Skip to main content
Erschienen in: Journal of Materials Science 3/2018

25.09.2017 | Ceramics

Oxygen ion mobility and conductivity prediction in cubic yttria-stabilized zirconia single crystals

verfasst von: Mohammad Asadikiya, Yu Zhong

Erschienen in: Journal of Materials Science | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The CALPHAD (calculation of phase diagrams) approach is applied to predict the oxygen vacancy concentration at different temperatures and yttria concentrations of cubic yttria-stabilized zirconia (c-YSZ) single crystals. The quantitative mobility diagrams of oxygen ions are developed in a wide range of temperature and yttria concentration, using the experimental data from the literature. Therefore, the ionic conductivity of c-YSZ single crystals is predicted, using the mobility and oxygen vacancy concentration. Particularly, the conductivity of low-yttria c-YSZ is predicted by applying the CALPHAD approach for the first time. The conductivity prediction of low-yttria c-YSZ can be crucial, since new applications may be designed based on this new information. The activation energy and pre-exponential factor diagrams versus yttria concentration are also plotted.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Etsell T, Flengas SN (1970) Electrical properties of solid oxide electrolytes. Chem Rev 70(3):339–376CrossRef Etsell T, Flengas SN (1970) Electrical properties of solid oxide electrolytes. Chem Rev 70(3):339–376CrossRef
2.
Zurück zum Zitat Nakamura A, Wagner JB (1986) Defect structure, ionic conductivity, and diffusion in yttria stabilized zirconia and related oxide electrolytes with fluorite structure. J Electrochem Soc 133(8):1542–1548CrossRef Nakamura A, Wagner JB (1986) Defect structure, ionic conductivity, and diffusion in yttria stabilized zirconia and related oxide electrolytes with fluorite structure. J Electrochem Soc 133(8):1542–1548CrossRef
4.
Zurück zum Zitat Subbarao E, Maiti H (1984) Solid electrolytes with oxygen ion conduction. Solid State Ion 11(4):317–338CrossRef Subbarao E, Maiti H (1984) Solid electrolytes with oxygen ion conduction. Solid State Ion 11(4):317–338CrossRef
5.
Zurück zum Zitat Wagner C (1943) Über den Mechanismus der elektrischen Stromleitung im Nernststift. Naturwissenschaften 31(23):265–268CrossRef Wagner C (1943) Über den Mechanismus der elektrischen Stromleitung im Nernststift. Naturwissenschaften 31(23):265–268CrossRef
6.
Zurück zum Zitat Suzuki Y, Kohzaki T (1993) Electrical conduction behavior and phase transition of Y2O3-stabilized ZrO2. Solid State Ion 59(3):307–312CrossRef Suzuki Y, Kohzaki T (1993) Electrical conduction behavior and phase transition of Y2O3-stabilized ZrO2. Solid State Ion 59(3):307–312CrossRef
7.
Zurück zum Zitat Suzuki Y (1997) Phase transition temperature of ZrO2–Y2O3 solid solutions (2.4–6 mol% Y2O3). Solid State Ion 95(3):227–230CrossRef Suzuki Y (1997) Phase transition temperature of ZrO2–Y2O3 solid solutions (2.4–6 mol% Y2O3). Solid State Ion 95(3):227–230CrossRef
8.
Zurück zum Zitat Suzuki Y (1995) Phase transition temperature of fluorite-type ZrO2–Y2O3 solid solutions containing 8–44 mol% Y2O3. Solid State Ion 81(3):211–216CrossRef Suzuki Y (1995) Phase transition temperature of fluorite-type ZrO2–Y2O3 solid solutions containing 8–44 mol% Y2O3. Solid State Ion 81(3):211–216CrossRef
9.
Zurück zum Zitat Pimenov A et al (1998) Ionic conductivity and relaxations in ZrO2–Y2O3 solid solutions. Solid State Ion 109(1):111–118CrossRef Pimenov A et al (1998) Ionic conductivity and relaxations in ZrO2–Y2O3 solid solutions. Solid State Ion 109(1):111–118CrossRef
10.
