ponzoni, M. Gonchigsuren, L. Ottaviano, Few layered MoS2 lithography with an AFM tip: description of the technique and nanospectroscopy investigations. Nanoscale 7, 11453 (2015)CrossRef
22.
Zurück zum Zitat Y.-Z. Hong, H.-C. Tsai, Y.-H. Wang, J. Aumanen, P. Myllyperkiö, A. Johansson, Y.-C. Kuo, L.-Y. Chang, C.-H. Chen, M. Pettersson, W.-Y. Woon, Reduction-oxidation dynamics of oxidized graphene: functional group composition dependent path to reduction. Carbon 129, 396–402 (2018)CrossRef Y.-Z. Hong, H.-C. Tsai, Y.-H. Wang, J. Aumanen, P. Myllyperkiö, A. Johansson, Y.-C. Kuo, L.-Y. Chang, C.-H. Chen, M. Pettersson, W.-Y. Woon, Reduction-oxidation dynamics of oxidized graphene: functional group composition dependent path to reduction. Carbon 129, 396–402 (2018)CrossRef
23.
Zurück zum Zitat F. Colangelo, V. Piazza, C. Coletti, S. Roddaro, F. Beltram, P. Pingue, Local anodic oxidation on hydrogen-intercalated graphene layers: oxide composition analysis and role of the silicon carbide substrate. Nanotechnology 28, 105709-1–105709-6 (2017)ADSCrossRef F. Colangelo, V. Piazza, C. Coletti, S. Roddaro, F. Beltram, P. Pingue, Local anodic oxidation on hydrogen-intercalated graphene layers: oxide composition analysis and role of the silicon carbide substrate. Nanotechnology 28, 105709-1–105709-6 (2017)ADSCrossRef
24.
Zurück zum Zitat T.F.D. Fernandes, A.C. Gadelha, A.P.M. Barboza, R.M. Paniago, L.C. Campos, P.S.S. Guimaraes, P.-L. Assis, B.R.A. Neves, Robust nanofabrication of monolayer MoS2 islands with strong photoluminescence enhancement via local anodic oxidation. 2D Mater. 5, 025018-1–025018-6 (2018)CrossRef T.F.D. Fernandes, A.C. Gadelha, A.P.M. Barboza, R.M. Paniago, L.C. Campos, P.S.S. Guimaraes, P.-L. Assis, B.R.A. Neves, Robust nanofabrication of monolayer MoS2 islands with strong photoluminescence enhancement via local anodic oxidation. 2D Mater. 5, 025018-1–025018-6 (2018)CrossRef
25.
Zurück zum Zitat M. Lazzarino, M. Padovani, G. Mori, L. Sorba, M. Fanetti, M. Sancrotti, Chemical composition of GaAs oxides grown by local anodic oxidation: a spatially resolved Auger study. Chem. Phys. Lett. 402, 155–159 (2005)ADSCrossRef M. Lazzarino, M. Padovani, G. Mori, L. Sorba, M. Fanetti, M. Sancrotti, Chemical composition of GaAs oxides grown by local anodic oxidation: a spatially resolved Auger study. Chem. Phys. Lett. 402, 155–159 (2005)ADSCrossRef
26.
Zurück zum Zitat J. Shirakashi, M. Ishii, K. Matsumoto, N. Miura, M. Konagai, Surface modification of niobium (Nb) by atomic force microscope (AFM) nano-oxidation process. Jpn. J. Appl. Phys. 35, L1524–L1527 (1996)CrossRef J. Shirakashi, M. Ishii, K. Matsumoto, N. Miura, M. Konagai, Surface modification of niobium (Nb) by atomic force microscope (AFM) nano-oxidation process. Jpn. J. Appl. Phys. 35, L1524–L1527 (1996)CrossRef
27.
Zurück zum Zitat G. Mori, M. Lazzarino, D. Ercolani, G. Biasiol, L. Sorba, S. Heun, A. Locatelli, Evidence of material mixing during local anodic oxidation nanolithography. J. Appl. Phys. 98, 114303-1–114303-6 (2005)ADSCrossRef G. Mori, M. Lazzarino, D. Ercolani, G. Biasiol, L. Sorba, S. Heun, A. Locatelli, Evidence of material mixing during local anodic oxidation nanolithography. J. Appl. Phys. 98, 114303-1–114303-6 (2005)ADSCrossRef
28.
Zurück zum Zitat G. Mori, M. Lazzarino, D. Ercolani, L. Sorba, S. Heun, A. Locatelli, Desorption dynamics of oxide nanostructures fabricated by local anodic oxidation nanolithography. J. Appl. Phys. 97, 114324-1–114324-8 (2005)ADSCrossRef G. Mori, M. Lazzarino, D. Ercolani, L. Sorba, S. Heun, A. Locatelli, Desorption dynamics of oxide nanostructures fabricated by local anodic oxidation nanolithography. J. Appl. Phys. 97, 114324-1–114324-8 (2005)ADSCrossRef
29.
Zurück zum Zitat Y.K. Ryu, P.A. Postigo, F. Garcia, R. Garcia, Fabrication of sub-12 nm thick silicon nanowires by processing scanning probe lithography masks. Appl. Phys. Lett. 104, 223112-1–223112-4 (2014)ADSCrossRef Y.K. Ryu, P.A. Postigo, F. Garcia, R. Garcia, Fabrication of sub-12 nm thick silicon nanowires by processing scanning probe lithography masks. Appl. Phys. Lett. 104, 223112-1–223112-4 (2014)ADSCrossRef
30.
Zurück zum Zitat A. Fuhrer, S. Dorn, S. Lüscher, T. Heinzel, K. Ensslin, W. Wegscheider, M. Bichler, Electronic properties of nanostructures defined in Ga(Al)As heterostructures by local oxidation. Superlattices Microst. 31, 19–42 (2002)ADSCrossRef A. Fuhrer, S. Dorn, S. Lüscher, T. Heinzel, K. Ensslin, W. Wegscheider, M. Bichler, Electronic properties of nanostructures defined in Ga(Al)As heterostructures by local oxidation. Superlattices Microst. 31, 19–42 (2002)ADSCrossRef
31.
Zurück zum Zitat A.I. Dago, Y.K. Ryu, R. Garcia, Sub-20 nm patterning of thin layer WSe2 by scanning probe lithography. Appl. Phys. Lett. 109, 163103-1–163103-4 (2016)ADSCrossRef A.I. Dago, Y.K. Ryu, R. Garcia, Sub-20 nm patterning of thin layer WSe2 by scanning probe lithography. Appl. Phys. Lett. 109, 163103-1–163103-4 (2016)ADSCrossRef
32.
Zurück zum Zitat G. Kwon, H. Chu, J. Yoo, H. Kim, C. Han, C. Chung, J. Lee, H. Lee, Fabrication of uniform and high resolution copper nanowire using intermediate self-assembled monolayers through direct AFM lithography. Nanotechnology 23, 185307-1–185307-6 (2012)ADSCrossRef G. Kwon, H. Chu, J. Yoo, H. Kim, C. Han, C. Chung, J. Lee, H. Lee, Fabrication of uniform and high resolution copper nanowire using intermediate self-assembled monolayers through direct AFM lithography. Nanotechnology 23, 185307-1–185307-6 (2012)ADSCrossRef
33.
Zurück zum Zitat B.P. Brown, L. Picco, M.J. Miles, C.F.J. Faul, Conductive-AFM patterning of organic semiconductors. Small 11, 5054–5058 (2015)CrossRef B.P. Brown, L. Picco, M.J. Miles, C.F.J. Faul, Conductive-AFM patterning of organic semiconductors. Small 11, 5054–5058 (2015)CrossRef
34.
Zurück zum Zitat M. Lorenzoni, A. Giugni, E.D. Fabrizio, F. Pérez-Murano, A. Mescola, B. Torre, Nanoscale reduction of graphene oxide thin films and its characterization. Nanotechnology 26, 285301-1 to 285301-10 (2015)CrossRef M. Lorenzoni, A. Giugni, E.D. Fabrizio, F. Pérez-Murano, A. Mescola, B. Torre, Nanoscale reduction of graphene oxide thin films and its characterization. Nanotechnology 26, 285301-1 to 285301-10 (2015)CrossRef
35.
Zurück zum Zitat I.-S. Byun, D. Yoon, J.-S. Choi, I. Hwang, D.H. Lee, M.J. Lee, T. Kawai, Y.-W. Son, Q. Jia, H. Cheong, B.H. Park, Nanoscale lithography on monolayer graphene using hydrogenation and oxidation. ACS Nano 5, 6417–6424 (2011)CrossRef I.-S. Byun, D. Yoon, J.-S. Choi, I. Hwang, D.H. Lee, M.J. Lee, T. Kawai, Y.-W. Son, Q. Jia, H. Cheong, B.H. Park, Nanoscale lithography on monolayer graphene using hydrogenation and oxidation. ACS Nano 5, 6417–6424 (2011)CrossRef
36.
Zurück zum Zitat Y.-Z. Hong, W.-H. Chiang, H.-C. Tsai, M.-C. Chuang, Y.-C. Kuo, L.-Y. Chang, C.-H. Chen, J.-D. White, W.-Y. Woon, Local oxidation and reduction of graphene. Nanotechnology 28, 395704-1–395704-9 (2017)ADSCrossRef Y.-Z. Hong, W.-H. Chiang, H.-C. Tsai, M.-C. Chuang, Y.-C. Kuo, L.-Y. Chang, C.-H. Chen, J.-D. White, W.-Y. Woon, Local oxidation and reduction of graphene. Nanotechnology 28, 395704-1–395704-9 (2017)ADSCrossRef
37.
Zurück zum Zitat H. Sugimura, N. Nakagiri, Chemical approach to nanofabrication: modifications of silicon surfaces patterned by scanning probe anodization. Jpn. J. Appl. Phys. 34, 3406–3411 (1995)ADSCrossRef H. Sugimura, N. Nakagiri, Chemical approach to nanofabrication: modifications of silicon surfaces patterned by scanning probe anodization. Jpn. J. Appl. Phys. 34, 3406–3411 (1995)ADSCrossRef
38.
Zurück zum Zitat J.A. Dagata, T. Inoue, J. Itoh, H. Yokoyama, Understanding scanned probe oxidation of silicon. Appl. Phys. Lett. 73, 271–273 (1998)ADSCrossRef J.A. Dagata, T. Inoue, J. Itoh, H. Yokoyama, Understanding scanned probe oxidation of silicon. Appl. Phys. Lett. 73, 271–273 (1998)ADSCrossRef
39.
Zurück zum Zitat H. Kuramochi, F. Pérez-Murano, J.A. Dagata, H. Yokoyama, Faradaic current detection during anodic oxidation of the H-passivated p-Si (001) surface with controlled relative humidity. Nanotechnology 15, 297–302 (2004)ADSCrossRef H. Kuramochi, F. Pérez-Murano, J.A. Dagata, H. Yokoyama, Faradaic current detection during anodic oxidation of the H-passivated p-Si (001) surface with controlled relative humidity. Nanotechnology 15, 297–302 (2004)ADSCrossRef
40.
Zurück zum Zitat H. Kuramochi, K. Ando, T. Tokizaki, H. Yokoyama, In situ detection of faradaic current in probe oxidation using a dynamic force microscope. Appl. Phys. Lett. 84, 4005–4007 (2004)ADSCrossRef H. Kuramochi, K. Ando, T. Tokizaki, H. Yokoyama, In situ detection of faradaic current in probe oxidation using a dynamic force microscope. Appl. Phys. Lett. 84, 4005–4007 (2004)ADSCrossRef
41.
