Skip to main content
Erschienen in: Journal of Scientific Computing 1/2021

01.01.2021

Parallel Algorithms for Successive Convolution

verfasst von: Andrew J. Christlieb, Pierson T. Guthrey, William A. Sands, Mathialakan Thavappiragasm

Erschienen in: Journal of Scientific Computing | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The development of modern computing architectures with ever-increasing amounts of parallelism has allowed for the solution of previously intractable problems across a variety of scientific disciplines. Despite these advances, multiscale computing problems continue to pose an incredible challenge to modern architectures because they require resolving scales that often vary by orders of magnitude in both space and time. Such complications have led us to consider alternative discretizations for partial differential equations (PDEs) which use expansions involving integral operators to approximate spatial derivatives (Christlieb et al. in J Comput Phys 379:214–236, 2019; Christlieb et al. J Sci Comput 82:52(3):1–29, 2020; Christlieb et al. J Comput Phys 415:1–25, 2020). These constructions use explicit information within the integral terms, but treat boundary data implicitly, which contributes to the overall speed of the method. This approach is provably unconditionally stable for linear problems and stability has been demonstrated experimentally for nonlinear problems. Additionally, it is matrix-free in the sense that it is not necessary to invert linear systems and iteration is not required for nonlinear terms. Moreover, the scheme employs a fast summation algorithm that yields a method with a computational complexity of \({\mathcal {O}}(N)\), where N is the number of mesh points along a coordinate direction. While much work has been done to explore the theory behind these methods, their practicality in large scale computing environments is a largely unexplored topic. In this work, we explore the performance of these methods by developing a domain decomposition algorithm suitable for distributed memory systems along with shared memory algorithms. As a first pass, we derive an artificial Courant–Friedrichs–Lewy condition that enforces a nearest-neighbor (N-N) communication pattern and briefly discuss possible generalizations. We also analyze several approaches for implementing the parallel algorithms by optimizing predominant loop structures and maximizing data reuse. Using a hybrid design that employs MPI and Kokkos (Edwards and Trott in J Parallel Distrib Comput 74:3202–3216, 2014) for the distributed and shared memory components of the algorithms, respectively, we show that our methods are efficient and can sustain an update rate \(> 1\times 10^8\) DOF/node/s. We provide results that demonstrate the scalability and versatility of our algorithms using several different PDE test problems, including a nonlinear example, which employs an adaptive time-stepping rule.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
Note that the update frequency does not account for error in the numerical solution. Certainly, in order to compare the efficiency of various methods, especially those that belong to different classes, one must take into account the quality of the solution. This would be reflected in, for example, an error versus time-to-solution plot.
 
2
This is true when the memory space is that of the CPU (host memory). In device memory, these entries will be “coalesced", which is the optimal layout for threading on GPUs. This mapping of indices, between memory spaces, is automatically handled by Kokkos.
 
3
We refer to a pencil as a, generally, long rectangle (in 2-D) and a rectangular prism (in 3-D). The use of pencils, as opposed to square blocks, would require additional precomputing efforts and, possibly, restrictions on the problem size.
 