Zurück zum Zitat Kwon OH, Choi GM (2006) Electrical conductivity of thick film YSZ. Solid State Ion 177(35):3057–3062CrossRef Kwon OH, Choi GM (2006) Electrical conductivity of thick film YSZ. Solid State Ion 177(35):3057–3062CrossRef
11.
Zurück zum Zitat Luo J, Almond DP, Stevens R (2000) Ionic mobilities and association energies from an analysis of electrical impedance of ZrO2–Y2O3 alloys. J Am Ceram Soc 83(7):1703–1708CrossRef Luo J, Almond DP, Stevens R (2000) Ionic mobilities and association energies from an analysis of electrical impedance of ZrO2–Y2O3 alloys. J Am Ceram Soc 83(7):1703–1708CrossRef
12.
Zurück zum Zitat Park JH, Blumenthal RN (1989) Electronic transport in 8 mol% Y2O3–ZrO2. J Electrochem Soc 136(10):2867–2876CrossRef Park JH, Blumenthal RN (1989) Electronic transport in 8 mol% Y2O3–ZrO2. J Electrochem Soc 136(10):2867–2876CrossRef
15.
Zurück zum Zitat Lee E, Prinz FB, Cai W (2011) Enhancing ionic conductivity of bulk single-crystal yttria-stabilized zirconia by tailoring dopant distribution. Phys Rev B 83(5):052301CrossRef Lee E, Prinz FB, Cai W (2011) Enhancing ionic conductivity of bulk single-crystal yttria-stabilized zirconia by tailoring dopant distribution. Phys Rev B 83(5):052301CrossRef
16.
Zurück zum Zitat Lee E, Prinz FB, Cai W (2012) Ab initio kinetic Monte Carlo model of ionic conduction in bulk yttria-stabilized zirconia. Model Simul Mater Sci Eng 20(6):065006CrossRef Lee E, Prinz FB, Cai W (2012) Ab initio kinetic Monte Carlo model of ionic conduction in bulk yttria-stabilized zirconia. Model Simul Mater Sci Eng 20(6):065006CrossRef
17.
Zurück zum Zitat Meyer M, Nicoloso N, Jaenisch V (1997) Percolation model for the anomalous conductivity of fluorite-related oxides. Phys Rev B 56(10):5961CrossRef Meyer M, Nicoloso N, Jaenisch V (1997) Percolation model for the anomalous conductivity of fluorite-related oxides. Phys Rev B 56(10):5961CrossRef
18.
Zurück zum Zitat Pornprasertsuk R et al (2005) Predicting ionic conductivity of solid oxide fuel cell electrolyte from first principles. J Appl Phys 98(10):103513CrossRef Pornprasertsuk R et al (2005) Predicting ionic conductivity of solid oxide fuel cell electrolyte from first principles. J Appl Phys 98(10):103513CrossRef
19.
Zurück zum Zitat Devanathan R et al (2006) Computer simulation of defects and oxygen transport in yttria-stabilized zirconia. Solid State Ion 177(15):1251–1258CrossRef Devanathan R et al (2006) Computer simulation of defects and oxygen transport in yttria-stabilized zirconia. Solid State Ion 177(15):1251–1258CrossRef
20.
Zurück zum Zitat Huang C, Wei W, Chen C (2010) Simulation of atomic-scale defects in the clustering and oxygen jumping process of 8 mol% yttria-stabilised zirconia. J Ceram Process Res 11(6):641–647 Huang C, Wei W, Chen C (2010) Simulation of atomic-scale defects in the clustering and oxygen jumping process of 8 mol% yttria-stabilised zirconia. J Ceram Process Res 11(6):641–647
21.
Zurück zum Zitat Huang HC et al (2014) Molecular dynamics simulation of oxygen ion diffusion in yttria stabilized zirconia single crystals and bicrystals. Fuel Cells 14(4):574–580CrossRef Huang HC et al (2014) Molecular dynamics simulation of oxygen ion diffusion in yttria stabilized zirconia single crystals and bicrystals. Fuel Cells 14(4):574–580CrossRef
22.
