Skip to main content
Erschienen in: Physics of Metals and Metallography 13/2018

01.12.2018 | STRENGTH AND PLASTICITY

Oxide-Dispersion Strengthened Radiation-Resistant Steels

verfasst von: V. V. Sagaradze, K. A. Kozlov, N. V. Kataeva

Erschienen in: Physics of Metals and Metallography | Ausgabe 13/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The better characteristics of the long-term strength of the EP-450-ODS (oxide dispersion strengthened) steel are determined compared to the well-known oxygen-free reactor steels. Using the Mössbauer analysis of the deformed powder mixture 56Fe3O4 + 57Fe, the possibility of the deformation-induced dissolution of iron oxides in the steel matrix, which makes it possible to obtain high quality ODS steels in the process of subsequent high-temperature annealing (sintering), is shown. The enhanced strength characteristics are obtained in recrystallized samples of ODS iron (YS0.2 ~ 570 MPa, UTS ~ 632 MPa) in the absence of any other alloying elements except for oxygen of air.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S. Suryanarayana, Mechanical Alloying and Milling (Marcel Dekker, New York, 2004).CrossRef S. Suryanarayana, Mechanical Alloying and Milling (Marcel Dekker, New York, 2004).CrossRef
2.
Zurück zum Zitat J. S. Benjamin, “Fundamental of mechanical alloying,” Mater. Sci. Forum 88–90, 1–17 (1992).CrossRef J. S. Benjamin, “Fundamental of mechanical alloying,” Mater. Sci. Forum 88–90, 1–17 (1992).CrossRef
3.
Zurück zum Zitat S. Ukai, M. Harada, H. Okada et al., “Alloying design of oxide dispersion strengthened ferritic steel for long life FBRs core materials,” J. Nucl. Mater. 204, 65–73 (1993).CrossRef S. Ukai, M. Harada, H. Okada et al., “Alloying design of oxide dispersion strengthened ferritic steel for long life FBRs core materials,” J. Nucl. Mater. 204, 65–73 (1993).CrossRef
4.
Zurück zum Zitat S. Ukai, M. Harada, H. Okada et al., “Tube manufacturing and mechanical properties of oxide dispersion strengthened ferritic steel,” J. Nucl. Mater. 204, 74–82 (1993).CrossRef S. Ukai, M. Harada, H. Okada et al., “Tube manufacturing and mechanical properties of oxide dispersion strengthened ferritic steel,” J. Nucl. Mater. 204, 74–82 (1993).CrossRef
5.
Zurück zum Zitat V. I. Shalaev, V. V. Sagaradze, T. N. Kochetkova, N. F. Vil’danova, T. Yun, S. Jiguang, and C. Vang, “Structure and creep of stainless steels dispersion-strengthened with yttrium oxides,” Phys. Met. Metallogr. 91, 314–320 (2001). V. I. Shalaev, V. V. Sagaradze, T. N. Kochetkova, N. F. Vil’danova, T. Yun, S. Jiguang, and C. Vang, “Structure and creep of stainless steels dispersion-strengthened with yttrium oxides,” Phys. Met. Metallogr. 91, 314–320 (2001).
6.
Zurück zum Zitat V. V. Sagaradze, V. I. Shalaev, V. L. Arbuzov, and B. N. Goshchitskii, Y. Tian, W. Qun, and S. Jiguang, “ Radiation resistance and thermal creep of ODS ferritic steels,” J. Nucl. Mater. 295, 265–272 (2001).CrossRef V. V. Sagaradze, V. I. Shalaev, V. L. Arbuzov, and B. N. Goshchitskii, Y. Tian, W. Qun, and S. Jiguang, “ Radiation resistance and thermal creep of ODS ferritic steels,” J. Nucl. Mater. 295, 265–272 (2001).CrossRef