Zurück zum Zitat Y. Takemura, Y. Shimada, G. Watanabe, T. Yamada, J. Shirakashi, Measurement of faradaic current during AFM local oxidation of magnetic metal thin films. J. Phys: Conf. Ser. 61, 1147–1151 (2007)ADS Y. Takemura, Y. Shimada, G. Watanabe, T. Yamada, J. Shirakashi, Measurement of faradaic current during AFM local oxidation of magnetic metal thin films. J. Phys: Conf. Ser. 61, 1147–1151 (2007)ADS
42.
Zurück zum Zitat S. Djurkovic, C.B. Clemons, D. Golovaty, G.W. Young, Effects of the electric field shape on nano-scale oxidation. Surf. Sci. 601, 5340–5358 (2007)ADSCrossRef S. Djurkovic, C.B. Clemons, D. Golovaty, G.W. Young, Effects of the electric field shape on nano-scale oxidation. Surf. Sci. 601, 5340–5358 (2007)ADSCrossRef
43.
Zurück zum Zitat S.F. Lyuksyutov, P.B. Paramonov, I. Dolog, R.M. Ralich, Peculiarities of an anomalous electronic current during atomic force microscopy assisted nanolithography on n-type silicon. Nanotechnology 14, 716–721 (2003)ADSCrossRef S.F. Lyuksyutov, P.B. Paramonov, I. Dolog, R.M. Ralich, Peculiarities of an anomalous electronic current during atomic force microscopy assisted nanolithography on n-type silicon. Nanotechnology 14, 716–721 (2003)ADSCrossRef
44.
Zurück zum Zitat X.N. Xie, H.J. Chung, C.H. Sow, K. Adamiak, A.T.S. Wee, Electrical discharge in a nanometer-sized air/water gap observed by atomic force microscopy. J. Am. Chem. Soc. 127, 15562–15567 (2005)CrossRef X.N. Xie, H.J. Chung, C.H. Sow, K. Adamiak, A.T.S. Wee, Electrical discharge in a nanometer-sized air/water gap observed by atomic force microscopy. J. Am. Chem. Soc. 127, 15562–15567 (2005)CrossRef
45.
Zurück zum Zitat M. Tello, R. Garcia, Giant growth rate in nano-oxidation of p-silicon surfaces by using ethyl alcohol liquid bridges. Appl. Phys. Lett. 83, 2339–2341 (2003)ADSCrossRef M. Tello, R. Garcia, Giant growth rate in nano-oxidation of p-silicon surfaces by using ethyl alcohol liquid bridges. Appl. Phys. Lett. 83, 2339–2341 (2003)ADSCrossRef
46.
Zurück zum Zitat R.V. Martinez, R. Garcia, Nanolithography based on the formation and manipulation of nanometer-size organic liquid menisci. Nano Lett. 5, 1161–1164 (2005)ADSCrossRef R.V. Martinez, R. Garcia, Nanolithography based on the formation and manipulation of nanometer-size organic liquid menisci. Nano Lett. 5, 1161–1164 (2005)ADSCrossRef
47.
Zurück zum Zitat M. Lorenzoni, A. Giugni, B. Torre, Oxidative and carbonaceous patterning of Si surface in an organic media by scanning probe lithography. Nanoscale Res. Lett. 8, 75-1–75-9 (2013b) M. Lorenzoni, A. Giugni, B. Torre, Oxidative and carbonaceous patterning of Si surface in an organic media by scanning probe lithography. Nanoscale Res. Lett. 8, 75-1–75-9 (2013b)
48.
Zurück zum Zitat I. Suez, M. Rolandi, S.A. Backer, A. Scholl, A. Doran, D. Okawa, A. Zettl, M.J. Fréchet, High-field scanning probe lithography in hexadecane: transitioning from field induced oxidation to solvent decomposition through surface modification. Adv. Mater. 19, 3570–3573 (2007)CrossRef I. Suez, M. Rolandi, S.A. Backer, A. Scholl, A. Doran, D. Okawa, A. Zettl, M.J. Fréchet, High-field scanning probe lithography in hexadecane: transitioning from field induced oxidation to solvent decomposition through surface modification. Adv. Mater. 19, 3570–3573 (2007)CrossRef
49.
Zurück zum Zitat D. Stiévenard, P.A. Fontaine, E. Dubois, Nanooxidation using a scanning probe microscope: an analytical model based on field-induced oxidation. Appl. Phys. Lett. 70, 327–329 (1997)ADSCrossRef D. Stiévenard, P.A. Fontaine, E. Dubois, Nanooxidation using a scanning probe microscope: an analytical model based on field-induced oxidation. Appl. Phys. Lett. 70, 327–329 (1997)ADSCrossRef
50.
Zurück zum Zitat P. Avouris, T. Hertel, R. Martel, Atomic force microscope tip-induced local oxidation of silicon: kinetics, mechanism and nanofabrication. Appl. Phys. Lett. 71, 285–287 (1997)ADSCrossRef P. Avouris, T. Hertel, R. Martel, Atomic force microscope tip-induced local oxidation of silicon: kinetics, mechanism and nanofabrication. Appl. Phys. Lett. 71, 285–287 (1997)ADSCrossRef
51.
Zurück zum Zitat M. Calleja, J. Anguita, R. Garcia, K. Birkelund, F. Pérez-Murano, J. Dagata, Nanometre-scale oxidation of silicon surfaces by dynamic force microscopy: reproducibility, kinetics and nanofabrication. Nanotechnology 10, 34–38 (1999)ADSCrossRef M. Calleja, J. Anguita, R. Garcia, K. Birkelund, F. Pérez-Murano, J. Dagata, Nanometre-scale oxidation of silicon surfaces by dynamic force microscopy: reproducibility, kinetics and nanofabrication. Nanotechnology 10, 34–38 (1999)ADSCrossRef
52.
Zurück zum Zitat J.A. Dagata, F. Pérez-Murano, G. Abadal, K. Morimoto, T. Inoue, J. Itoh, H. Yokoyama, Predictive model for scanned probe oxidation kinetics. Appl. Phys. Lett. 76, 2710–2712 (2000)ADSCrossRef J.A. Dagata, F. Pérez-Murano, G. Abadal, K. Morimoto, T. Inoue, J. Itoh, H. Yokoyama, Predictive model for scanned probe oxidation kinetics. Appl. Phys. Lett. 76, 2710–2712 (2000)ADSCrossRef
53.
Zurück zum Zitat T. Teuschler, K. Mahr, S. Miyazaki, M. Hundhausen, L. Ley, Nanometer-scale field-induced oxidation of Si(111): H by a conducting-probe scanning force microscope: doping dependence and kinetics. Appl. Phys. Lett. 67, 3144–3146 (1995)ADSCrossRef T. Teuschler, K. Mahr, S. Miyazaki, M. Hundhausen, L. Ley, Nanometer-scale field-induced oxidation of Si(111): H by a conducting-probe scanning force microscope: doping dependence and kinetics. Appl. Phys. Lett. 67, 3144–3146 (1995)ADSCrossRef
54.
Zurück zum Zitat M. Calleja, R. Garcia, Nano-oxidation of silicon surfaces by noncontact atomic force microscopy: size dependence on voltage and pulse duration. Appl. Phys. Lett. 76, 3427–3429 (2000)ADSCrossRef M. Calleja, R. Garcia, Nano-oxidation of silicon surfaces by noncontact atomic force microscopy: size dependence on voltage and pulse duration. Appl. Phys. Lett. 76, 3427–3429 (2000)ADSCrossRef
55.
Zurück zum Zitat E. Dubois, J.L. Bubendorff, Kinetics of scanned probe oxidation: space-charge limited growth. J. Appl. Phys. 87, 8148–8154 (2000)ADSCrossRef E. Dubois, J.L. Bubendorff, Kinetics of scanned probe oxidation: space-charge limited growth. J. Appl. Phys. 87, 8148–8154 (2000)ADSCrossRef
56.
Zurück zum Zitat J.A. Dagata, T. Inoue, J. Itoh, K. Matsumoto, H. Yokoyama, Role of space charge in scanned probe oxidation. J. Appl. Phys. 84, 6891–6900 (1998)ADSCrossRef J.A. Dagata, T. Inoue, J. Itoh, K. Matsumoto, H. Yokoyama, Role of space charge in scanned probe oxidation. J. Appl. Phys. 84, 6891–6900 (1998)ADSCrossRef
57.
Zurück zum Zitat J.A. Dagata, F. Pérez-Murano, C. Martin, H. Kuramochi, J. Yokoyama, Current, charge, and capacitance during scanning probe oxidation of silicon. I. Maximum charge density and lateral diffusion. J. Appl. Phys. 96, 2386–2392 (2004)ADSCrossRef J.A. Dagata, F. Pérez-Murano, C. Martin, H. Kuramochi, J. Yokoyama, Current, charge, and capacitance during scanning probe oxidation of silicon. I. Maximum charge density and lateral diffusion. J. Appl. Phys. 96, 2386–2392 (2004)ADSCrossRef
58.
Zurück zum Zitat M. Chiesa, R. Garcia, Nanoscale space charge generation in local oxidation nanolithography. Appl. Phys. Lett. 96, 263112-1–263112-3 (2010)ADSCrossRef M. Chiesa, R. Garcia, Nanoscale space charge generation in local oxidation nanolithography. Appl. Phys. Lett. 96, 263112-1–263112-3 (2010)ADSCrossRef
59.
Zurück zum Zitat T. Baumgärtel, C.V. Borczyskowski, H. Graaf, Detection and stability of nanoscale space charges in local oxidation nanolithography. Nanotechnology 23, 095707-1–095707-7 (2012)ADSCrossRef T. Baumgärtel, C.V. Borczyskowski, H. Graaf, Detection and stability of nanoscale space charges in local oxidation nanolithography. Nanotechnology 23, 095707-1–095707-7 (2012)ADSCrossRef
60.
Zurück zum Zitat F. Pérez-Murano, K. Birkelund, K. Morimoto, J.A. Dagata, Voltage modulation scanned probe oxidation. Appl. Phys. Lett. 75, 199–201 (1999)ADSCrossRef F. Pérez-Murano, K. Birkelund, K. Morimoto, J.A. Dagata, Voltage modulation scanned probe oxidation. Appl. Phys. Lett. 75, 199–201 (1999)ADSCrossRef
61.
Zurück zum Zitat D. Graf, M. Frommenwiler, P. Studerus, T. Ihn, K. Ensslin, D.C. Driscoll, A.C. Gossard, Local oxidation of Ga(Al)As heterostructures with modulated tip-sample voltages. J. Appl. Phys. 99, 053707-1–053707-7 (2006)ADSCrossRef D. Graf, M. Frommenwiler, P. Studerus, T. Ihn, K. Ensslin, D.C. Driscoll, A.C. Gossard, Local oxidation of Ga(Al)As heterostructures with modulated tip-sample voltages. J. Appl. Phys. 99, 053707-1–053707-7 (2006)ADSCrossRef
62.
Zurück zum Zitat C.H. Park, S. Bae, H. Lee, Nano-oxidation of Si using ac modulation in atomic force microscope lithography. Colloids Surf. A 284–285, 552–555 (2006)CrossRef C.H. Park, S. Bae, H. Lee, Nano-oxidation of Si using ac modulation in atomic force microscope lithography. Colloids Surf. A 284–285, 552–555 (2006)CrossRef
63.
Zurück zum Zitat X.N. Xie, H.J. Chung, C.H. Sow, A.T.S. Wee, Enhanced probe nano-oxidation by charge pump effect in swept tip voltage cycles. Appl. Phys. Lett. 91, 243101-1–243101-3 (2007)ADSCrossRef X.N. Xie, H.J. Chung, C.H. Sow, A.T.S. Wee, Enhanced probe nano-oxidation by charge pump effect in swept tip voltage cycles. Appl. Phys. Lett. 91, 243101-1–243101-3 (2007)ADSCrossRef
64.
