Skip to main content
Erschienen in: Wireless Personal Communications 1/2015

01.05.2015

Packet Forwarding Assurance in Delay Tolerant Networks

verfasst von: Hanjin Park, Yusung Kim, Euiyul Ko, Ikjun Yeom

Erschienen in: Wireless Personal Communications | Ausgabe 1/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In conventional TCP/IP networks, there is a differentiated service architecture for providing different levels of services. Similarly in Delay Tolerant Networks (DTNs), we need to provide differentiated services where the network resources are limited, particularly in buffer size. Since DTNs have their own network characteristics, such as multiple copy routings, and intermittently connection, the traditional differentiated service architecture does not apply. In this paper, we propose two simple schemes to provide a packet forwarding assurance in DTNs. The two proposed schemes are an absolute differentiation scheme, and a relative differentiation scheme. These schemes have a prioritization process when a packet is dropped from the local buffer at each node to provide a high priority to Assured Forwarding (AF) packet and a low priority to Best Effort packet. We show that the proposed algorithms can dynamically find the appropriate target delivery ratio for AF packets, which can provide forwarding assurance for AF packets while avoiding starvation of BE packets, without any global information even though network conditions are changing. We believe that our study is the initial step toward exploiting differentiation services in DTNs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
In this paper, we use epidemic routing under a random mobility model to deliver packets in DTNs. The random mobility model is useful to protect the location of a sensor from an opponent in a battlefield area. It is also helpful to find victims whose locations are unknown in a disaster area. In the random mobility scenarios, epidemic routing can achieve good performance with a proper buffer management policy [17].
 
2
Since there are frequent disruptions between nodes in DTN environment, TCP performance will be deteriorated. Thus, many previous researches on DTN assume UDP traffic instead of TCP traffic with UDP-based transport layer protocol [8, 29].
Table 1
Simulator parameters
Length of a side of the area
2,500 m
Transmission range
250 m
Routing
Epidemic routing
Drop policy
Drop the oldest packet
Mobility model
Random way-point
Traffic model
CBR (UDP traffic)
Number of nodes
(Default) 100 ranging from 16 to 256
Node speed
(Default) 10 m/s ranging from 2 to 32
Buffer size
(Default) 64 packets for each node, ranging from 8 to 128
Packet generation rate
0.01 per second (for BE only, or AF and BE by turns)
Deadline
400 s ranging from 100 to 500
Bandwidth
1.5 Mbps ranging from 12 Kbps to 1.5 Mbps
 
3
When GPS is available for each node, we can simply have synchronized creation time for packets created at different nodes. If GPS is not available, we can substitute the creation time with age, which means time spent in the network after creation. Age of a packet can be easily measured without synchronized clocks by \(\sum t_i\), where \(t_i\) is the time spent by the packet in each node buffer.
 
4
We can reasonably assume that join or leave operations of the nodes do not frequently occur during the estimation process.
 
5
Due to the random mobility assumption, the re-marked nodes can be chosen by randomly.
 
6
In Fig. 1b, when the number of nodes is less than 60, estimation and simulation result are not matched well because it is difficult to exactly estimate the number of nodes with small samples.
 
7
We omit the result of absolute differentiation scheme with varying deadline because the result of absolute differentiation scheme is almost similar to that of relative differentiation scheme.
 
8
Here, we omit the result of absolute differentiation algorithm for the better presentation because its result is very similar to that of relative differentiation algorithm.
 