Literatur
1.
Zurück zum Zitat Christlieb, A., Guo, W., Jiang, Y.: A kernel-based high order “explicit” unconditionally stable scheme for time dependent Hamilton–Jacobi equations. J. Comput. Phys. 379, 214–236 (2019)MathSciNetCrossRef Christlieb, A., Guo, W., Jiang, Y.: A kernel-based high order “explicit” unconditionally stable scheme for time dependent Hamilton–Jacobi equations. J. Comput. Phys. 379, 214–236 (2019)MathSciNetCrossRef
2.
Zurück zum Zitat Christlieb, A., Guo, W., Jiang, Y., Yang, H.: Kernel based high order "explicit" unconditionally-stable scheme for nonlinear degenerate advection-diffusion equations. J. Sci. Comput. 82:52(3), 1–29 (2020)MathSciNetMATH Christlieb, A., Guo, W., Jiang, Y., Yang, H.: Kernel based high order "explicit" unconditionally-stable scheme for nonlinear degenerate advection-diffusion equations. J. Sci. Comput. 82:52(3), 1–29 (2020)MathSciNetMATH
3.
Zurück zum Zitat Christlieb, A., Sands, W., Yang, H.: A kernel-based explicit unconditionally stable scheme for hamilton-jacobi equations on nonuniform meshes. J. Comput. Phys. 415, 1–25 (2020). Art. No. 109543MathSciNetCrossRefMATH Christlieb, A., Sands, W., Yang, H.: A kernel-based explicit unconditionally stable scheme for hamilton-jacobi equations on nonuniform meshes. J. Comput. Phys. 415, 1–25 (2020). Art. No. 109543MathSciNetCrossRefMATH
4.
Zurück zum Zitat Edwards, H.C., Trott, C.R., Sunderland, D.: Kokkos: enabling manycore performance portability through polymorphic memory access patterns. J. Parallel Distrib. Comput. 74, 3202–3216 (2014)CrossRef Edwards, H.C., Trott, C.R., Sunderland, D.: Kokkos: enabling manycore performance portability through polymorphic memory access patterns. J. Parallel Distrib. Comput. 74, 3202–3216 (2014)CrossRef
5.
Zurück zum Zitat Causley, M., Christlieb, A., Ong, B., Van Groningen, L.: Method of lines transpose: an implicit solution to the wave equation. Math. Comput. 83(290), 2763–2786 (2014)MathSciNetCrossRefMATH Causley, M., Christlieb, A., Ong, B., Van Groningen, L.: Method of lines transpose: an implicit solution to the wave equation. Math. Comput. 83(290), 2763–2786 (2014)MathSciNetCrossRefMATH
6.
Zurück zum Zitat Causley, M.F., Cho, H., Christlieb, A.J., Seal, D.C.: Method of lines transpose: high order l-stable O(N) schemes for parabolic equations using successive convolution. SIAM J. Numer. Anal. 54(3), 1635–1652 (2016)MathSciNetCrossRefMATH Causley, M.F., Cho, H., Christlieb, A.J., Seal, D.C.: Method of lines transpose: high order l-stable O(N) schemes for parabolic equations using successive convolution. SIAM J. Numer. Anal. 54(3), 1635–1652 (2016)MathSciNetCrossRefMATH
7.
Zurück zum Zitat Causley, M., Cho, H., Christlieb, A.: Method of lines transpose: energy gradient flows using direct operator inversion for phase-field models. SIAM J. Sci. Comput. 39(5), B968–B992 (2017)MathSciNetCrossRefMATH Causley, M., Cho, H., Christlieb, A.: Method of lines transpose: energy gradient flows using direct operator inversion for phase-field models. SIAM J. Sci. Comput. 39(5), B968–B992 (2017)MathSciNetCrossRefMATH
8.
Zurück zum Zitat Cheng, Y., Christlieb, A.J., Guo, W., Ong, B.: An asymptotic preserving maxwell solver resulting in the darwin limit of electrodynamics. J. Sci. Comput. 71(3), 959–993 (2017)MathSciNetCrossRefMATH Cheng, Y., Christlieb, A.J., Guo, W., Ong, B.: An asymptotic preserving maxwell solver resulting in the darwin limit of electrodynamics. J. Sci. Comput. 71(3), 959–993 (2017)MathSciNetCrossRefMATH
9.
Zurück zum Zitat Christlieb, A., Guo, W., Jiang, Y.: A weno-based method of lines transpose approach for vlasov simulations. J. Comput. Phys. 327, 337–367 (2016)MathSciNetCrossRefMATH Christlieb, A., Guo, W., Jiang, Y.: A weno-based method of lines transpose approach for vlasov simulations. J. Comput. Phys. 327, 337–367 (2016)MathSciNetCrossRefMATH
10.
Zurück zum Zitat Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001)MathSciNetCrossRefMATH Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001)MathSciNetCrossRefMATH