Zurück zum Zitat R. Garcia, M. Calleja, H. Rohrer, Patterning of silicon surfaces with noncontact atomic force microscopy: field-induced formation of nanometer-size water bridges. J. Appl. Phys. 86, 1898–1903 (1999)ADSCrossRef R. Garcia, M. Calleja, H. Rohrer, Patterning of silicon surfaces with noncontact atomic force microscopy: field-induced formation of nanometer-size water bridges. J. Appl. Phys. 86, 1898–1903 (1999)ADSCrossRef
65.
Zurück zum Zitat S. Gómez-Moñivas, J.J. Sáenz, M. Calleja, R. Garcia, Field-induced formation of nanometer-sized water bridges. Phys. Rev. Lett. 91, 056101-1–056101-4 (2003) S. Gómez-Moñivas, J.J. Sáenz, M. Calleja, R. Garcia, Field-induced formation of nanometer-sized water bridges. Phys. Rev. Lett. 91, 056101-1–056101-4 (2003)
66.
Zurück zum Zitat M. Calleja, M. Tello, R. Garcia, Size determination of field-induced water menisci in noncontact atomic force microscopy. J. Appl. Phys. 92, 5539–5542 (2002)ADSCrossRef M. Calleja, M. Tello, R. Garcia, Size determination of field-induced water menisci in noncontact atomic force microscopy. J. Appl. Phys. 92, 5539–5542 (2002)ADSCrossRef
67.
Zurück zum Zitat M. Tello, R. Garcia, Nano-oxidation of silicon surfaces: comparison of noncontact and contact atomic-force microscopy methods. Appl. Phys. Lett. 79, 424–426 (2001)ADSCrossRef M. Tello, R. Garcia, Nano-oxidation of silicon surfaces: comparison of noncontact and contact atomic-force microscopy methods. Appl. Phys. Lett. 79, 424–426 (2001)ADSCrossRef
68.
Zurück zum Zitat A.E. Gordon, R.T. Fayfield, D.D. Litfin, T.K. Higman, Mechanisms of surface anodization produced by scanning probe microscopes. J. Vac. Sci. Technol. B, 2805–2808 (1995)ADSCrossRef A.E. Gordon, R.T. Fayfield, D.D. Litfin, T.K. Higman, Mechanisms of surface anodization produced by scanning probe microscopes. J. Vac. Sci. Technol. B, 2805–2808 (1995)ADSCrossRef
69.
Zurück zum Zitat K. Morimoto, F. Pérez-Murano, J.A. Dagata, Density variations in scanned probe oxidation. Appl. Surf. Sci. 158, 205–216 (2000)ADSCrossRef K. Morimoto, F. Pérez-Murano, J.A. Dagata, Density variations in scanned probe oxidation. Appl. Surf. Sci. 158, 205–216 (2000)ADSCrossRef
70.
Zurück zum Zitat V. Cambel, J. Soltys, The influence of sample conductivity on local anodic oxidation by the tip of atomic force microscope. J. Appl. Phys. 102, 074315-1–074315-7 (2007)ADSCrossRef V. Cambel, J. Soltys, The influence of sample conductivity on local anodic oxidation by the tip of atomic force microscope. J. Appl. Phys. 102, 074315-1–074315-7 (2007)ADSCrossRef
71.
Zurück zum Zitat P. Avouris, R. Martel, T. Hertel, R. Sandstrom, AFM-tip-induced and current-induced local oxidation of silicon and metals. Appl. Phys. A 66, S659–S667 (1998)ADSCrossRef P. Avouris, R. Martel, T. Hertel, R. Sandstrom, AFM-tip-induced and current-induced local oxidation of silicon and metals. Appl. Phys. A 66, S659–S667 (1998)ADSCrossRef
72.
Zurück zum Zitat T.-H. Fang, Mechanisms of nanooxidation of Si (100) from atomic force microscopy. Microelectron. J. 35, 701–707 (2004)CrossRef T.-H. Fang, Mechanisms of nanooxidation of Si (100) from atomic force microscopy. Microelectron. J. 35, 701–707 (2004)CrossRef
73.
Zurück zum Zitat K. Yamamoto, K. Sato, J. Sasano, M. Nagai, T. Shibata, Localized etching of silicon in water using a catalytically active platinum-coated atomic force microscopy probe. Precis. Eng. 50, 344–353 (2017)CrossRef K. Yamamoto, K. Sato, J. Sasano, M. Nagai, T. Shibata, Localized etching of silicon in water using a catalytically active platinum-coated atomic force microscopy probe. Precis. Eng. 50, 344–353 (2017)CrossRef
74.
Zurück zum Zitat P.M. Campbell, E.S. Snow, P.J. McMarr, Fabrication of nanometer-scale side-gated silicon field effect transistors with an atomic force microscope. Appl. Phys. Lett. 66, 1388–1390 (1995)ADSCrossRef P.M. Campbell, E.S. Snow, P.J. McMarr, Fabrication of nanometer-scale side-gated silicon field effect transistors with an atomic force microscope. Appl. Phys. Lett. 66, 1388–1390 (1995)ADSCrossRef
75.
Zurück zum Zitat S.C. Minne, H.T. Soh, Ph Flueckiger, C.F. Quate, Fabrication of 0.1 μm metal oxide semiconductor field-effect transistors with the atomic force microscope. Appl. Phys. Lett. 66, 703–705 (1995)ADSCrossRef S.C. Minne, H.T. Soh, Ph Flueckiger, C.F. Quate, Fabrication of 0.1 μm metal oxide semiconductor field-effect transistors with the atomic force microscope. Appl. Phys. Lett. 66, 703–705 (1995)ADSCrossRef
76.
Zurück zum Zitat B. Legrand, D. Deresmes, D. Stiévenard, Silicon nanowires with sub 10 nm lateral dimensions: from atomic force microscope lithography based fabrication to electrical measurements. J. Vac. Sci. Technol. B, 862–870 (2002)ADSCrossRef B. Legrand, D. Deresmes, D. Stiévenard, Silicon nanowires with sub 10 nm lateral dimensions: from atomic force microscope lithography based fabrication to electrical measurements. J. Vac. Sci. Technol. B, 862–870 (2002)ADSCrossRef
77.
Zurück zum Zitat J. Martinez, R.V. Martínez, R. Garcia, Silicon nanowire transistors with a channel width of 4 nm fabricated by atomic force microscope nanolithography. Nano Lett. 8, 3636–3639 (2008)ADSCrossRef J. Martinez, R.V. Martínez, R. Garcia, Silicon nanowire transistors with a channel width of 4 nm fabricated by atomic force microscope nanolithography. Nano Lett. 8, 3636–3639 (2008)ADSCrossRef
78.
Zurück zum Zitat A. Dehzangi, A.M. Abdullah, F. Larki, S.D. Hutagalung, E.B. Saion, M.N. Hamidon, J. Hassan, Y. Gharayebi, Electrical property comparison and charge transmission in p-type double gate and single gate junctionless accumulation transistor fabricated by AFM nanolithography. Nanoscale Res. Lett. 7, 381-1–381-9 (2012) A. Dehzangi, A.M. Abdullah, F. Larki, S.D. Hutagalung, E.B. Saion, M.N. Hamidon, J. Hassan, Y. Gharayebi, Electrical property comparison and charge transmission in p-type double gate and single gate junctionless accumulation transistor fabricated by AFM nanolithography. Nanoscale Res. Lett. 7, 381-1–381-9 (2012)
79.
Zurück zum Zitat Y.K. Ryu, M. Chiesa, R. Garcia, Electrical characteristics of silicon nanowire transistors fabricated by scanning probe and electron beam lithographies. Nanotechnology 24, 315205-1–315205-7 (2013)ADSCrossRef Y.K. Ryu, M. Chiesa, R. Garcia, Electrical characteristics of silicon nanowire transistors fabricated by scanning probe and electron beam lithographies. Nanotechnology 24, 315205-1–315205-7 (2013)ADSCrossRef
80.
Zurück zum Zitat The TEM cross-section was produced in the “Laboratorio de Microscopias Avanzadas” at the “Instituto de Nanociencia de Aragon (LMA-INA) - Universidad de Zaragoza” (Spain). The authors acknowledge the LMA-INA for offering access to their instruments and expertise The TEM cross-section was produced in the “Laboratorio de Microscopias Avanzadas” at the “Instituto de Nanociencia de Aragon (LMA-INA) - Universidad de Zaragoza” (Spain). The authors acknowledge the LMA-INA for offering access to their instruments and expertise
81.
Zurück zum Zitat M. Chiesa, P.P. Cardenas, F. Otón, J. Martinez, M. Mas-Torrent, F. Garcia, J.C. Alonso, C. Rovira, R. Garcia, Detection of the early stage of recombinational DNA repair by silicon nanowire transistors. Nano Lett. 12, 1275–1281 (2012)ADSCrossRef M. Chiesa, P.P. Cardenas, F. Otón, J. Martinez, M. Mas-Torrent, F. Garcia, J.C. Alonso, C. Rovira, R. Garcia, Detection of the early stage of recombinational DNA repair by silicon nanowire transistors. Nano Lett. 12, 1275–1281 (2012)ADSCrossRef
82.
Zurück zum Zitat H.-F. Hsu, C.-A. Chen, S.-W. Liu, C.-K. Tang, Fabrication and gas-sensing properties of Ni-silicide/Si nanowires. Nanoscale Res. Lett. 12(182), 1–8 (2017) H.-F. Hsu, C.-A. Chen, S.-W. Liu, C.-K. Tang, Fabrication and gas-sensing properties of Ni-silicide/Si nanowires. Nanoscale Res. Lett. 12(182), 1–8 (2017)
83.
Zurück zum Zitat A. Yokoo, T. Tanabe, E. Kuramochi, M. Notomi, Ultrahigh-Q nanocavities written with a nanoprobe. Nano Lett. 11, 3634–3642 (2011)ADSCrossRef A. Yokoo, T. Tanabe, E. Kuramochi, M. Notomi, Ultrahigh-Q nanocavities written with a nanoprobe. Nano Lett. 11, 3634–3642 (2011)ADSCrossRef
84.
Zurück zum Zitat A. Fuhrer, S. Lüscher, T. Ihn, T. Heinzel, K. Ensslin, W. Wegscheider, M. Bichler, Energy spectra of quantum rings. Nature 413, 822–825 (2001)ADSCrossRef A. Fuhrer, S. Lüscher, T. Ihn, T. Heinzel, K. Ensslin, W. Wegscheider, M. Bichler, Energy spectra of quantum rings. Nature 413, 822–825 (2001)ADSCrossRef
85.
Zurück zum Zitat M.C. Rogge, E. Räsänen, R.J. Haug, Interaction-induced spin polarization in quantum dots. Phys. Rev. Lett. 105, 046802-1–046802-4 (2010) M.C. Rogge, E. Räsänen, R.J. Haug, Interaction-induced spin polarization in quantum dots. Phys. Rev. Lett. 105, 046802-1–046802-4 (2010)
86.
Zurück zum Zitat Y. Komijani, M. Csontos, T. Ihn, K. Ensslin, Y. Meir, D. Reuter, A.D. Wieck, Origins of conductance anomalies in a p-type GaAs quantum point contact. Phys. Rev. B 87, 245406-1–245406-9 (2013) Y. Komijani, M. Csontos, T. Ihn, K. Ensslin, Y. Meir, D. Reuter, A.D. Wieck, Origins of conductance anomalies in a p-type GaAs quantum point contact. Phys. Rev. B 87, 245406-1–245406-9 (2013)
87.
