Skip to main content
Erschienen in: Journal of Scientific Computing 1/2021

01.01.2021

FFT-Based High Order Central Difference Schemes for Poisson’s Equation with Staggered Boundaries

verfasst von: Hongsong Feng, Guangqing Long, Shan Zhao

Erschienen in: Journal of Scientific Computing | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This work concerns with the development of fast and high order algorithms for solving a single variable Poisson’s equation with rectangular domains and uniform meshes, but involving staggered boundaries. Here the staggered boundary means that the boundary is located midway between two adjacent grid nodes. Due to the popularity of staggered grids in scientific computing for solving multiple variables partial differential equations (PDEs), the planned development deserves further studies, but is rarely reported in the literature, because grand challenges exist for spectral methods, compact finite differences, and fast Fourier transform (FFT) algorithms in handling staggered boundaries. A systematic approach is introduced in this paper to attack various open problems in this regard, which is a natural generalization of a recently developed Augmented Matched Interface and Boundary (AMIB) method for non-staggered boundaries. Formulated through immersed boundary problems with zero-padding solutions, the AMIB method combines arbitrarily high order central differences with the FFT inversion. Over staggered boundaries, the proposed AMIB method can handle Dirichlet, Neumann, Robin or any combination of boundary conditions. Convergence orders in four, six and eight are numerically validated for the AMIB method in both two and three dimensions. Moreover, the proposed AMIB method performs well for some challenging problems, such as low regularity solution near boundary, PDE solution not satisfying the boundary condition, and involving both staggered and non-staggered boundaries on two ends.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Abide, S., Zeghmati, B.: Multigrid defect correction and fourth-order compact scheme for Poisson’s equation. Comput. Math. Appl. 73, 1433–1444 (2017)MathSciNetCrossRef Abide, S., Zeghmati, B.: Multigrid defect correction and fourth-order compact scheme for Poisson’s equation. Comput. Math. Appl. 73, 1433–1444 (2017)MathSciNetCrossRef
2.
Zurück zum Zitat Averbuch, A., Israeli, M., Vozovoi, L.: A fast Poisson solver of arbitrary order accuracy in rectangular regions. SIAM J. Sci. Comput. 19, 933–952 (1998)MathSciNetCrossRef Averbuch, A., Israeli, M., Vozovoi, L.: A fast Poisson solver of arbitrary order accuracy in rectangular regions. SIAM J. Sci. Comput. 19, 933–952 (1998)MathSciNetCrossRef
3.
Zurück zum Zitat Boisvert, R.F.: A fourth order accurate Fourier method for the Helmholtz equation in three dimensions. ACM Trans. Math. Softw. (TOMS) 13, 221–234 (1987)MathSciNetCrossRef Boisvert, R.F.: A fourth order accurate Fourier method for the Helmholtz equation in three dimensions. ACM Trans. Math. Softw. (TOMS) 13, 221–234 (1987)MathSciNetCrossRef
4.
Zurück zum Zitat Braverman, E., Israeli, M., Averbuch, A., Vozovoi, L.: A fast 3D Poisson solver of arbitrary order accuracy. J. Comput. Phys. 144, 109–136 (1998)MathSciNetCrossRef Braverman, E., Israeli, M., Averbuch, A., Vozovoi, L.: A fast 3D Poisson solver of arbitrary order accuracy. J. Comput. Phys. 144, 109–136 (1998)MathSciNetCrossRef
5.
Zurück zum Zitat Braverman, E., Israeli, M., Averbuch, A.: A fast spectral solver for a 3D Helmholtz equation. SIAM J. Sci. Comput. 20, 2237–2260 (1999)MathSciNetCrossRef Braverman, E., Israeli, M., Averbuch, A.: A fast spectral solver for a 3D Helmholtz equation. SIAM J. Sci. Comput. 20, 2237–2260 (1999)MathSciNetCrossRef
6.
Zurück zum Zitat Bruger, A., Nilsson, J., Kress, W.: A compact higher order finite difference method for the incompressible Navier–Stokes equations. J. Sci. Comput. 17, 551–560 (2002)MathSciNetCrossRef Bruger, A., Nilsson, J., Kress, W.: A compact higher order finite difference method for the incompressible Navier–Stokes equations. J. Sci. Comput. 17, 551–560 (2002)MathSciNetCrossRef
7.