7.
Zurück zum Zitat B. N. Goshchitskii, V. V. Sagaradze, V. I. Shalaev, and V. L. Arbuzov, Y. Tian, S. Jiguang, and W. Qun, “Structure, radiation resistance and thermal creep of ODS ferritic steels,” J. Nucl. Mater. 307–311, 783–787 (2002).CrossRef B. N. Goshchitskii, V. V. Sagaradze, V. I. Shalaev, and V. L. Arbuzov, Y. Tian, S. Jiguang, and W. Qun, “Structure, radiation resistance and thermal creep of ODS ferritic steels,” J. Nucl. Mater. 307–311, 783–787 (2002).CrossRef
8.
Zurück zum Zitat V. S. Ageev, N. F. Vil’danova, K. A. Kozlov, T. N. Kochetkova, A. A. Nikitina, V. V. Sagaradze, B. V. Safronov, V. V. Tsvelev, and A. P. Chukanov, “Structure and thermal creep of the oxide-dispersion-strengthened EP-450 reactor steel,” Phys. Met. Metallogr. 106, 318 – 325 (2008).CrossRef V. S. Ageev, N. F. Vil’danova, K. A. Kozlov, T. N. Kochetkova, A. A. Nikitina, V. V. Sagaradze, B. V. Safronov, V. V. Tsvelev, and A. P. Chukanov, “Structure and thermal creep of the oxide-dispersion-strengthened EP-450 reactor steel,” Phys. Met. Metallogr. 106, 318 – 325 (2008).CrossRef
9.
Zurück zum Zitat M. K. Miller, D. T. Hoelzer, S. S. Babu, E. A. Kenik, and K. F. Russell, High Temperature Microstructural Stability of a MA/ODS Ferritic Alloy. High Temperature Alloys: Processing for Properties, Ed by G. E. Fuchs and J. B. Wahl (The Minerals, Metals & Materials Society, 2003). M. K. Miller, D. T. Hoelzer, S. S. Babu, E. A. Kenik, and K. F. Russell, High Temperature Microstructural Stability of a MA/ODS Ferritic Alloy. High Temperature Alloys: Processing for Properties, Ed by G. E. Fuchs and J. B. Wahl (The Minerals, Metals & Materials Society, 2003).
10.
Zurück zum Zitat S. Ohtsuka, M. Ukai, T. Fujiwara, T. Kaito, and T. Narita, “Improvement of 9Cr-ODS martensitic steel properties by controlling excess oxygen and titanium contents,” J. Nucl. Mater. 329–333, 372–376 (2004).CrossRef S. Ohtsuka, M. Ukai, T. Fujiwara, T. Kaito, and T. Narita, “Improvement of 9Cr-ODS martensitic steel properties by controlling excess oxygen and titanium contents,” J. Nucl. Mater. 329–333, 372–376 (2004).CrossRef
11.
Zurück zum Zitat K. Asano, Y. Kohno, A. Kohyama, T. Suzuki, and H. Kusanagi, “Microstructural evolution of an oxide dispersion strengthened steel under charged particles irradiation,” J. Nucl. Mater. 155–157, 928–934 (1988).CrossRef K. Asano, Y. Kohno, A. Kohyama, T. Suzuki, and H. Kusanagi, “Microstructural evolution of an oxide dispersion strengthened steel under charged particles irradiation,” J. Nucl. Mater. 155–157, 928–934 (1988).CrossRef
12.
Zurück zum Zitat D. K. H. Mukhopadhyay, F. Froes, and D. S. Gelles, “Development of oxide dispersion strengthened ferritic steel for fusion,” J. Nucl. Mater. 258–263, 1209–1215 (1998). D. K. H. Mukhopadhyay, F. Froes, and D. S. Gelles, “Development of oxide dispersion strengthened ferritic steel for fusion,” J. Nucl. Mater. 258–263, 1209–1215 (1998).
13.