Zurück zum Zitat N. Ubbelohde, C. Fricke, F. Hohls, R.J. Haug, Spin-dependent shot noise enhancement in a quantum dot. Phys. Rev. B 88, 041304-1–041304-4 (2013) N. Ubbelohde, C. Fricke, F. Hohls, R.J. Haug, Spin-dependent shot noise enhancement in a quantum dot. Phys. Rev. B 88, 041304-1–041304-4 (2013)
88.
Zurück zum Zitat M. Sigrist, A. Fuhrer, T. Ihn, K. Ensslin, D.C. Driscoll, A.C. Gossard, Multiple layer local oxidation for fabricating semiconductor nanostructures. Appl. Phys. Lett. 85, 3558–3560 (2004)ADSCrossRef M. Sigrist, A. Fuhrer, T. Ihn, K. Ensslin, D.C. Driscoll, A.C. Gossard, Multiple layer local oxidation for fabricating semiconductor nanostructures. Appl. Phys. Lett. 85, 3558–3560 (2004)ADSCrossRef
89.
Zurück zum Zitat F.S.-S. Chien, J.-W. Chang, S.-W. Lin, Y.-C. Chou, T.T. Chen, S. Gwo, T.-S. Chao, W.-F. Hsieh, Nanometer-scale conversion of Si3N4 to SiOx. Appl. Phys. Lett. 76, 360–362 (2000)ADSCrossRef F.S.-S. Chien, J.-W. Chang, S.-W. Lin, Y.-C. Chou, T.T. Chen, S. Gwo, T.-S. Chao, W.-F. Hsieh, Nanometer-scale conversion of Si3N4 to SiOx. Appl. Phys. Lett. 76, 360–362 (2000)ADSCrossRef
90.
Zurück zum Zitat F.S.-S. Chien, Y.C. Chou, T.T. Chen, W.-F. Hsieh, T.-S. Chao, S. Gwo, Nano-oxidation of silicon nitride films with an atomic force microscope: chemical mapping, kinetics, and applications. J. Appl. Phys. 89, 2465–2472 (2001)ADSCrossRef F.S.-S. Chien, Y.C. Chou, T.T. Chen, W.-F. Hsieh, T.-S. Chao, S. Gwo, Nano-oxidation of silicon nitride films with an atomic force microscope: chemical mapping, kinetics, and applications. J. Appl. Phys. 89, 2465–2472 (2001)ADSCrossRef
91.
Zurück zum Zitat S. Gwo, Scanning probe oxidation of Si3N4 masks for nanoscale lithography, micromachining, and selective epitaxial growth on silicon. J. Phys. Chem. Solids 62, 1673–1687 (2001)ADSCrossRef S. Gwo, Scanning probe oxidation of Si3N4 masks for nanoscale lithography, micromachining, and selective epitaxial growth on silicon. J. Phys. Chem. Solids 62, 1673–1687 (2001)ADSCrossRef
92.
Zurück zum Zitat I. Fernandez-Cuesta, X. Borrisé, F. Pérez-Murano, Atomic force microscopy local oxidation of silicon nitride thin films for mask fabrication. Nanotechnology 16, 2731–2737 (2005)ADSCrossRef I. Fernandez-Cuesta, X. Borrisé, F. Pérez-Murano, Atomic force microscopy local oxidation of silicon nitride thin films for mask fabrication. Nanotechnology 16, 2731–2737 (2005)ADSCrossRef
93.
Zurück zum Zitat M. Rolandi, C.F. Quate, H. Dai, A new scanning probe lithography scheme with a novel metal resist. Adv. Mater. 14, 191–194 (2002)CrossRef M. Rolandi, C.F. Quate, H. Dai, A new scanning probe lithography scheme with a novel metal resist. Adv. Mater. 14, 191–194 (2002)CrossRef
94.
Zurück zum Zitat L. Pellegrino, Y. Yanagisawa, M. Ishikawa, T. Matsumoto, H. Tanaka, T. Kawai, (Fe, Mn)3O4 nanochannels fabricated by AFM local-oxidation nanolithography using Mo/Poly (methyl methacrylate) nanomasks. Adv. Mater. 18, 3099–3104 (2006)CrossRef L. Pellegrino, Y. Yanagisawa, M. Ishikawa, T. Matsumoto, H. Tanaka, T. Kawai, (Fe, Mn)3O4 nanochannels fabricated by AFM local-oxidation nanolithography using Mo/Poly (methyl methacrylate) nanomasks. Adv. Mater. 18, 3099–3104 (2006)CrossRef
95.
Zurück zum Zitat N. Suzuki, H. Tanaka, T. Kawai, Epitaxial transition metal oxide nanostructures fabricated by a combination of AFM lithography and molybdenum lift-off. Adv. Mater. 20, 909–913 (2008)CrossRef N. Suzuki, H. Tanaka, T. Kawai, Epitaxial transition metal oxide nanostructures fabricated by a combination of AFM lithography and molybdenum lift-off. Adv. Mater. 20, 909–913 (2008)CrossRef
96.
Zurück zum Zitat X.N. Xie, H.J. Chung, H. Xu, X. Xu, C.H. Sow, A.T.S. Wee, Probe-induced native oxide decomposition and localized oxidation on 6H-SiC (0001) surface: an atomic force microscopy investigation. J. Am. Chem. Soc. 126, 7665–7675 (2004)CrossRef X.N. Xie, H.J. Chung, H. Xu, X. Xu, C.H. Sow, A.T.S. Wee, Probe-induced native oxide decomposition and localized oxidation on 6H-SiC (0001) surface: an atomic force microscopy investigation. J. Am. Chem. Soc. 126, 7665–7675 (2004)CrossRef
97.
Zurück zum Zitat Y.-D. Jo, S.-H. Seo, W. Bahng, S.-C. Kim, N.-K. Kim, S.-S. Kim, S.-M. Koo, Improved local oxidation of silicon carbide using atomic force microscopy. Appl. Phys. Lett. 96, 082105-1–082105-3 (2010)ADSCrossRef Y.-D. Jo, S.-H. Seo, W. Bahng, S.-C. Kim, N.-K. Kim, S.-S. Kim, S.-M. Koo, Improved local oxidation of silicon carbide using atomic force microscopy. Appl. Phys. Lett. 96, 082105-1–082105-3 (2010)ADSCrossRef
98.
Zurück zum Zitat M. Lorenzoni, B. Torre, Scanning probe oxidation of SiC, fabrication possibilities and kinetics considerations. Appl. Phys. Lett. 103, 163109-1–163109-6 (2013a)ADSCrossRef M. Lorenzoni, B. Torre, Scanning probe oxidation of SiC, fabrication possibilities and kinetics considerations. Appl. Phys. Lett. 103, 163109-1–163109-6 (2013a)ADSCrossRef
99.
Zurück zum Zitat J. Shirakashi, K. Matsumoto, N. Matsumoto, M. Konagai, Single-electron charging effects in Nb/Nb oxide-based single-electron transistors at room temperature. Appl. Phys. Lett. 72, 1893–1895 (1998)ADSCrossRef J. Shirakashi, K. Matsumoto, N. Matsumoto, M. Konagai, Single-electron charging effects in Nb/Nb oxide-based single-electron transistors at room temperature. Appl. Phys. Lett. 72, 1893–1895 (1998)ADSCrossRef
100.
Zurück zum Zitat V. Bouchiat, M. Faucher, C. Thirion, W. Wernsdorfer, T. Fournier, B. Pannetier, Josephson junctions and superconducting quantum interference devices made by local oxidation of niobium ultrathin films. Appl. Phys. Lett. 79, 123–125 (2001)ADSCrossRef V. Bouchiat, M. Faucher, C. Thirion, W. Wernsdorfer, T. Fournier, B. Pannetier, Josephson junctions and superconducting quantum interference devices made by local oxidation of niobium ultrathin films. Appl. Phys. Lett. 79, 123–125 (2001)ADSCrossRef
101.
Zurück zum Zitat M. Faucher, P.O. Jubert, O. Fruchart, W. Wernsdorfer, V. Bouchiat, Optimizing the flux coupling between a nanoSQUID and a magnetic particle using atomic force microscope nanolithography. Supercond. Sci. Technol. 22, 064010-1–064010-5 (2009)ADSCrossRef M. Faucher, P.O. Jubert, O. Fruchart, W. Wernsdorfer, V. Bouchiat, Optimizing the flux coupling between a nanoSQUID and a magnetic particle using atomic force microscope nanolithography. Supercond. Sci. Technol. 22, 064010-1–064010-5 (2009)ADSCrossRef
102.
Zurück zum Zitat C. Delacour, B. Pannetier, J.C. Villegier, V. Bouchiat, Quantum and thermal phase slips in superconducting niobium nitride (NbN) ultrathin crystalline nanowire: application to single photon detection. Nano Lett. 12, 3501–3506 (2012)ADSCrossRef C. Delacour, B. Pannetier, J.C. Villegier, V. Bouchiat, Quantum and thermal phase slips in superconducting niobium nitride (NbN) ultrathin crystalline nanowire: application to single photon detection. Nano Lett. 12, 3501–3506 (2012)ADSCrossRef
103.
Zurück zum Zitat E.S. Snow, P.M. Campbell, AFM fabrication of sub-10-nanometer metal-oxide devices with in situ control of electrical properties. Science 270, 1639–1641 (1995)ADSCrossRef E.S. Snow, P.M. Campbell, AFM fabrication of sub-10-nanometer metal-oxide devices with in situ control of electrical properties. Science 270, 1639–1641 (1995)ADSCrossRef
104.
Zurück zum Zitat Y. Gotoh, K. Matsumoto, T. Maeda, E.B. Cooper, S.R. Manalis, H. Fang, S.C. Minne, T. Hunt, H. Dai, J. Harris, C.F. Quate, Experimental and theoretical results of room-temperature single-electron transistor formed by the atomic force microscope nano-oxidation process. J. Vac. Sci. Technol., A 18, 1321–1325 (2000)ADSCrossRef Y. Gotoh, K. Matsumoto, T. Maeda, E.B. Cooper, S.R. Manalis, H. Fang, S.C. Minne, T. Hunt, H. Dai, J. Harris, C.F. Quate, Experimental and theoretical results of room-temperature single-electron transistor formed by the atomic force microscope nano-oxidation process. J. Vac. Sci. Technol., A 18, 1321–1325 (2000)ADSCrossRef
105.
Zurück zum Zitat S. Lemeshko, S. Gavrilov, V. Shevyakov, V. Roschin, R. Solomatenko, Investigation of tip-induced ultrathin Ti film oxidation kinetics. Nanotechnology 12, 273–276 (2001)ADSCrossRef S. Lemeshko, S. Gavrilov, V. Shevyakov, V. Roschin, R. Solomatenko, Investigation of tip-induced ultrathin Ti film oxidation kinetics. Nanotechnology 12, 273–276 (2001)ADSCrossRef
106.
Zurück zum Zitat Z. Shen, S. Hou, H. Sun, X. Zhao, Z. Xue, Local oxidation of titanium thin films using an atomic force microscope under static and pulsed voltages. J. Phys. D Appl. Phys. 37, 1357–1361 (2004)ADSCrossRef Z. Shen, S. Hou, H. Sun, X. Zhao, Z. Xue, Local oxidation of titanium thin films using an atomic force microscope under static and pulsed voltages. J. Phys. D Appl. Phys. 37, 1357–1361 (2004)ADSCrossRef
107.