Literatur
2.
Zurück zum Zitat Balasubramanian, A., Levine, B., & Venkataramani, A. (2010). Replication routing in dtns: A resource allocation approach. IEEE/ACM Transaction on Networking, 18(2), 596–609.CrossRef Balasubramanian, A., Levine, B., & Venkataramani, A. (2010). Replication routing in dtns: A resource allocation approach. IEEE/ACM Transaction on Networking, 18(2), 596–609.CrossRef
3.
Zurück zum Zitat Benamar, N., Singh, K. D., Benamar, M., Ouadghiri, D. E., & Bonnin, J. M. (2014). Routing protocols in vehicular delay tolerant networks: A comprehensive survey. Computer Communications, 48, 141–158.CrossRef Benamar, N., Singh, K. D., Benamar, M., Ouadghiri, D. E., & Bonnin, J. M. (2014). Routing protocols in vehicular delay tolerant networks: A comprehensive survey. Computer Communications, 48, 141–158.CrossRef
4.
Zurück zum Zitat Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z., & Weiss, W. (1998). An architecture for differentiated services. Network Working Group, RFC, 2475. Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z., & Weiss, W. (1998). An architecture for differentiated services. Network Working Group, RFC, 2475.
5.
Zurück zum Zitat Boldrini, C., Conti, M., Jacopini, J., & Passarella, A. (2007). Hibop: A history based routing protocol for opportunistic networks. In Proceedings of WoWMoM. Boldrini, C., Conti, M., Jacopini, J., & Passarella, A. (2007). Hibop: A history based routing protocol for opportunistic networks. In Proceedings of WoWMoM.
6.
Zurück zum Zitat Daly, E. M., & Haahr, M. (2007). Social network analysis for routing in disconnected delay-tolerant manets. In Proceedings of ACM MobiHoc. Daly, E. M., & Haahr, M. (2007). Social network analysis for routing in disconnected delay-tolerant manets. In Proceedings of ACM MobiHoc.
7.
Zurück zum Zitat Fall, K. (2003). A delay-tolerant network architecture for challenged internets. In: Proceedings of ACM SIGCOMM. Fall, K. (2003). A delay-tolerant network architecture for challenged internets. In: Proceedings of ACM SIGCOMM.
8.
Zurück zum Zitat Go, Y., Moon, Y., Nam, G., & Park, K. (2012). A disruption-tolerant transmission protocol for practical mobile data offloading. In: Proceedings of ACM MobiOpp. Go, Y., Moon, Y., Nam, G., & Park, K. (2012). A disruption-tolerant transmission protocol for practical mobile data offloading. In: Proceedings of ACM MobiOpp.
9.
Zurück zum Zitat Harri, J., Filali, F., & Bonnet, C. (2009). Mobility models for vehicular ad hoc networks: A survey and taxonomy. IEEE Communications Surveys Tutorials, 11(4), 19–41.CrossRef Harri, J., Filali, F., & Bonnet, C. (2009). Mobility models for vehicular ad hoc networks: A survey and taxonomy. IEEE Communications Surveys Tutorials, 11(4), 19–41.CrossRef
10.
Zurück zum Zitat Heinanen, J., Baker, F., Weiss, W., & Wrocklawski, J. (1999). Assured forwarding PHB group. Network Working Group, RFC 2597. Heinanen, J., Baker, F., Weiss, W., & Wrocklawski, J. (1999). Assured forwarding PHB group. Network Working Group, RFC 2597.
11.
Zurück zum Zitat Huang, H., Zhu, Y., Li, X., Li, M., & Wu, M. Y. (2010). Meta: A mobility model of metropolitan taxis extracted from gps traces. In: Proceedings of IEEE WCNC. Huang, H., Zhu, Y., Li, X., Li, M., & Wu, M. Y. (2010). Meta: A mobility model of metropolitan taxis extracted from gps traces. In: Proceedings of IEEE WCNC.
12.
Zurück zum Zitat Hui, P., Crowcroft, J., & Yoneki, E. (2011). Bubble rap: Social-based forwarding in delay-tolerant networks. IEEE Transactions on Mobile Computing, 10(11), 1576–1589.CrossRef Hui, P., Crowcroft, J., & Yoneki, E. (2011). Bubble rap: Social-based forwarding in delay-tolerant networks. IEEE Transactions on Mobile Computing, 10(11), 1576–1589.CrossRef
13.
Zurück zum Zitat Ivancic, W., Eddy, W. M., Wood, L., Stewart, D., Jackson, C., Northam, J., et al. (2008). Delay/diruption-tolerant network testing using a leo satellite. In Proceedings of ESTC. Ivancic, W., Eddy, W. M., Wood, L., Stewart, D., Jackson, C., Northam, J., et al. (2008). Delay/diruption-tolerant network testing using a leo satellite. In Proceedings of ESTC.
14.
Zurück zum Zitat Juang, P., Oki, H., Wang, Y., Martonosi, M., Peh, L. S., & Rubenstein, D. (2002). Energy-efficient computing for wildlife tracking: Design tradeoffs and early experiences with zebranet. In Proceedings of ASPLOS-X. Juang, P., Oki, H., Wang, Y., Martonosi, M., Peh, L. S., & Rubenstein, D. (2002). Energy-efficient computing for wildlife tracking: Design tradeoffs and early experiences with zebranet. In Proceedings of ASPLOS-X.