11.
Zurück zum Zitat Salazar, A., Raydan, M., Campo, A.: Theoretical analysis of the exponential transversal method of lines for the diffusion equation. Numer. Methods Partial Differ. Equ. 16(1), 30–41 (2000)MathSciNetCrossRefMATH Salazar, A., Raydan, M., Campo, A.: Theoretical analysis of the exponential transversal method of lines for the diffusion equation. Numer. Methods Partial Differ. Equ. 16(1), 30–41 (2000)MathSciNetCrossRefMATH
12.
Zurück zum Zitat Schemann, M., Bornemann, F.A.: An adaptive rothe method for the wave equation. Comput. Vis. Sci. 1(3), 137–144 (1998)CrossRefMATH Schemann, M., Bornemann, F.A.: An adaptive rothe method for the wave equation. Comput. Vis. Sci. 1(3), 137–144 (1998)CrossRefMATH
13.
Zurück zum Zitat Biros, G., Ying, L., Zorin, D.: An embedded boundary integral solver for the unsteady incompressible Navier–Stokes equations (preprint) (2002) Biros, G., Ying, L., Zorin, D.: An embedded boundary integral solver for the unsteady incompressible Navier–Stokes equations (preprint) (2002)
14.
Zurück zum Zitat Biros, G., Ying, L., Zorin, D.: A fast solver for the stokes equations with distributed forces in complex geometries. J. Comput. Phys. 193, 317–348 (2004)MathSciNetCrossRefMATH Biros, G., Ying, L., Zorin, D.: A fast solver for the stokes equations with distributed forces in complex geometries. J. Comput. Phys. 193, 317–348 (2004)MathSciNetCrossRefMATH
16.
Zurück zum Zitat Kropinski, M.C.A., Quaife, B.D.: Fast integral equation methods for rothe’s method applied to the isotropic heat equation. Comput. Math. Appl. 61, 2436–2446 (2011)MathSciNetCrossRefMATH Kropinski, M.C.A., Quaife, B.D.: Fast integral equation methods for rothe’s method applied to the isotropic heat equation. Comput. Math. Appl. 61, 2436–2446 (2011)MathSciNetCrossRefMATH
17.
Zurück zum Zitat Quaife, B.D., Moore, M.N.J.: A boundary-integral framework to simulate viscous erosion of a porous medium. J. Comput. Phys. 375, 1–21 (2018)MathSciNetCrossRefMATH Quaife, B.D., Moore, M.N.J.: A boundary-integral framework to simulate viscous erosion of a porous medium. J. Comput. Phys. 375, 1–21 (2018)MathSciNetCrossRefMATH
18.
Zurück zum Zitat Wang, H., Lei, T., Li, J., Huang, J., Yao, Z.: A parallel fast multipole accelerated integral equation scheme for 3d stokes equations. Int. J. Numer. Meth. Eng. 70, 812–839 (2007)MathSciNetCrossRefMATH Wang, H., Lei, T., Li, J., Huang, J., Yao, Z.: A parallel fast multipole accelerated integral equation scheme for 3d stokes equations. Int. J. Numer. Meth. Eng. 70, 812–839 (2007)MathSciNetCrossRefMATH
19.
Zurück zum Zitat Ying, L., Biros, G., Zorin, D.: A high-order 3d boundary integral equation solver for elliptic pdes in smooth domains. J. Comput. Phys. 219, 247–275 (2006)MathSciNetCrossRefMATH Ying, L., Biros, G., Zorin, D.: A high-order 3d boundary integral equation solver for elliptic pdes in smooth domains. J. Comput. Phys. 219, 247–275 (2006)MathSciNetCrossRefMATH
20.
Zurück zum Zitat Saad, Y., Schultzn, M.H.: Gmres: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869 (1986)MathSciNetCrossRefMATH Saad, Y., Schultzn, M.H.: Gmres: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869 (1986)MathSciNetCrossRefMATH
21.
Zurück zum Zitat Bruno, O.P., Lyon, M.: High-order unconditionally stable fc-ad solvers for general smooth domains i. basic elements. J. Comput. Phys. 229, 2009–2033 (2010)MathSciNetCrossRefMATH Bruno, O.P., Lyon, M.: High-order unconditionally stable fc-ad solvers for general smooth domains i. basic elements. J. Comput. Phys. 229, 2009–2033 (2010)MathSciNetCrossRefMATH
22.
Zurück zum Zitat Bruno, O.P., Lyon, M.: High-order unconditionally stable fc-ad solvers for general smooth domains ii. elliptic, parabolic and hyperbolic pdes. theoretical considerations. J. Comput. Phys. 229, 3358–3381 (2010)MathSciNetCrossRefMATH Bruno, O.P., Lyon, M.: High-order unconditionally stable fc-ad solvers for general smooth domains ii. elliptic, parabolic and hyperbolic pdes. theoretical considerations. J. Comput. Phys. 229, 3358–3381 (2010)MathSciNetCrossRefMATH