Zurück zum Zitat K. Mukai, A. Hirota, S. Nakashima, Position control of PbS quantum dot using nanohole on silicon substrate processed by scanning probe lithography. Jpn. J. Appl. Phys. 54, 04DJ02 (2015)CrossRef K. Mukai, A. Hirota, S. Nakashima, Position control of PbS quantum dot using nanohole on silicon substrate processed by scanning probe lithography. Jpn. J. Appl. Phys. 54, 04DJ02 (2015)CrossRef
108.
Zurück zum Zitat H.-N. Lin, Y.-H. Chang, J.-H. Yen, J.-H. Hsu, I.-C. Leu, M.-H. Hon, Selective growth of vertically aligned carbon nanotubes on nickel oxide nanostructures created by atomic force microscope nano-oxidation. Chem. Phys. Lett. 399, 422–425 (2004)ADSCrossRef H.-N. Lin, Y.-H. Chang, J.-H. Yen, J.-H. Hsu, I.-C. Leu, M.-H. Hon, Selective growth of vertically aligned carbon nanotubes on nickel oxide nanostructures created by atomic force microscope nano-oxidation. Chem. Phys. Lett. 399, 422–425 (2004)ADSCrossRef
109.
Zurück zum Zitat J. Martín-Sánchez, Y. González, L. González, M. Tello, R. Garcia, D. Granados, J.M. García, F. Briones, Ordered InAs quantum dots on pre-patterned GaAs (001) by local oxidation nanolithography. J. Cryst. Growth 284, 313–318 (2005)ADSCrossRef J. Martín-Sánchez, Y. González, L. González, M. Tello, R. Garcia, D. Granados, J.M. García, F. Briones, Ordered InAs quantum dots on pre-patterned GaAs (001) by local oxidation nanolithography. J. Cryst. Growth 284, 313–318 (2005)ADSCrossRef
110.
Zurück zum Zitat J. Herranz, L. González, L. Wewior, B. Alén, D. Fuster, Y. González, Study of growth parameters for single InAs QD formation on GaAs (001) patterned substrates by local oxidation lithography. Cryst. Growth Des. 15, 666–672 (2015)CrossRef J. Herranz, L. González, L. Wewior, B. Alén, D. Fuster, Y. González, Study of growth parameters for single InAs QD formation on GaAs (001) patterned substrates by local oxidation lithography. Cryst. Growth Des. 15, 666–672 (2015)CrossRef
111.
Zurück zum Zitat J. Martín-Sánchez, G. Muñoz-Matutano, J. Herranz, J. Canet-Ferrer, B. Alén, Y. González, P. Alonso-González, D. Fuster, L. González, J. Martínez-Pastor, F. Briones, Single photon emission from site-controlled InAs quantum dots grown on GaAs (001) patterned substrates. ACS Nano 3, 1513–1517 (2009)CrossRef J. Martín-Sánchez, G. Muñoz-Matutano, J. Herranz, J. Canet-Ferrer, B. Alén, Y. González, P. Alonso-González, D. Fuster, L. González, J. Martínez-Pastor, F. Briones, Single photon emission from site-controlled InAs quantum dots grown on GaAs (001) patterned substrates. ACS Nano 3, 1513–1517 (2009)CrossRef
112.
Zurück zum Zitat Y. Mo, Z. Lu, A. Chau, F. Huang, Preparation and mechanics of nanotextures on adapting a low adhesive surface using local oxidation nanolithography. Appl. Mater. Interfaces 5, 4356–4360 (2013)CrossRef Y. Mo, Z. Lu, A. Chau, F. Huang, Preparation and mechanics of nanotextures on adapting a low adhesive surface using local oxidation nanolithography. Appl. Mater. Interfaces 5, 4356–4360 (2013)CrossRef
113.
Zurück zum Zitat C.-Y. Huang, Y.-C. Yao, Y.-J. Lee, T.-Y. Lin, W.-J. Kao, J.S. Hwang, Y.-J. Yang, J.-L. Shen, Local nanotip arrays sculptured by atomic force microscopy to enhance the light-output efficiency of GaN-based light-emitting diode structures. Nanotechnology 25, 195401-1–195401-7 (2014)ADSCrossRef C.-Y. Huang, Y.-C. Yao, Y.-J. Lee, T.-Y. Lin, W.-J. Kao, J.S. Hwang, Y.-J. Yang, J.-L. Shen, Local nanotip arrays sculptured by atomic force microscopy to enhance the light-output efficiency of GaN-based light-emitting diode structures. Nanotechnology 25, 195401-1–195401-7 (2014)ADSCrossRef
114.
Zurück zum Zitat J.S. Hwang, Z.S. Hu, Z.Y. You, T.Y. Lin, C.L. Hsiao, L.W. Tu, Local oxidation of InN and GaN using an atomic force microscope. Nanotechnology 17, 859–863 (2006)ADSCrossRef J.S. Hwang, Z.S. Hu, Z.Y. You, T.Y. Lin, C.L. Hsiao, L.W. Tu, Local oxidation of InN and GaN using an atomic force microscope. Nanotechnology 17, 859–863 (2006)ADSCrossRef
115.
Zurück zum Zitat Z.J. Davis, G. Abadal, O. Hansen, X. Borisé, N. Barniol, F. Pérez-Murano, AFM lithography of aluminium for fabrication of nanomechanical systems. Ultramicroscopy 97, 467–472 (2003)CrossRef Z.J. Davis, G. Abadal, O. Hansen, X. Borisé, N. Barniol, F. Pérez-Murano, AFM lithography of aluminium for fabrication of nanomechanical systems. Ultramicroscopy 97, 467–472 (2003)CrossRef
116.
Zurück zum Zitat K. Watanabe, Y. Takemura, Y. Shimazu, J. Shirakashi, Magnetic nanostructures fabricated by the atomic force microscopy nano-lithography technique. Nanotechnology 15, S566–S569 (2004)ADSCrossRef K. Watanabe, Y. Takemura, Y. Shimazu, J. Shirakashi, Magnetic nanostructures fabricated by the atomic force microscopy nano-lithography technique. Nanotechnology 15, S566–S569 (2004)ADSCrossRef
117.
Zurück zum Zitat J. Shirakashi, Y. Takemura, Ferromagnetic ultra-small tunnel junction devices fabricated by scanning probe microscope (SPM) local oxidation. IEEE T. Magn. 40, 2640–2642 (2004)ADSCrossRef J. Shirakashi, Y. Takemura, Ferromagnetic ultra-small tunnel junction devices fabricated by scanning probe microscope (SPM) local oxidation. IEEE T. Magn. 40, 2640–2642 (2004)ADSCrossRef
118.
Zurück zum Zitat N. Lee, W. Jo, C. Liu, C. Mény, Size dependent bipolar resistance switching of NiO nanodots for low-power and multi-state operation. Nanotechnology 25, 415302-1–415302-7 (2014)CrossRef N. Lee, W. Jo, C. Liu, C. Mény, Size dependent bipolar resistance switching of NiO nanodots for low-power and multi-state operation. Nanotechnology 25, 415302-1–415302-7 (2014)CrossRef
119.
Zurück zum Zitat S. Buyukkose, S. Okur, G. Aygun, Local oxidation nanolithography on Hf thin films using atomic force microscopy (AFM). J. Phys. D: Appl. Phys. 42, 105302-1–105302-7 (2009)ADSCrossRef S. Buyukkose, S. Okur, G. Aygun, Local oxidation nanolithography on Hf thin films using atomic force microscopy (AFM). J. Phys. D: Appl. Phys. 42, 105302-1–105302-7 (2009)ADSCrossRef
120.
Zurück zum Zitat N. Farkas, G. Zhang, E.A. Evans, R.D. Ramsier, J.A. Dagata, Nanoscale oxidation of zirconium surfaces: kinetics and mechanisms. J. Vac. Sci. Technol., A 21, 1188–1193 (2003)ADSCrossRef N. Farkas, G. Zhang, E.A. Evans, R.D. Ramsier, J.A. Dagata, Nanoscale oxidation of zirconium surfaces: kinetics and mechanisms. J. Vac. Sci. Technol., A 21, 1188–1193 (2003)ADSCrossRef
121.
Zurück zum Zitat A.B. Oliveira, G. Medeiros-Ribeiro, A. Azevedo, Submicron fabrication by local anodic oxidation of germanium thin films. Nanotechnology 20, 345301-1–345301-7 (2009)CrossRef A.B. Oliveira, G. Medeiros-Ribeiro, A. Azevedo, Submicron fabrication by local anodic oxidation of germanium thin films. Nanotechnology 20, 345301-1–345301-7 (2009)CrossRef
122.
Zurück zum Zitat L. Pellegrino, E. Bellingeri, A.S. Siri, D. Marré, Current-controlled lithography on conducting SrTiO3-δ thin films by atomic force microscopy. Appl. Phys. Lett. 87, 064102-1–064102-3 (2005)ADSCrossRef L. Pellegrino, E. Bellingeri, A.S. Siri, D. Marré, Current-controlled lithography on conducting SrTiO3-δ thin films by atomic force microscopy. Appl. Phys. Lett. 87, 064102-1–064102-3 (2005)ADSCrossRef
123.
Zurück zum Zitat G.J. Yong, W.E. Vanderlinde, E.K. Tanyi, D.M. Schaefer, C. Stumpf, R.M. Kolagani, Possible mechanisms in atomic force microscope-induced nano-oxidation lithography in epitaxial La0.67Ba0.33MnO3-δ thin films. J. Vac. Sci. Technol. B 34, 021601-1–021601-9 (2016) G.J. Yong, W.E. Vanderlinde, E.K. Tanyi, D.M. Schaefer, C. Stumpf, R.M. Kolagani, Possible mechanisms in atomic force microscope-induced nano-oxidation lithography in epitaxial La0.67Ba0.33MnO3-δ thin films. J. Vac. Sci. Technol. B 34, 021601-1–021601-9 (2016)
124.
Zurück zum Zitat L. Weng, L. Zhang, Y.P. Chen, L.P. Rokhinson, Atomic force microscope local oxidation nanolithography of graphene. Appl. Phys. Lett. 93, 093107-1–093107-3 (2008)ADSCrossRef L. Weng, L. Zhang, Y.P. Chen, L.P. Rokhinson, Atomic force microscope local oxidation nanolithography of graphene. Appl. Phys. Lett. 93, 093107-1–093107-3 (2008)ADSCrossRef
125.
Zurück zum Zitat S. Neubeck, L.A. Ponomarenko, F. Freitag, A.J.M. Giesbers, U. Zeitler, S.V. Morozov, P. Blake, A.K. Geim, K.S. Novoselov, From one electron to one hole: quasiparticle counting in graphene quantum dots determined by electrochemical and plasma etching. Small 6, 1469–1473 (2010)CrossRef S. Neubeck, L.A. Ponomarenko, F. Freitag, A.J.M. Giesbers, U. Zeitler, S.V. Morozov, P. Blake, A.K. Geim, K.S. Novoselov, From one electron to one hole: quasiparticle counting in graphene quantum dots determined by electrochemical and plasma etching. Small 6, 1469–1473 (2010)CrossRef
126.
Zurück zum Zitat D.H. Lee, C.K. Kim, J.-H. Lee, H.-J. Chung, B.H. Park, Fabricating in-plane transistor and memory using atomic force microscope lithography towards graphene system on chip. Carbon 96, 223–228 (2016)CrossRef D.H. Lee, C.K. Kim, J.-H. Lee, H.-J. Chung, B.H. Park, Fabricating in-plane transistor and memory using atomic force microscope lithography towards graphene system on chip. Carbon 96, 223–228 (2016)CrossRef
127.