Zurück zum Zitat Feng, H., Long, G., Zhao, S.: An augmented matched interface and boundary (MIB) method for solving elliptic interface problem. J. Comput. Appl. Math. 361, 426–433 (2019)MathSciNetCrossRef Feng, H., Long, G., Zhao, S.: An augmented matched interface and boundary (MIB) method for solving elliptic interface problem. J. Comput. Appl. Math. 361, 426–433 (2019)MathSciNetCrossRef
8.
Zurück zum Zitat Feng, H., Zhao, S.: FFT-based high order central difference schemes for the three-dimensional Poisson equation with various types of boundary conditions. J. Comput. Phys. 410, 109391 (2020)MathSciNetCrossRef Feng, H., Zhao, S.: FFT-based high order central difference schemes for the three-dimensional Poisson equation with various types of boundary conditions. J. Comput. Phys. 410, 109391 (2020)MathSciNetCrossRef
9.
Zurück zum Zitat Feng, H., Zhao, S.: A fourth order finite difference method for solving elliptic interface problems with the FFT acceleration. J. Comput. Phys. 419, 109677 (2020)MathSciNetCrossRef Feng, H., Zhao, S.: A fourth order finite difference method for solving elliptic interface problems with the FFT acceleration. J. Comput. Phys. 419, 109677 (2020)MathSciNetCrossRef
10.
11.
Zurück zum Zitat Golub, G.H., Huang, L.C., Simon, H., Tang, W.: A fast Poisson solver for the finite difference solution of the incompressible Navier–Stokes equations. SIAM J. Comput. 19, 1606–1624 (1998)MathSciNetCrossRef Golub, G.H., Huang, L.C., Simon, H., Tang, W.: A fast Poisson solver for the finite difference solution of the incompressible Navier–Stokes equations. SIAM J. Comput. 19, 1606–1624 (1998)MathSciNetCrossRef
12.
Zurück zum Zitat Gupta, M.M., Kouatchou, J., Zhang, J.: Comparison of second and fourth order discretization multigrid Poisson solvers. J. Comput. Phys. 132, 226–232 (1997)MathSciNetCrossRef Gupta, M.M., Kouatchou, J., Zhang, J.: Comparison of second and fourth order discretization multigrid Poisson solvers. J. Comput. Phys. 132, 226–232 (1997)MathSciNetCrossRef
13.
Zurück zum Zitat Ge, Y.: Multigrid method and fourth-order compact difference discretization scheme with unequal meshsizes for 3D Poisson equation. J. Comput. Phys. 229, 6381–6391 (2010)MathSciNetCrossRef Ge, Y.: Multigrid method and fourth-order compact difference discretization scheme with unequal meshsizes for 3D Poisson equation. J. Comput. Phys. 229, 6381–6391 (2010)MathSciNetCrossRef
14.
Zurück zum Zitat Haidvoge, D., Zang, T.: The accurate solution of Poisson’s equation by expansion in Chebyshev polynomials. J. Comput. Phys. 30, 167–180 (1979)MathSciNetCrossRef Haidvoge, D., Zang, T.: The accurate solution of Poisson’s equation by expansion in Chebyshev polynomials. J. Comput. Phys. 30, 167–180 (1979)MathSciNetCrossRef
15.
Zurück zum Zitat Kampanis, N.A., Ekaternaris, J.A.: A staggered grid, high-order accurate method for the incompressible Navier–Stokes equations. J. Comput. Phys. 215, 589–613 (2006)MathSciNetCrossRef Kampanis, N.A., Ekaternaris, J.A.: A staggered grid, high-order accurate method for the incompressible Navier–Stokes equations. J. Comput. Phys. 215, 589–613 (2006)MathSciNetCrossRef
16.
Zurück zum Zitat Lai, M.-C.: A simple compact fourth-order Poisson solver on polar geometry. J. Comput. Phys. 182, 337–345 (2002)CrossRef Lai, M.-C.: A simple compact fourth-order Poisson solver on polar geometry. J. Comput. Phys. 182, 337–345 (2002)CrossRef
17.
Zurück zum Zitat Ma, Z.H., Qian, L., Causon, D.M., Gu, H.B., Mingham, C.G.: A cartesian ghost-cell multigrid poisson solver for incompressible flows. Int. J. Numer. Meth. Eng. 85, 230–246 (2011)MathSciNetCrossRef Ma, Z.H., Qian, L., Causon, D.M., Gu, H.B., Mingham, C.G.: A cartesian ghost-cell multigrid poisson solver for incompressible flows. Int. J. Numer. Meth. Eng. 85, 230–246 (2011)MathSciNetCrossRef
18.