15.
Zurück zum Zitat Kesidis, G., Konstantopoulos, T., & Phoha, S. (2003). Surveillance coverage of sensor networks under a random mobility strategy. In Proceedings of IEEE sensors. Kesidis, G., Konstantopoulos, T., & Phoha, S. (2003). Surveillance coverage of sensor networks under a random mobility strategy. In Proceedings of IEEE sensors.
16.
Zurück zum Zitat Ko, E., Park, H., & Yeom, I. (2010). A new event-driven network simulator for delay-tolerant networks(dtns). In Proceedings of SIMUTools. Ko, E., Park, H., & Yeom, I. (2010). A new event-driven network simulator for delay-tolerant networks(dtns). In Proceedings of SIMUTools.
17.
Zurück zum Zitat Krifa, A., Baraka, C., & Spyropoulos, T. (2008). Optimal buffer management policies for delay tolerant networks. In Proceedings of IEEE SECON. Krifa, A., Baraka, C., & Spyropoulos, T. (2008). Optimal buffer management policies for delay tolerant networks. In Proceedings of IEEE SECON.
18.
Zurück zum Zitat Lee, K., Hong, S., Kim, S. J., Rhee, I., & Chong, S. (2009). Slaw: A new mobility model for human walks. In Proceedings of IEEE INFOCOM. Lee, K., Hong, S., Kim, S. J., Rhee, I., & Chong, S. (2009). Slaw: A new mobility model for human walks. In Proceedings of IEEE INFOCOM.
19.
Zurück zum Zitat Lee, K., Lee, J., Yi, Y., Rhee, I., & Chong, S. (2012). Mobile data offloading: How much can WiFi deliver? IEEE/ACM Transaction on Networking, 21(2), 536–550. Lee, K., Lee, J., Yi, Y., Rhee, I., & Chong, S. (2012). Mobile data offloading: How much can WiFi deliver? IEEE/ACM Transaction on Networking, 21(2), 536–550.
20.
Zurück zum Zitat Lee, K., Yi, Y., Jeong, J., Won, H., Rhee, I., & Chong, S. (2010). Max-contribution: On optimal resource allocation in delay tolerant networks. In Proceedings of IEEE INFOCOM. Lee, K., Yi, Y., Jeong, J., Won, H., Rhee, I., & Chong, S. (2010). Max-contribution: On optimal resource allocation in delay tolerant networks. In Proceedings of IEEE INFOCOM.
21.
Zurück zum Zitat Li, Y., Qian, M., Jin, D., Hui, P., Wang, Z., & Chen, S. (2014). Multiple mobile data offloading through disruption tolerant networks. IEEE Transactions on Mobile Computing, 13(7), 1579–1596.CrossRef Li, Y., Qian, M., Jin, D., Hui, P., Wang, Z., & Chen, S. (2014). Multiple mobile data offloading through disruption tolerant networks. IEEE Transactions on Mobile Computing, 13(7), 1579–1596.CrossRef
22.
Zurück zum Zitat Li, Z., & Shen, H. (2008). A direction based geographic routing scheme for intermittently connected mobile networks. In Proceedings of IEEE EUC. Li, Z., & Shen, H. (2008). A direction based geographic routing scheme for intermittently connected mobile networks. In Proceedings of IEEE EUC.
23.
Zurück zum Zitat Lindgren, A., Doria, A., & Schelén, O. (2003). Probabilistic routing in intermittently connected networks. ACM SIGMOBILE Mobile Computing and Communications Review, 7(3), 19–20. Lindgren, A., Doria, A., & Schelén, O. (2003). Probabilistic routing in intermittently connected networks. ACM SIGMOBILE Mobile Computing and Communications Review, 7(3), 19–20.
24.
Zurück zum Zitat Lindgren, A., & Phanse, K. S. (2006). Evaluation of queueing policies and forwarding strategies for routing in intermittently connected networks. In Proceedings of COMSWARE. Lindgren, A., & Phanse, K. S. (2006). Evaluation of queueing policies and forwarding strategies for routing in intermittently connected networks. In Proceedings of COMSWARE.
25.
Zurück zum Zitat Liu, H., Srinivasan, A., Whitehouse, K., & Stankovic, J. (2010). Supporting heterogeneous qos requirements in delay tolerant sensor networks. In Proceedings of INSS. Liu, H., Srinivasan, A., Whitehouse, K., & Stankovic, J. (2010). Supporting heterogeneous qos requirements in delay tolerant sensor networks. In Proceedings of INSS.
26.
Zurück zum Zitat Mtibaa, A., May, M., Diot, C., & Ammar, M. (2010). Peoplerank: Social opportunistic forwarding. In Proceedings of IEEE INFOCOM. Mtibaa, A., May, M., Diot, C., & Ammar, M. (2010). Peoplerank: Social opportunistic forwarding. In Proceedings of IEEE INFOCOM.
27.
Zurück zum Zitat Pentland, A., Fletcher, R., & Hasson, A. (2004). Daknet: Rethinking connectivity in developing nations. Computer, 37(1), 78–83.CrossRef Pentland, A., Fletcher, R., & Hasson, A. (2004). Daknet: Rethinking connectivity in developing nations. Computer, 37(1), 78–83.CrossRef