Zurück zum Zitat R.K. Puddy, C.J. Chua, M.R. Buitelaar, Transport spectroscopy of a graphene quantum dot fabricated by atomic force microscope nanolithography. Appl. Phys. Lett. 103, 183117-1–183117-4 (2013)ADSCrossRef R.K. Puddy, C.J. Chua, M.R. Buitelaar, Transport spectroscopy of a graphene quantum dot fabricated by atomic force microscope nanolithography. Appl. Phys. Lett. 103, 183117-1–183117-4 (2013)ADSCrossRef
128.
Zurück zum Zitat A.I. Dago, S. Sangiao, R. Fernández-Pacheco, J.M. De Teresa, R. Garcia, Chemical and structural analysis of sub-20 nm graphene patterns generated by scanning probe lithography. Carbon 129, 281–285 (2018)CrossRef A.I. Dago, S. Sangiao, R. Fernández-Pacheco, J.M. De Teresa, R. Garcia, Chemical and structural analysis of sub-20 nm graphene patterns generated by scanning probe lithography. Carbon 129, 281–285 (2018)CrossRef
129.
Zurück zum Zitat F.M. Espinosa, Y.K. Ryu, K. Marinov, D. Dumcenco, A. Kis, R. Garcia, Direct fabrication of thin layer MoS2 field-effect nanoscale transistors by oxidation scanning probe lithography. Appl. Phys. Lett. 106, 103503-1–103503-4 (2015)ADSCrossRef F.M. Espinosa, Y.K. Ryu, K. Marinov, D. Dumcenco, A. Kis, R. Garcia, Direct fabrication of thin layer MoS2 field-effect nanoscale transistors by oxidation scanning probe lithography. Appl. Phys. Lett. 106, 103503-1–103503-4 (2015)ADSCrossRef
130.
Zurück zum Zitat A.I. Dago, Y.K. Ryu, F.J. Palomares, R. Garcia, Direct patterning of p-type-doped few-layer WSe2 nanoelectronic devices by oxidation scanning probe lithography. ACS Appl. Mater. Interfaces 10(46), 40054–40061 (2018)CrossRef A.I. Dago, Y.K. Ryu, F.J. Palomares, R. Garcia, Direct patterning of p-type-doped few-layer WSe2 nanoelectronic devices by oxidation scanning probe lithography. ACS Appl. Mater. Interfaces 10(46), 40054–40061 (2018)CrossRef
131.
Zurück zum Zitat H. Bark, S. Kwon, C. Lee, Bias-assisted atomic force microscope nanolithography on NbS2 thin films grown by chemical vapour deposition. J. Phys. D: Appl. Phys. 49, 484001-1–484001-6 (2016)CrossRef H. Bark, S. Kwon, C. Lee, Bias-assisted atomic force microscope nanolithography on NbS2 thin films grown by chemical vapour deposition. J. Phys. D: Appl. Phys. 49, 484001-1–484001-6 (2016)CrossRef
132.
Zurück zum Zitat E. Pinilla-Cienfuegos, S. Mañas-Valero, E. Navarro-Moratalla, S. Tatay, A. Forment-Aliaga, E. Coronado, Local oxidation nanolithography on metallic transition metal dichalcogenide surfaces. Appl. Sci. 6, 250-1-250-12 (2016)CrossRef E. Pinilla-Cienfuegos, S. Mañas-Valero, E. Navarro-Moratalla, S. Tatay, A. Forment-Aliaga, E. Coronado, Local oxidation nanolithography on metallic transition metal dichalcogenide surfaces. Appl. Sci. 6, 250-1-250-12 (2016)CrossRef
133.
Zurück zum Zitat R. Maoz, S.R. Cohen, J. Sagiv, Nanoelectrochemical patterning of monolayer surfaces: toward spatially defined self-assembly of nanostructures. Adv. Mater. 11, 55–61 (1999)CrossRef R. Maoz, S.R. Cohen, J. Sagiv, Nanoelectrochemical patterning of monolayer surfaces: toward spatially defined self-assembly of nanostructures. Adv. Mater. 11, 55–61 (1999)CrossRef
134.
Zurück zum Zitat R. Maoz, E. Frydman, S.R. Cohen, J. Sagiv, ‘Constructive nanolithography’: inert monolayers as patternable templates for in situ nanofabrication of metal-semiconductor-organic surface structures—a generic approach. Adv. Mater. 12, 725–731 (2000)CrossRef R. Maoz, E. Frydman, S.R. Cohen, J. Sagiv, ‘Constructive nanolithography’: inert monolayers as patternable templates for in situ nanofabrication of metal-semiconductor-organic surface structures—a generic approach. Adv. Mater. 12, 725–731 (2000)CrossRef
135.
Zurück zum Zitat S.R. Cohen, R. Maoz, J. Sagiv, Constructive Nanolithography. Scanning Probe Microscopy: Characterization, Nanofabrication and Device Application of Functional Materials. NATO Science Series II: Mathematics, Physics and Chemistry, vol. 186 (2005) S.R. Cohen, R. Maoz, J. Sagiv, Constructive Nanolithography. Scanning Probe Microscopy: Characterization, Nanofabrication and Device Application of Functional Materials. NATO Science Series II: Mathematics, Physics and Chemistry, vol. 186 (2005)
136.
Zurück zum Zitat S. Liu, R. Maoz, J. Sagiv, Planned nanostructures of colloidal gold via self-assembly on hierarchically assembled organic bilayer template patterns with in-situ generated terminal amino functionality. Nano Lett. 4, 845–851 (2004)ADSCrossRef S. Liu, R. Maoz, J. Sagiv, Planned nanostructures of colloidal gold via self-assembly on hierarchically assembled organic bilayer template patterns with in-situ generated terminal amino functionality. Nano Lett. 4, 845–851 (2004)ADSCrossRef
137.
Zurück zum Zitat J. Berson, A. Zeira, R. Maoz, J. Sagiv, Parallel- and serial-contact electrochemical metallization of monolayer nanopatterns: a versatile synthetic tool en route to bottom-up assembly of electric nanocircuits. Beilstein J. Nanotechnol. 3, 134–143 (2012)CrossRef J. Berson, A. Zeira, R. Maoz, J. Sagiv, Parallel- and serial-contact electrochemical metallization of monolayer nanopatterns: a versatile synthetic tool en route to bottom-up assembly of electric nanocircuits. Beilstein J. Nanotechnol. 3, 134–143 (2012)CrossRef
138.
Zurück zum Zitat J. Berson, D. Burshtain, A. Zeira, A. Yoffe, R. Maoz, J. Sagiv, Single-layer ionic conduction on carboxyl-terminated silane monolayers patterned by constructive lithography. Nat. Mater. 14, 613–621 (2015)ADSCrossRef J. Berson, D. Burshtain, A. Zeira, A. Yoffe, R. Maoz, J. Sagiv, Single-layer ionic conduction on carboxyl-terminated silane monolayers patterned by constructive lithography. Nat. Mater. 14, 613–621 (2015)ADSCrossRef
139.
Zurück zum Zitat D. Wouters, R. Willems, S. Hoeppener, C.F.J. Flipse, U.S. Schubert, Oxidation conditions for octadecyl trichlorosilane monolayers on silicon: a detailed atomic force microscopy study of the effects of pulse height and duration on the oxidation of the monolayer and the underlying Si substrate. Adv. Funct. Mater. 15, 938–944 (2005)CrossRef D. Wouters, R. Willems, S. Hoeppener, C.F.J. Flipse, U.S. Schubert, Oxidation conditions for octadecyl trichlorosilane monolayers on silicon: a detailed atomic force microscopy study of the effects of pulse height and duration on the oxidation of the monolayer and the underlying Si substrate. Adv. Funct. Mater. 15, 938–944 (2005)CrossRef
140.
Zurück zum Zitat T. Druzhinina, S. Hoeppener, N. Herzer, U.S. Schubert, Fabrication of ring structures by anodization lithography on self-assembled OTS monolayers. J. Mater. Chem. 21, 8532–8536 (2011)CrossRef T. Druzhinina, S. Hoeppener, N. Herzer, U.S. Schubert, Fabrication of ring structures by anodization lithography on self-assembled OTS monolayers. J. Mater. Chem. 21, 8532–8536 (2011)CrossRef
141.
Zurück zum Zitat T.S. Druzhinina, S. Hoeppener, U.S. Schubert, New design concepts for the fabrication of nanometric gap structures: electrochemical oxidation of OTS mono- and bilayer structures. Small 8, 852–857 (2012)CrossRef T.S. Druzhinina, S. Hoeppener, U.S. Schubert, New design concepts for the fabrication of nanometric gap structures: electrochemical oxidation of OTS mono- and bilayer structures. Small 8, 852–857 (2012)CrossRef
142.
Zurück zum Zitat T.S. Druzhinina, C. Höppener, S. Hoeppener, U.S. Schubert, Hierarchical, guided self-assembly of preselected carbon nanotubes for the controlled fabrication of CNT structures by electrooxidative nanolithography. Langmuir 29, 7515–7520 (2013)CrossRef T.S. Druzhinina, C. Höppener, S. Hoeppener, U.S. Schubert, Hierarchical, guided self-assembly of preselected carbon nanotubes for the controlled fabrication of CNT structures by electrooxidative nanolithography. Langmuir 29, 7515–7520 (2013)CrossRef
143.
Zurück zum Zitat H. Liu, A.M. Schwenke, F. Kretschmer, S. Hoeppener, U.S. Schubert, Gold nanoparticle cluster arrays for high-performance SERS substrates fabricated by electro-oxidative lithography. ChemNanoMat 2, 781–785 (2016)CrossRef H. Liu, A.M. Schwenke, F. Kretschmer, S. Hoeppener, U.S. Schubert, Gold nanoparticle cluster arrays for high-performance SERS substrates fabricated by electro-oxidative lithography. ChemNanoMat 2, 781–785 (2016)CrossRef
144.
Zurück zum Zitat R.V. Martínez, F. García, R. Garcia, E. Coronado, A. Forment-Aliaga, F.M. Romero, S. Tatay, Nanoscale deposition of single-molecule magnets onto SiO2 patterns. Adv. Mater. 19, 291–295 (2007)CrossRef R.V. Martínez, F. García, R. Garcia, E. Coronado, A. Forment-Aliaga, F.M. Romero, S. Tatay, Nanoscale deposition of single-molecule magnets onto SiO2 patterns. Adv. Mater. 19, 291–295 (2007)CrossRef
145.
Zurück zum Zitat R.V. Martínez, J. Martínez, M. Chiesa, R. Garcia, E. Coronado, E. Pinilla-Cienfuegos, S. Tatay, Large-scale nanopatterning of single proteins used as carriers of magnetic nanoparticles. Adv. Mater. 22, 588–591 (2010)CrossRef R.V. Martínez, J. Martínez, M. Chiesa, R. Garcia, E. Coronado, E. Pinilla-Cienfuegos, S. Tatay, Large-scale nanopatterning of single proteins used as carriers of magnetic nanoparticles. Adv. Mater. 22, 588–591 (2010)CrossRef
146.
Zurück zum Zitat E. Coronado, A. Forment-Aliaga, E. Pinilla-Cienfuegos, S. Tatay, L. Catala, J.A. Plaza, Nanopatterning of anionic nanoparticles based on magnetic prussian-blue analogues. Adv. Funct. Mater. 22, 3625–3633 (2012)CrossRef E. Coronado, A. Forment-Aliaga, E. Pinilla-Cienfuegos, S. Tatay, L. Catala, J.A. Plaza, Nanopatterning of anionic nanoparticles based on magnetic prussian-blue analogues. Adv. Funct. Mater. 22, 3625–3633 (2012)CrossRef
147.