Zurück zum Zitat Darvish S et al (2015) Quantitative defect chemistry analysis and electronic conductivity prediction of La0.8Sr0.2MnO3±δ Perovskite. J Electrochem Soc 162(9):E134–E140CrossRef Darvish S et al (2015) Quantitative defect chemistry analysis and electronic conductivity prediction of La0.8Sr0.2MnO3±δ Perovskite. J Electrochem Soc 162(9):E134–E140CrossRef
23.
Zurück zum Zitat Darvish S, Saxena SK, Zhong Y (2015) Quantitative analysis of (La0.8Sr0.2)0.98 MnO3±δ electronic conductivity using CALPHAD approach. In: Developments in strategic ceramic materials: a collection of papers presented at the 39th international conference on advanced ceramics and composites. Wiley Online Library Darvish S, Saxena SK, Zhong Y (2015) Quantitative analysis of (La0.8Sr0.2)0.98 MnO3±δ electronic conductivity using CALPHAD approach. In: Developments in strategic ceramic materials: a collection of papers presented at the 39th international conference on advanced ceramics and composites. Wiley Online Library
24.
Zurück zum Zitat Barsoum M (2002) Fundamentals of ceramics. CRC Press, Boston Barsoum M (2002) Fundamentals of ceramics. CRC Press, Boston
25.
Zurück zum Zitat Casselton R (1970) Low field DC conduction in yttria-stabilized zirconia. Physica Status Solidi (a). 2(3):571–585CrossRef Casselton R (1970) Low field DC conduction in yttria-stabilized zirconia. Physica Status Solidi (a). 2(3):571–585CrossRef
26.
Zurück zum Zitat Zhang C et al (2007) Ionic conductivity and its temperature dependence of atmospheric plasma-sprayed yttria stabilized zirconia electrolyte. Mater Sci Eng B 137(1):24–30CrossRef Zhang C et al (2007) Ionic conductivity and its temperature dependence of atmospheric plasma-sprayed yttria stabilized zirconia electrolyte. Mater Sci Eng B 137(1):24–30CrossRef
27.
Zurück zum Zitat Kilner JA, Steele BCH (1981) Nonstoichiometric oxides. Academic Press, New York Kilner JA, Steele BCH (1981) Nonstoichiometric oxides. Academic Press, New York
28.
Zurück zum Zitat Jansson B (1984) Trita-Mac-0234. Royal Institute of Technology, Stockholm Jansson B (1984) Trita-Mac-0234. Royal Institute of Technology, Stockholm
29.
Zurück zum Zitat Bale CW et al (2009) FactSage thermochemical software and databases —recent developments. Calphad 33(2):295–311CrossRef Bale CW et al (2009) FactSage thermochemical software and databases —recent developments. Calphad 33(2):295–311CrossRef
30.
Zurück zum Zitat Asadikiya M et al (2017) Thermodynamic modeling and investigation of the oxygen effect on the sintering of B4C. J Alloy Compd 699:1022–1029CrossRef Asadikiya M et al (2017) Thermodynamic modeling and investigation of the oxygen effect on the sintering of B4C. J Alloy Compd 699:1022–1029CrossRef
31.
Zurück zum Zitat Asadikiya M et al (2016) The role of CALPHAD approach in the sintering of B4C with SiC as a sintering aid by spark plasma sintering technique. Addit Manuf Strateg Technol Adv Ceram Ceram Trans 258:185–191CrossRef Asadikiya M et al (2016) The role of CALPHAD approach in the sintering of B4C with SiC as a sintering aid by spark plasma sintering technique. Addit Manuf Strateg Technol Adv Ceram Ceram Trans 258:185–191CrossRef
32.
Zurück zum Zitat Asadikiya M et al (2016) Phase diagram for a nano-yttria-stabilized zirconia system. RSC Adv 6(21):17438–17445CrossRef Asadikiya M et al (2016) Phase diagram for a nano-yttria-stabilized zirconia system. RSC Adv 6(21):17438–17445CrossRef
33.