Zurück zum Zitat I. Monnet, P. Dubuisson, Y. Serruys, M. O. Ruault, O. Kaitasov, and B. Jouffrey, “Microstractural investigation of the stability under irradiation of oxide dispersion strengthened ferritic steels,” J. Nucl. Mater. 335, 311–321 (2004).CrossRef I. Monnet, P. Dubuisson, Y. Serruys, M. O. Ruault, O. Kaitasov, and B. Jouffrey, “Microstractural investigation of the stability under irradiation of oxide dispersion strengthened ferritic steels,” J. Nucl. Mater. 335, 311–321 (2004).CrossRef
14.
Zurück zum Zitat C. Crayton, E. Rath, I. Chu, and S. Launois, “Microstructural evolution of Y2O3 and MgAl2O4 ODS EUROFER steels during their elaboration by mechanical milling and hot isostatic pressing,” J. Nucl. Mater. 335, 83–102 (2004).CrossRef C. Crayton, E. Rath, I. Chu, and S. Launois, “Microstructural evolution of Y2O3 and MgAl2O4 ODS EUROFER steels during their elaboration by mechanical milling and hot isostatic pressing,” J. Nucl. Mater. 335, 83–102 (2004).CrossRef
15.
Zurück zum Zitat X. Mao, Y. B. Chun, C. H. Han, and J. Jang, “Precipitation behavior of oxide dispersion strengthened alloy 617,” J. Mater. Sci. 52, 13 626–13 635 (2017).CrossRef X. Mao, Y. B. Chun, C. H. Han, and J. Jang, “Precipitation behavior of oxide dispersion strengthened alloy 617,” J. Mater. Sci. 52, 13 626–13 635 (2017).CrossRef
16.
Zurück zum Zitat A. J. London, S. Lozano-Perez, M. P. Moody, S. Amirthapandian, B. K. Panigrahi, C. S. Sundar, and C. R. M. Grovenor, “Quantification of oxide particle composition in model oxide dispersion strengthened steel alloys,” Ultramicroscopy 159, 360–367 (2015).CrossRef A. J. London, S. Lozano-Perez, M. P. Moody, S. Amirthapandian, B. K. Panigrahi, C. S. Sundar, and C. R. M. Grovenor, “Quantification of oxide particle composition in model oxide dispersion strengthened steel alloys,” Ultramicroscopy 159, 360–367 (2015).CrossRef
17.
Zurück zum Zitat A. J. London, B. K. Panigrahi, C. C. Tang, C. Murray, and C. R. M. Grovenor, “Glancing angle XRD analysis of particle stability under self-iron irradiation in oxide dispersion strengthened alloys,” Scr. Mater. 110, 24–27 (2016).CrossRef A. J. London, B. K. Panigrahi, C. C. Tang, C. Murray, and C. R. M. Grovenor, “Glancing angle XRD analysis of particle stability under self-iron irradiation in oxide dispersion strengthened alloys,” Scr. Mater. 110, 24–27 (2016).CrossRef
18.
Zurück zum Zitat T. Yamashiro, S. Ukai, N. Oono, S. Ohtsuka, and T. Kaito, “Microstructural stability of 11Cr ODS steel,” J. Nucl. Mater. 472, 247–251 (2016).CrossRef T. Yamashiro, S. Ukai, N. Oono, S. Ohtsuka, and T. Kaito, “Microstructural stability of 11Cr ODS steel,” J. Nucl. Mater. 472, 247–251 (2016).CrossRef
19.
Zurück zum Zitat V. V. Sagaradze, T. N. Kochetkova, N. V. Kataeva, K. A. Kozlov, V. A. Zavalishin, N. F. Vil’danova, V. S. Ageev, M. V. Leont’eva-Smirnova and A. A. Nikitina, “Structure and creep of russian reactor steels with a bcc structure,” Phys. Met. Metallogr. 118, 494–506 (2017).CrossRef V. V. Sagaradze, T. N. Kochetkova, N. V. Kataeva, K. A. Kozlov, V. A. Zavalishin, N. F. Vil’danova, V. S. Ageev, M. V. Leont’eva-Smirnova and A. A. Nikitina, “Structure and creep of russian reactor steels with a bcc structure,” Phys. Met. Metallogr. 118, 494–506 (2017).CrossRef