Zurück zum Zitat T. Yoshinobu, J. Suzuki, H. Kurooka, W.C. Moon, H. Iwasaki, AFM fabrication of oxide patterns and immobilization of biomolecules on Si surface. Electrochim. Acta 48, 3131–3135 (2003)CrossRef T. Yoshinobu, J. Suzuki, H. Kurooka, W.C. Moon, H. Iwasaki, AFM fabrication of oxide patterns and immobilization of biomolecules on Si surface. Electrochim. Acta 48, 3131–3135 (2003)CrossRef
148.
Zurück zum Zitat G. Quin, J. Gu, K. Liu, Z. Xiao, C.M. Yam, C. Cai, Conductive AFM patterning on oligo(ethylene glycol)-terminated alkyl monolayers on silicon substrates: proposed mechanism and fabrication of avidin patterns. Langmuir 27, 6987–6994 (2011)CrossRef G. Quin, J. Gu, K. Liu, Z. Xiao, C.M. Yam, C. Cai, Conductive AFM patterning on oligo(ethylene glycol)-terminated alkyl monolayers on silicon substrates: proposed mechanism and fabrication of avidin patterns. Langmuir 27, 6987–6994 (2011)CrossRef
149.
Zurück zum Zitat E.M. Benetti, H.J. Chung, G.J. Vancso, PH responsive polymeric brush nanostructures: preparation and characterization by scanning probe oxidation and surface initiated polymerization. Macromol. Rapid Commun. 30, 411–417 (2009)CrossRef E.M. Benetti, H.J. Chung, G.J. Vancso, PH responsive polymeric brush nanostructures: preparation and characterization by scanning probe oxidation and surface initiated polymerization. Macromol. Rapid Commun. 30, 411–417 (2009)CrossRef
150.
Zurück zum Zitat R. Garcia, M. Tello, Size and shape controlled growth of molecular nanostructures on silicon oxide templates. Nano Lett. 4, 1115–1119 (2004)ADSCrossRef R. Garcia, M. Tello, Size and shape controlled growth of molecular nanostructures on silicon oxide templates. Nano Lett. 4, 1115–1119 (2004)ADSCrossRef
151.
Zurück zum Zitat T. Baumgärtel, S. Rehm, F. Würthner, C.V. Borczyskowski, H. Graaf, Functional bisimide dyes bound via electrostatic interactions to oxide nanostructures generated by AFM lithography. Appl. Surf. Sci. 318, 51–58 (2014)ADSCrossRef T. Baumgärtel, S. Rehm, F. Würthner, C.V. Borczyskowski, H. Graaf, Functional bisimide dyes bound via electrostatic interactions to oxide nanostructures generated by AFM lithography. Appl. Surf. Sci. 318, 51–58 (2014)ADSCrossRef
152.
Zurück zum Zitat M. Fernández-Regúlez, L. Evangelio, M. Lorenzoni, J. Fraxedas, F. Pérez-Murano, Sub-10 nm resistless nanolithography for directed self-assembly of block copolymers. ACS Appl. Mater. Interfaces 6, 21596–21602 (2014)CrossRef M. Fernández-Regúlez, L. Evangelio, M. Lorenzoni, J. Fraxedas, F. Pérez-Murano, Sub-10 nm resistless nanolithography for directed self-assembly of block copolymers. ACS Appl. Mater. Interfaces 6, 21596–21602 (2014)CrossRef
153.
Zurück zum Zitat H.J. Mamin, D. Rugar, Thermomechanical writing with an atomic force microscope tip. Appl. Phys. Lett. 61, 1003-1–1003-3 (1992)ADSCrossRef H.J. Mamin, D. Rugar, Thermomechanical writing with an atomic force microscope tip. Appl. Phys. Lett. 61, 1003-1–1003-3 (1992)ADSCrossRef
154.
Zurück zum Zitat P. Vettiger, G. Cross, M. Despont, U. Drechsler, U. Dürig, B. Gotsmann, W. Häberle, M.A. Lantz, H.E. Rothuizen, R. Stutz, G.K. Binnig, The “Millipede”—nanotechnology entering data storage. IEEE Trans. Nanotechnol. 1, 39–55 (2002)ADSCrossRef P. Vettiger, G. Cross, M. Despont, U. Drechsler, U. Dürig, B. Gotsmann, W. Häberle, M.A. Lantz, H.E. Rothuizen, R. Stutz, G.K. Binnig, The “Millipede”—nanotechnology entering data storage. IEEE Trans. Nanotechnol. 1, 39–55 (2002)ADSCrossRef
155.
Zurück zum Zitat A. Pantazi, A. Sebastian, T.A. Antonakopoulos, P. Baechtold, A.R. Bonaccio, J. Bonan, G. Cherubini, M. Despont, R.A. DiPietro, U. Drechsler, U. Duerig, B. Gotsmann, W. Haeberle, C. Hagleitner, J.L. Hedrick, D. Jubin, A. Knoll, M.A. Lantz, J. Pentarakis, H. Pozidis, R.C. Pratt, H. Rothuizen, R. Stutz, M. Varsamou, D. Wiesmann, E. Eleftheriou, Probe-based ultrahigh-density storage technology. IBM J. Res. Develop. 52, 493–511 (2008)CrossRef A. Pantazi, A. Sebastian, T.A. Antonakopoulos, P. Baechtold, A.R. Bonaccio, J. Bonan, G. Cherubini, M. Despont, R.A. DiPietro, U. Drechsler, U. Duerig, B. Gotsmann, W. Haeberle, C. Hagleitner, J.L. Hedrick, D. Jubin, A. Knoll, M.A. Lantz, J. Pentarakis, H. Pozidis, R.C. Pratt, H. Rothuizen, R. Stutz, M. Varsamou, D. Wiesmann, E. Eleftheriou, Probe-based ultrahigh-density storage technology. IBM J. Res. Develop. 52, 493–511 (2008)CrossRef
156.
Zurück zum Zitat D. Pires, J.L. Hedrick, A. de Silva, J. Frommer, B. Gotsmann, H. Wolf, M. Despont, U. Duerig, A.W. Knoll, Nanoscale three-dimensional patterning of molecular resists by scanning probes. Science 328, 732–735 (2010)ADSCrossRef D. Pires, J.L. Hedrick, A. de Silva, J. Frommer, B. Gotsmann, H. Wolf, M. Despont, U. Duerig, A.W. Knoll, Nanoscale three-dimensional patterning of molecular resists by scanning probes. Science 328, 732–735 (2010)ADSCrossRef
157.
Zurück zum Zitat M. Spieser, C. Rawlings, E. Lörtscher, U. Duerig, A.W. Knoll, Comprehensive modelling of Joule heated cantilever probes. J. Appl. Phys. 121, 174503 (2017)ADSCrossRef M. Spieser, C. Rawlings, E. Lörtscher, U. Duerig, A.W. Knoll, Comprehensive modelling of Joule heated cantilever probes. J. Appl. Phys. 121, 174503 (2017)ADSCrossRef
158.
Zurück zum Zitat A.W. Knoll, D. Pires, O. Coulembier, P. Dubois, J.L. Hedrick, J. Frommer, U. Duerig, Probe-based 3-D nanolithography using self-amplified depolymerisation polymers. Adv. Mater. 22, 3361–3365 (2010)CrossRef A.W. Knoll, D. Pires, O. Coulembier, P. Dubois, J.L. Hedrick, J. Frommer, U. Duerig, Probe-based 3-D nanolithography using self-amplified depolymerisation polymers. Adv. Mater. 22, 3361–3365 (2010)CrossRef
159.
Zurück zum Zitat P.C. Paul, A.W. Knoll, F. Holzner, M. Despont, U. Duerig, Rapid turnaround scanning probe nanolithography. Nanotechnology 22, 275306-1–275306-9 (2011)ADSCrossRef P.C. Paul, A.W. Knoll, F. Holzner, M. Despont, U. Duerig, Rapid turnaround scanning probe nanolithography. Nanotechnology 22, 275306-1–275306-9 (2011)ADSCrossRef
160.
Zurück zum Zitat C. Rawlings, U. Duerig, J. Hedrick, C. Coady, A.W. Knoll, Nanometer accurate markerless pattern overlay using thermal scanning probe lithography. IEEE Trans. Nanotechnol. 13, 1204–1212 (2014)ADSCrossRef C. Rawlings, U. Duerig, J. Hedrick, C. Coady, A.W. Knoll, Nanometer accurate markerless pattern overlay using thermal scanning probe lithography. IEEE Trans. Nanotechnol. 13, 1204–1212 (2014)ADSCrossRef
161.
Zurück zum Zitat C. Rawlings, H. Wolf, J.L. Hedrick, D.J. Coady, U. Duerig, A.W. Knoll, Accurate location and manipulation of nanoscaled objects buried under spin-coated films. ACS Nano 9, 6188–6195 (2015)CrossRef C. Rawlings, H. Wolf, J.L. Hedrick, D.J. Coady, U. Duerig, A.W. Knoll, Accurate location and manipulation of nanoscaled objects buried under spin-coated films. ACS Nano 9, 6188–6195 (2015)CrossRef
162.
Zurück zum Zitat Y.K. Ryu Cho, C.D. Rawlings, H. Wolf, M. Spieser, S. Bisig, S. Reidt, M. Sousa, S.R. Khanal, T.D.B. Jacobs, A.W. Knoll, Sub-10 nanometer feature size in silicon using thermal scanning probe lithography. ACS Nano 11, 11890–11897 (2017)CrossRef Y.K. Ryu Cho, C.D. Rawlings, H. Wolf, M. Spieser, S. Bisig, S. Reidt, M. Sousa, S.R. Khanal, T.D.B. Jacobs, A.W. Knoll, Sub-10 nanometer feature size in silicon using thermal scanning probe lithography. ACS Nano 11, 11890–11897 (2017)CrossRef
163.
Zurück zum Zitat J.-F. de Marneffe, B.T. Chan, M. Spieser, G. Vereecke, S. Naumov, D. Vanhaeren, H. Wolf, A.W. Knoll, Conversion of a patterned organic resist into a high performance inorganic hard mask for high resolution pattern transfer. ACS Nano 12, 11152–11160 (2018)CrossRef J.-F. de Marneffe, B.T. Chan, M. Spieser, G. Vereecke, S. Naumov, D. Vanhaeren, H. Wolf, A.W. Knoll, Conversion of a patterned organic resist into a high performance inorganic hard mask for high resolution pattern transfer. ACS Nano 12, 11152–11160 (2018)CrossRef
164.
Zurück zum Zitat H. Wolf, C. Rawlings, P. Mensch, J.L. Hedrick, D.J. Coady, U. Duerig, A.W. Knoll, Sub-20 nm silicon patterning and metal lift-off using thermal scanning probe lithography. J. Vac. Sci. Technol., B 33, 02B102 (2015)CrossRef H. Wolf, C. Rawlings, P. Mensch, J.L. Hedrick, D.J. Coady, U. Duerig, A.W. Knoll, Sub-20 nm silicon patterning and metal lift-off using thermal scanning probe lithography. J. Vac. Sci. Technol., B 33, 02B102 (2015)CrossRef
165.
Zurück zum Zitat L.L. Cheong, P. Paul, F. Holzner, M. Despont, D.J. Coady, J.L. Hedrick, R. Allen, A.W. Knoll, U. Duerig, Thermal probe maskless lithography for 27.5 nm half-pitch Si technology. Nano Lett. 13, 4485–4491 (2013)ADSCrossRef L.L. Cheong, P. Paul, F. Holzner, M. Despont, D.J. Coady, J.L. Hedrick, R. Allen, A.W. Knoll, U. Duerig, Thermal probe maskless lithography for 27.5 nm half-pitch Si technology. Nano Lett. 13, 4485–4491 (2013)ADSCrossRef
166.