Zurück zum Zitat Darvish S et al (2016) Thermodynamic prediction of the effect of CO2 to the stability of (La0.8Sr0.2)0.98MnO3±δ system. Int J Hydrog Energy 41(24):10239–10248CrossRef Darvish S et al (2016) Thermodynamic prediction of the effect of CO2 to the stability of (La0.8Sr0.2)0.98MnO3±δ system. Int J Hydrog Energy 41(24):10239–10248CrossRef
34.
Zurück zum Zitat Asadikiya M et al (2017) The effect of sintering parameters on spark plasma sintering of B4C. Ceram Int 43(14):11182–11188CrossRef Asadikiya M et al (2017) The effect of sintering parameters on spark plasma sintering of B4C. Ceram Int 43(14):11182–11188CrossRef
35.
Zurück zum Zitat Sabarou H et al (2017) Thermodynamic assessment of the chemical stability of (La0.8Sr0.2)0.98Crx Fe1−xO3±δ under oxygen transport membrane fabrication and operation conditions. Solid State Ion 310:1–9CrossRef Sabarou H et al (2017) Thermodynamic assessment of the chemical stability of (La0.8Sr0.2)0.98Crx Fe1−xO3±δ under oxygen transport membrane fabrication and operation conditions. Solid State Ion 310:1–9CrossRef
36.
Zurück zum Zitat Chen M, Hallstedt B, Gauckler LJ (2004) Thermodynamic modeling of the ZrO2–YO1.5 system. Solid State Ion 170(3):255–274CrossRef Chen M, Hallstedt B, Gauckler LJ (2004) Thermodynamic modeling of the ZrO2–YO1.5 system. Solid State Ion 170(3):255–274CrossRef
37.
Zurück zum Zitat Guo X, Maier J (2001) Grain boundary blocking effect in zirconia: a Schottky barrier analysis. J Electrochem Soc 148(3):E121–E126CrossRef Guo X, Maier J (2001) Grain boundary blocking effect in zirconia: a Schottky barrier analysis. J Electrochem Soc 148(3):E121–E126CrossRef
38.
Zurück zum Zitat Liou S, Worrell W (1989) Electrical properties of novel mixed-conducting oxides. Appl Phys A Mater Sci Process 49(1):25–31CrossRef Liou S, Worrell W (1989) Electrical properties of novel mixed-conducting oxides. Appl Phys A Mater Sci Process 49(1):25–31CrossRef
39.
Zurück zum Zitat Ramamoorthy R, Sundararaman D, Ramasamy S (1999) Ionic conductivity studies of ultrafine-grained yttria stabilized zirconia polymorphs. Solid State Ion 123(1):271–278CrossRef Ramamoorthy R, Sundararaman D, Ramasamy S (1999) Ionic conductivity studies of ultrafine-grained yttria stabilized zirconia polymorphs. Solid State Ion 123(1):271–278CrossRef
40.
Zurück zum Zitat Badwal SPS, Swain MV (1985) ZrO2–Y2O3: electrical conductivity of some fully and partially stabilized single grains. J Mater Sci Lett 4(4):487–489. doi:10.1007/BF00719752 CrossRef Badwal SPS, Swain MV (1985) ZrO2–Y2O3: electrical conductivity of some fully and partially stabilized single grains. J Mater Sci Lett 4(4):487–489. doi:10.​1007/​BF00719752 CrossRef
41.
Zurück zum Zitat Abelard P, Baumard J (1982) Study of the dc and ac electrical properties of an yttria-stabilized zirconia single crystal [(ZrO2)0.88–(Y2O3)0.12]. Phys Rev B 26(2):1005CrossRef Abelard P, Baumard J (1982) Study of the dc and ac electrical properties of an yttria-stabilized zirconia single crystal [(ZrO2)0.88–(Y2O3)0.12]. Phys Rev B 26(2):1005CrossRef
42.