20.
Zurück zum Zitat V. V. Sagaradze, A. V. Litvinov, V. A. Shabashov, N. F. Vil’danova, A. G. Mukoseev, and K. A. Kozlov, “New method of mechanical alloying of ODS steels using iron oxides,” Phys. Met. Metallogr. 101, 566–576 (2006).CrossRef V. V. Sagaradze, A. V. Litvinov, V. A. Shabashov, N. F. Vil’danova, A. G. Mukoseev, and K. A. Kozlov, “New method of mechanical alloying of ODS steels using iron oxides,” Phys. Met. Metallogr. 101, 566–576 (2006).CrossRef
21.
Zurück zum Zitat K. A. Kozlov, V. A. Shabashov, A. V. Litvinov, and V. V. Sagaradze, “Phase transformations in the hematite–metal system during mechanical alloying,” Phys. Met. Metallogr. 107, 384–393 (2009).CrossRef K. A. Kozlov, V. A. Shabashov, A. V. Litvinov, and V. V. Sagaradze, “Phase transformations in the hematite–metal system during mechanical alloying,” Phys. Met. Metallogr. 107, 384–393 (2009).CrossRef
22.
Zurück zum Zitat V. A. Shabashov, A. V. Litvinov, A. G. Mukoseev, and V. V. Sagaradze, “Phase transformations in iron oxide–metal systems during intensive plastic deformation,” Mater. Sci. Eng., A 361, 136–146 (2003).CrossRef V. A. Shabashov, A. V. Litvinov, A. G. Mukoseev, and V. V. Sagaradze, “Phase transformations in iron oxide–metal systems during intensive plastic deformation,” Mater. Sci. Eng., A 361, 136–146 (2003).CrossRef
23.
Zurück zum Zitat V. A. Shabashov, A. V. Litvinov, A. G. Mukoseev, V. V. Sagaradze, and N. F. Vil’danova, “Deformation-induced phase transitions in the iron oxide–metal system,” Phys. Met. Metallogr. 98, 580–595 (2004). V. A. Shabashov, A. V. Litvinov, A. G. Mukoseev, V. V. Sagaradze, and N. F. Vil’danova, “Deformation-induced phase transitions in the iron oxide–metal system,” Phys. Met. Metallogr. 98, 580–595 (2004).
24.
Zurück zum Zitat V. V. Sagaradze, V. A. Shabashov, A. V. Litvtnov, B. N. Goshchitskii, V. L. Arbuzov, A. V. Kozlov, O. S. Korostin, and V. S. Ageev, RF Patent No. 2307183, Byull. Izobret., No. 27 (2007). V. V. Sagaradze, V. A. Shabashov, A. V. Litvtnov, B. N. Goshchitskii, V. L. Arbuzov, A. V. Kozlov, O. S. Korostin, and V. S. Ageev, RF Patent No. 2307183, Byull. Izobret., No. 27 (2007).
25.
Zurück zum Zitat Z. A. Munir and D. V. Quach, “Electric current activation of sintering: A review of the pulsed electric current sintering process,” J. Am. Ceram. Soc. 94, 1–19 (2011).CrossRef Z. A. Munir and D. V. Quach, “Electric current activation of sintering: A review of the pulsed electric current sintering process,” J. Am. Ceram. Soc. 94, 1–19 (2011).CrossRef
Metadaten
Titel
Oxide-Dispersion Strengthened Radiation-Resistant Steels
verfasst von
V. V. Sagaradze
K. A. Kozlov
N. V. Kataeva
Publikationsdatum
01.12.2018
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 13/2018
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X18130112

Weitere Artikel der Ausgabe 13/2018

Physics of Metals and Metallography 13/2018 Zur Ausgabe

ELECTRICAL AND MAGNETIC PROPERTIES

Spin Waves in Magnetic Films with Antidots