Zurück zum Zitat C. Rawlings, Y.K. Ryu, M. Rüegg, N. Lassaline, C. Schwemmer, U. Duerig, A.W. Knoll, Z. Durrani, C. Wang, D. Liu, M.E. Jones, Fast turnaround fabrication of silicon point-contact quantum-dot transistors using combined thermal scanning probe lithography and laser writing. Nanotechnology 29, 505302 (2018)CrossRef C. Rawlings, Y.K. Ryu, M. Rüegg, N. Lassaline, C. Schwemmer, U. Duerig, A.W. Knoll, Z. Durrani, C. Wang, D. Liu, M.E. Jones, Fast turnaround fabrication of silicon point-contact quantum-dot transistors using combined thermal scanning probe lithography and laser writing. Nanotechnology 29, 505302 (2018)CrossRef
167.
Zurück zum Zitat C.D. Rawlings, M. Zientek, M. Spieser, D. Urbonas, T. Stöferle, R.F. Mahrt, Y. Lisunova, J. Brugger, U. Duerig, A.W. Knoll, Control of the interaction strength of photonic molecules by nanometer precise 3D fabrication. Sci. Rep. 7, 16502-1–16502-9 (2017)ADSCrossRef C.D. Rawlings, M. Zientek, M. Spieser, D. Urbonas, T. Stöferle, R.F. Mahrt, Y. Lisunova, J. Brugger, U. Duerig, A.W. Knoll, Control of the interaction strength of photonic molecules by nanometer precise 3D fabrication. Sci. Rep. 7, 16502-1–16502-9 (2017)ADSCrossRef
168.
Zurück zum Zitat M.J. Skaug, C. Schwemmer, S. Fringes, C.D. Rawlings, A.W. Knoll, Nanofluidic rocking Brownian motors. Science 359, 1505–1508 (2018)ADSCrossRef M.J. Skaug, C. Schwemmer, S. Fringes, C.D. Rawlings, A.W. Knoll, Nanofluidic rocking Brownian motors. Science 359, 1505–1508 (2018)ADSCrossRef
169.
Zurück zum Zitat C. Schwemmer, S. Fringes, U. Duerig, Y.K. Ryu, A.W. Knoll, Experimental observation of current reversal in a rocking Brownian motor. Phys. Rev. Lett. 121, 104102 (2018)ADSCrossRef C. Schwemmer, S. Fringes, U. Duerig, Y.K. Ryu, A.W. Knoll, Experimental observation of current reversal in a rocking Brownian motor. Phys. Rev. Lett. 121, 104102 (2018)ADSCrossRef
170.
Zurück zum Zitat J.E. Shaw, P.N. Stavrinou, T.D. Anthopoulos, On-demand patterning of nanostructured pentacene transistors by scanning thermal lithography. Adv. Mater. 25, 552–558 (2013)CrossRef J.E. Shaw, P.N. Stavrinou, T.D. Anthopoulos, On-demand patterning of nanostructured pentacene transistors by scanning thermal lithography. Adv. Mater. 25, 552–558 (2013)CrossRef
171.
Zurück zum Zitat Z. Wei, D. Wang, S. Kim, S.-Y. Kim, Y. Hu, M.K. Yakes, A.R. Laracuente, Z. Dai, S.R. Marder, C. Berger, W.P. King, W.A. de Heer, P.E. Sheehan, E. Riedo, Nanoscale tunable reduction of graphene oxide for graphene electronics. Science 328, 1373–1376 (2010)ADSCrossRef Z. Wei, D. Wang, S. Kim, S.-Y. Kim, Y. Hu, M.K. Yakes, A.R. Laracuente, Z. Dai, S.R. Marder, C. Berger, W.P. King, W.A. de Heer, P.E. Sheehan, E. Riedo, Nanoscale tunable reduction of graphene oxide for graphene electronics. Science 328, 1373–1376 (2010)ADSCrossRef
172.
Zurück zum Zitat F. Holzner, C. Kuemin, P. Paul, J.L. Hedrick, H. Wolf, N.D. Spencer, U. Duerig, A.W. Knoll, Directed placement of gold nanorods using a removable template for guided assembly. Nano Lett. 11, 3957–3962 (2011)ADSCrossRef F. Holzner, C. Kuemin, P. Paul, J.L. Hedrick, H. Wolf, N.D. Spencer, U. Duerig, A.W. Knoll, Directed placement of gold nanorods using a removable template for guided assembly. Nano Lett. 11, 3957–3962 (2011)ADSCrossRef
173.
Zurück zum Zitat S. Gottlieb, M. Lorenzoni, L. Evangelio, M. Fernández-Regúlez, Y.K. Ryu, C. Rawlings, M. Spieser, A.W. Knoll, F. Perez-Murano, Thermal scanning probe lithography for the directed self-assembly of block copolymers. Nanotechnology 28, 175301-1–175301-9 (2017)ADS S. Gottlieb, M. Lorenzoni, L. Evangelio, M. Fernández-Regúlez, Y.K. Ryu, C. Rawlings, M. Spieser, A.W. Knoll, F. Perez-Murano, Thermal scanning probe lithography for the directed self-assembly of block copolymers. Nanotechnology 28, 175301-1–175301-9 (2017)ADS
174.
Zurück zum Zitat S.T. Zimmermann, D.W.R. Balkenende, A. Lavrenova, C. Weder, J. Brugger, Nanopatterning of a stimuli-responsive fluorescent supramolecular polymer by thermal scanning probe lithography. ACS Appl. Mater. Interfaces. 9(47), 41454–41461 (2017)CrossRef S.T. Zimmermann, D.W.R. Balkenende, A. Lavrenova, C. Weder, J. Brugger, Nanopatterning of a stimuli-responsive fluorescent supramolecular polymer by thermal scanning probe lithography. ACS Appl. Mater. Interfaces. 9(47), 41454–41461 (2017)CrossRef
175.
Zurück zum Zitat E.B. Cooper, S.R. Manalis, H. Fang, H. Dai, K. Matsumoto, S.C. Minne, T. Hunt, C.F. Quate, Terabit-per-square-inch data storage with the atomic force microscope. Appl. Phys. Lett. 75, 3566–3568 (1999)ADSCrossRef E.B. Cooper, S.R. Manalis, H. Fang, H. Dai, K. Matsumoto, S.C. Minne, T. Hunt, C.F. Quate, Terabit-per-square-inch data storage with the atomic force microscope. Appl. Phys. Lett. 75, 3566–3568 (1999)ADSCrossRef
176.
Zurück zum Zitat T.-H. Fang, K.-T. Wu, Local oxidation characteristics on titanium nitride film by electrochemical nanolithography with carbon nanotube tip. Electrochem. Commun. 8, 173–178 (2006)CrossRef T.-H. Fang, K.-T. Wu, Local oxidation characteristics on titanium nitride film by electrochemical nanolithography with carbon nanotube tip. Electrochem. Commun. 8, 173–178 (2006)CrossRef
177.
Zurück zum Zitat G. Rius, M. Lorenzoni, S. Matsui, M. Tanemura, F. Perez-Murano, Boosting the local anodic oxidation of silicon through carbon nanofiber atomic force microscopy probes. Beilstein J. Nanotechnol. 6, 215–222 (2015)CrossRef G. Rius, M. Lorenzoni, S. Matsui, M. Tanemura, F. Perez-Murano, Boosting the local anodic oxidation of silicon through carbon nanofiber atomic force microscopy probes. Beilstein J. Nanotechnol. 6, 215–222 (2015)CrossRef
178.
Zurück zum Zitat A.J. Ulrich, A.D. Radadia, Conductive polycrystalline diamond probes for local anodic oxidation lithography. Nanotechnology 26, 465201-1–465201-13 (2015)ADSCrossRef A.J. Ulrich, A.D. Radadia, Conductive polycrystalline diamond probes for local anodic oxidation lithography. Nanotechnology 26, 465201-1–465201-13 (2015)ADSCrossRef
179.
Zurück zum Zitat J.A. Vicary, M.J. Miles, Real-time nanofabrication with high-speed atomic force microscopy. Nanotechnology 20, 095302-1–095302-5 (2009)ADSCrossRef J.A. Vicary, M.J. Miles, Real-time nanofabrication with high-speed atomic force microscopy. Nanotechnology 20, 095302-1–095302-5 (2009)ADSCrossRef
180.
Zurück zum Zitat S.C. Minne, J.D. Adams, G. Yaralioglu, S.R. Manalis, A. Atalar, C.F. Quate, Centimeter scale atomic force microscope imaging and lithography. Appl. Phys. Lett. 73, 1742–1744 (1998)ADSCrossRef S.C. Minne, J.D. Adams, G. Yaralioglu, S.R. Manalis, A. Atalar, C.F. Quate, Centimeter scale atomic force microscope imaging and lithography. Appl. Phys. Lett. 73, 1742–1744 (1998)ADSCrossRef
181.
Zurück zum Zitat F. Huo, Z. Zheng, G. Zheng, L.R. Giam, H. Zhang, C.A. Mirkin, Polymer pen lithography. Science 321, 1658–1660 (2008)ADSCrossRef F. Huo, Z. Zheng, G. Zheng, L.R. Giam, H. Zhang, C.A. Mirkin, Polymer pen lithography. Science 321, 1658–1660 (2008)ADSCrossRef
182.
Zurück zum Zitat J. Martinez, N.S. Losilla, F. Biscarini, G. Schmidt, T. Borzenko, L.W. Molenkamp, R. Garcia, Development of a parallel local oxidation nanolithography instrument. Rev. Sci. Instrum. 77, 086106-1–086106-3 (2006)ADSCrossRef J. Martinez, N.S. Losilla, F. Biscarini, G. Schmidt, T. Borzenko, L.W. Molenkamp, R. Garcia, Development of a parallel local oxidation nanolithography instrument. Rev. Sci. Instrum. 77, 086106-1–086106-3 (2006)ADSCrossRef
183.
Zurück zum Zitat A. Zeira, D. Chowdhury, R. Maoz, J. Sagiv, Contact electrochemical replication of hydrophilic-hydrophobic monolayer patterns. ACS Nano 2, 2554–2568 (2008)CrossRef A. Zeira, D. Chowdhury, R. Maoz, J. Sagiv, Contact electrochemical replication of hydrophilic-hydrophobic monolayer patterns. ACS Nano 2, 2554–2568 (2008)CrossRef
184.
Zurück zum Zitat H. Sato, S.E. Vasko, M. Rolandi, Wafer scale direct-write of Ge and Si nanostructures with conducting stamps and a modified mask aligner. Nano Research 6, 263–268 (2013)CrossRef H. Sato, S.E. Vasko, M. Rolandi, Wafer scale direct-write of Ge and Si nanostructures with conducting stamps and a modified mask aligner. Nano Research 6, 263–268 (2013)CrossRef
185.
Zurück zum Zitat M. Kaestner, M. Hofer, I.W. Rangelow, Nanolithography by scanning probes on calixarene molecular glass resist using mix-and-match lithography. J. Micro/Nanolith. MEMS MOEMS 12, 031111-1–031111-13 (2013)ADSCrossRef M. Kaestner, M. Hofer, I.W. Rangelow, Nanolithography by scanning probes on calixarene molecular glass resist using mix-and-match lithography. J. Micro/Nanolith. MEMS MOEMS 12, 031111-1–031111-13 (2013)ADSCrossRef
Metadaten
Titel
Oxidation and Thermal Scanning Probe Lithography for High-Resolution Nanopatterning and Nanodevices
verfasst von
Yu Kyoung Ryu
Armin Wolfgang Knoll
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-15612-1_5