Zurück zum Zitat Goodenough JB (2003) Oxide-ion electrolytes. Annu Rev Mater Res 33(1):91–128CrossRef Goodenough JB (2003) Oxide-ion electrolytes. Annu Rev Mater Res 33(1):91–128CrossRef
43.
Zurück zum Zitat Yashima M, Kakihana M, Yoshimura M (1996) Metastable-stable phase diagrams in the zirconia-containing systems utilized in solid-oxide fuel cell application. Solid State Ion. 86–88(PART 2):1131–1149CrossRef Yashima M, Kakihana M, Yoshimura M (1996) Metastable-stable phase diagrams in the zirconia-containing systems utilized in solid-oxide fuel cell application. Solid State Ion. 86–88(PART 2):1131–1149CrossRef
44.
Zurück zum Zitat Kawada T et al (1992) Reaction between solid oxide fuel cell materials. Solid State Ion 50(3–4):189–196CrossRef Kawada T et al (1992) Reaction between solid oxide fuel cell materials. Solid State Ion 50(3–4):189–196CrossRef
45.
Zurück zum Zitat Kröger F (1966) Electronic conductivity of calcia-stabilized zirconia. J Am Ceram Soc 49(4):215–218CrossRef Kröger F (1966) Electronic conductivity of calcia-stabilized zirconia. J Am Ceram Soc 49(4):215–218CrossRef
46.
Zurück zum Zitat Tien T, Subbarao E (1963) X-ray and electrical conductivity study of the fluorite phase in the system ZrO2–CaO. J Chem Phys 39(4):1041–1047CrossRef Tien T, Subbarao E (1963) X-ray and electrical conductivity study of the fluorite phase in the system ZrO2–CaO. J Chem Phys 39(4):1041–1047CrossRef
47.
Zurück zum Zitat Ioffe A, Rutman D, Karpachov S (1978) On the nature of the conductivity maximum in zirconia-based solid electrolytes. Electrochim Acta 23(2):141–142CrossRef Ioffe A, Rutman D, Karpachov S (1978) On the nature of the conductivity maximum in zirconia-based solid electrolytes. Electrochim Acta 23(2):141–142CrossRef
48.
Zurück zum Zitat Schmalzried H (1977) On correlation effects of vacancies in ionic crystals. Z Phys Chem 105(1–2):47–62CrossRef Schmalzried H (1977) On correlation effects of vacancies in ionic crystals. Z Phys Chem 105(1–2):47–62CrossRef
49.
Zurück zum Zitat Zhu J et al (2015) Probing local electrochemical activity within yttria-stabilized-zirconia via in situ high-temperature atomic force microscopy. J Mater Res 30(03):357–363CrossRef Zhu J et al (2015) Probing local electrochemical activity within yttria-stabilized-zirconia via in situ high-temperature atomic force microscopy. J Mater Res 30(03):357–363CrossRef
50.
Zurück zum Zitat Sawaguchi N, Ogawa H (2000) Simulated diffusion of oxide ions in YO1.5–ZrO2 at high temperature. Solid State Ion 128(1):183–189CrossRef Sawaguchi N, Ogawa H (2000) Simulated diffusion of oxide ions in YO1.5–ZrO2 at high temperature. Solid State Ion 128(1):183–189CrossRef
51.
Zurück zum Zitat Krishnamurthy R et al (2004) Oxygen diffusion in yttria-stabilized zirconia: a new simulation model. J Am Ceram Soc 87(10):1821–1830CrossRef Krishnamurthy R et al (2004) Oxygen diffusion in yttria-stabilized zirconia: a new simulation model. J Am Ceram Soc 87(10):1821–1830CrossRef
Metadaten
Titel
Oxygen ion mobility and conductivity prediction in cubic yttria-stabilized zirconia single crystals
verfasst von
Mohammad Asadikiya
Yu Zhong
Publikationsdatum
25.09.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 3/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1625-1

Weitere Artikel der Ausgabe 3/2018

Journal of Materials Science 3/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.