28.
Zurück zum Zitat Ramanathan, P., & Singh, A. (2008). Delay-differentiated gossiping in delay tolerant networks. InProceedings of IEEE ICC. Ramanathan, P., & Singh, A. (2008). Delay-differentiated gossiping in delay tolerant networks. InProceedings of IEEE ICC.
29.
Zurück zum Zitat Scott, K., & Burleigh, S. (2007). Bundle protocol specification. Network Working Group. RFC 5050. Scott, K., & Burleigh, S. (2007). Bundle protocol specification. Network Working Group. RFC 5050.
30.
Zurück zum Zitat Seber, G. (1982). The estimation of animal abundance and related parameters (2nd ed.). NewYork, NY: Macmillan Publishing Co. Seber, G. (1982). The estimation of animal abundance and related parameters (2nd ed.). NewYork, NY: Macmillan Publishing Co.
31.
Zurück zum Zitat Spyropoulos, T., Psounis, K., & Raghavendra, C. S. (2008). Efficient routing in intermittently connected mobile networks: The multiple-copy case. IEEE/ACM Transaction of Networking, 16(1), 77–90.CrossRef Spyropoulos, T., Psounis, K., & Raghavendra, C. S. (2008). Efficient routing in intermittently connected mobile networks: The multiple-copy case. IEEE/ACM Transaction of Networking, 16(1), 77–90.CrossRef
32.
Zurück zum Zitat Tseng, Y., Kang, S., Su, Y., Lee, C., & Chang, J. (2010). Proceedings of IEEE/RSJ IROS. Tseng, Y., Kang, S., Su, Y., Lee, C., & Chang, J. (2010). Proceedings of IEEE/RSJ IROS.
33.
Zurück zum Zitat Vahdat, A., & Becker, D. (2000). Epidemic routing for partially-connected ad hoc networks. In: Duke University technical report CS-2000-06. Vahdat, A., & Becker, D. (2000). Epidemic routing for partially-connected ad hoc networks. In: Duke University technical report CS-2000-06.
34.
Zurück zum Zitat Wang, Y., & Wu, H. (2007). Delay/fault-tolerant mobile sensor network (dft-msn): A new paradigm for pervasive information gathering. IEEE Transactions on Mobile Computing, 6(9), 1021–1034.CrossRef Wang, Y., & Wu, H. (2007). Delay/fault-tolerant mobile sensor network (dft-msn): A new paradigm for pervasive information gathering. IEEE Transactions on Mobile Computing, 6(9), 1021–1034.CrossRef
35.
Zurück zum Zitat Zhang, M., Wu, J., Lin, C., & Xu, K. (2003). Wsap: Provide loss rate differentiation with active queue management. In: Proceeding of ICCT. Zhang, M., Wu, J., Lin, C., & Xu, K. (2003). Wsap: Provide loss rate differentiation with active queue management. In: Proceeding of ICCT.
36.
Zurück zum Zitat Zhang, X., Kurose, J., Levine, B. N., Towsley, D., & Zhang, H. (2007). Study of a bus-based disruption-tolerant network: mobility modeling and impact on routing. In: Proceedings of ACM MobiCom. Zhang, X., Kurose, J., Levine, B. N., Towsley, D., & Zhang, H. (2007). Study of a bus-based disruption-tolerant network: mobility modeling and impact on routing. In: Proceedings of ACM MobiCom.
37.
Zurück zum Zitat Zhang, X., Neglia, G., Kurose, J., & Towsley, D. (2007). Performance modeling of epidemic routing. Computer Networks, 51(10), 2867–2891.CrossRefMATH Zhang, X., Neglia, G., Kurose, J., & Towsley, D. (2007). Performance modeling of epidemic routing. Computer Networks, 51(10), 2867–2891.CrossRefMATH
38.
Zurück zum Zitat Zhu, Y., Xu, B., Shi, X., & Wang, Y. (2013). A survey of social-based routing in delay tolerant networks: Positive and negative social effects. IEEE Communications Surveys Tutorials, 15(1), 387–401.CrossRef Zhu, Y., Xu, B., Shi, X., & Wang, Y. (2013). A survey of social-based routing in delay tolerant networks: Positive and negative social effects. IEEE Communications Surveys Tutorials, 15(1), 387–401.CrossRef
39.
Zurück zum Zitat Zucchini, W., & Channing, A. (1986). Bayesian estimation of animal adundance in small population using capture–recapture information. South Africa Journal of Science, 82, 137–140. Zucchini, W., & Channing, A. (1986). Bayesian estimation of animal adundance in small population using capture–recapture information. South Africa Journal of Science, 82, 137–140.
Metadaten
Titel
Packet Forwarding Assurance in Delay Tolerant Networks
verfasst von
Hanjin Park
Yusung Kim
Euiyul Ko
Ikjun Yeom
Publikationsdatum
01.05.2015
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 1/2015
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-014-2212-2

Weitere Artikel der Ausgabe 1/2015

Wireless Personal Communications 1/2015 Zur Ausgabe

Neuer Inhalt