23.
Zurück zum Zitat Douglas Jr., J.: On the numerical integration of \(\partial _{xx}U + \partial _{yy}U = \partial _{t}U\) by implicit methods. J. Soc. Ind. Appl. Math. 3, 42–65 (1955)CrossRef Douglas Jr., J.: On the numerical integration of \(\partial _{xx}U + \partial _{yy}U = \partial _{t}U\) by implicit methods. J. Soc. Ind. Appl. Math. 3, 42–65 (1955)CrossRef
25.
Zurück zum Zitat Peaceman, D.W., Rachford Jr., H.H.: The numerical solution of parabolic and elliptic differential equations. J. Soc. Ind. Appl. Math. 3, 28–41 (1955)MathSciNetCrossRefMATH Peaceman, D.W., Rachford Jr., H.H.: The numerical solution of parabolic and elliptic differential equations. J. Soc. Ind. Appl. Math. 3, 28–41 (1955)MathSciNetCrossRefMATH
26.
Zurück zum Zitat Albin, N., Bruno, O.P.: A spectral fc solver for the compressible navier-stokes equations in general domains i: Explicit time-stepping. J. Comput. Phys. 230, 6248–6270 (2011)MathSciNetCrossRefMATH Albin, N., Bruno, O.P.: A spectral fc solver for the compressible navier-stokes equations in general domains i: Explicit time-stepping. J. Comput. Phys. 230, 6248–6270 (2011)MathSciNetCrossRefMATH
27.
Zurück zum Zitat Anderson, T.G., Bruno, O.P., Lyon, M.: High-order, dispersionless “fast-hybrid” wave equation solver. part i: \(\cal{O}(1)\) sampling cost via incident-field windowing and recentering. SIAM J. Sci. Comput. 42, 1348–1379 (2020)MathSciNetCrossRef Anderson, T.G., Bruno, O.P., Lyon, M.: High-order, dispersionless “fast-hybrid” wave equation solver. part i: \(\cal{O}(1)\) sampling cost via incident-field windowing and recentering. SIAM J. Sci. Comput. 42, 1348–1379 (2020)MathSciNetCrossRef
28.
Zurück zum Zitat Causley, M.F., Christlieb, A.J.: Higher order a-stable schemes for the wave equation using a successive convolution approach. SIAM J. Numer. Anal. 52(1), 220–235 (2014)MathSciNetCrossRefMATH Causley, M.F., Christlieb, A.J.: Higher order a-stable schemes for the wave equation using a successive convolution approach. SIAM J. Numer. Anal. 52(1), 220–235 (2014)MathSciNetCrossRefMATH
29.
Zurück zum Zitat Causley, M. F., Christlieb, A. J., Guclu, Y., Wolf, E.: Method of lines transpose: A fast implicit wave propagator. arXiv preprint arXiv:1306.6902, (2013) Causley, M. F., Christlieb, A. J., Guclu, Y., Wolf, E.: Method of lines transpose: A fast implicit wave propagator. arXiv preprint arXiv:​1306.​6902, (2013)
30.
Zurück zum Zitat Shu, C.-W.: High order weighted essentially nonoscillatory schemes for convection dominated problems. SIAM Rev. 51(1), 82–126 (2009)MathSciNetCrossRefMATH Shu, C.-W.: High order weighted essentially nonoscillatory schemes for convection dominated problems. SIAM Rev. 51(1), 82–126 (2009)MathSciNetCrossRefMATH
32.
Zurück zum Zitat Grete, P., Glines, F. W., O’Shea, B. W.: K-athena: A performance portable structured grid finite volume magnetohydrodynamics code (2019). arXiv: 1905.04341 [cs.DC] Grete, P., Glines, F. W., O’Shea, B. W.: K-athena: A performance portable structured grid finite volume magnetohydrodynamics code (2019). arXiv:​ 1905.​04341 [cs.DC]
33.
Zurück zum Zitat White, C.J., Stone, J.M., Gammie, C.F.: An extension of the athena++ code framework for grmhd based on advanced riemann solvers and staggered-mesh constrained transport. Astrophys. J. Suppl. 225, 2 (2016)CrossRef White, C.J., Stone, J.M., Gammie, C.F.: An extension of the athena++ code framework for grmhd based on advanced riemann solvers and staggered-mesh constrained transport. Astrophys. J. Suppl. 225, 2 (2016)CrossRef
Metadaten
Titel
Parallel Algorithms for Successive Convolution
verfasst von
Andrew J. Christlieb
Pierson T. Guthrey
William A. Sands
Mathialakan Thavappiragasm
Publikationsdatum
01.01.2021
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 1/2021
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-020-01359-x

Weitere Artikel der Ausgabe 1/2021

Journal of Scientific Computing 1/2021 Zur Ausgabe