Zurück zum Zitat Nagel, J.R.: Solving the Generalized Poisson’s Equation Using the Finite-Difference Method (FDM). University of Utah, Salt Lake City, Department of Electrical and Computer Engineering (2011) Nagel, J.R.: Solving the Generalized Poisson’s Equation Using the Finite-Difference Method (FDM). University of Utah, Salt Lake City, Department of Electrical and Computer Engineering (2011)
19.
Zurück zum Zitat Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in Fortran: The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge (1992)MATH Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in Fortran: The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge (1992)MATH
20.
Zurück zum Zitat Schumann, U., Sweet, R.: A direct method for the solution of Poisson’s equation with neumann boundary conditions on a staggered grid of arbitrary size. J. Comput. Phys. 20, 171–182 (1976)MathSciNetCrossRef Schumann, U., Sweet, R.: A direct method for the solution of Poisson’s equation with neumann boundary conditions on a staggered grid of arbitrary size. J. Comput. Phys. 20, 171–182 (1976)MathSciNetCrossRef
21.
Zurück zum Zitat Schumann, U., Sweet, R.: Fast Fourier transforms for direct solution of Poisson’s equation with staggered boundary conditions. J. Comput. Phys. 75, 123–137 (1988)MathSciNetCrossRef Schumann, U., Sweet, R.: Fast Fourier transforms for direct solution of Poisson’s equation with staggered boundary conditions. J. Comput. Phys. 75, 123–137 (1988)MathSciNetCrossRef
22.
Zurück zum Zitat Shen, J., Tang, T., Wang, L.L.: Spectral methods: Algorithm, Analysis and Application. Springer Series in Computational Mathematics. Springer, Berlin (2011)CrossRef Shen, J., Tang, T., Wang, L.L.: Spectral methods: Algorithm, Analysis and Application. Springer Series in Computational Mathematics. Springer, Berlin (2011)CrossRef
23.
Zurück zum Zitat Sun, X.H., Zhuang, Y.: A high-order direct solver for helmholtz equations with neumann boundary conditions. Technical Report. Institute for Computer Applications in Science and Engineering (ICASE) (1997) Sun, X.H., Zhuang, Y.: A high-order direct solver for helmholtz equations with neumann boundary conditions. Technical Report. Institute for Computer Applications in Science and Engineering (ICASE) (1997)
25.
Zurück zum Zitat Swarztrauber, P., Sweet, R.: Algorithm 541: efficient Fortran subprograms for the solution of separable elliptic partial differential equations. ACM Trans. Math. Softw. (TOMS) 5, 352–364 (1979)CrossRef Swarztrauber, P., Sweet, R.: Algorithm 541: efficient Fortran subprograms for the solution of separable elliptic partial differential equations. ACM Trans. Math. Softw. (TOMS) 5, 352–364 (1979)CrossRef
26.
Zurück zum Zitat Trottenberg, U., Oosterlee, C.W.: Multigrid. Academic Press, Cambridge (2001)MATH Trottenberg, U., Oosterlee, C.W.: Multigrid. Academic Press, Cambridge (2001)MATH
27.
Zurück zum Zitat Wang, H., Zhang, Y., Ma, X., Qiu, J., Liang, Y.: An efficient implementation of fourth-order compact finite difference scheme for Poisson’s equation with Dirichlet boundary conditions. Comput. Math. Appl. 71, 1843–1860 (2016)MathSciNetCrossRef Wang, H., Zhang, Y., Ma, X., Qiu, J., Liang, Y.: An efficient implementation of fourth-order compact finite difference scheme for Poisson’s equation with Dirichlet boundary conditions. Comput. Math. Appl. 71, 1843–1860 (2016)MathSciNetCrossRef
28.
Zurück zum Zitat Wang, Y., Zhang, J.: Sixth order compact scheme combined with multigrid method and extrapolation technique for 2D Poisson equation. J. Comput. Phys. 228, 137–146 (2009)MathSciNetCrossRef Wang, Y., Zhang, J.: Sixth order compact scheme combined with multigrid method and extrapolation technique for 2D Poisson equation. J. Comput. Phys. 228, 137–146 (2009)MathSciNetCrossRef
29.
Zurück zum Zitat Wesseling, P.: An Introduction to Multigrid Methods. Pure and Applied Mathematics. Wiley, Hoboken (1992)MATH Wesseling, P.: An Introduction to Multigrid Methods. Pure and Applied Mathematics. Wiley, Hoboken (1992)MATH
30.
Zurück zum Zitat Zhang, K.K.O., Shotorban, B., Minkowycz, W.J., Mashayek, A.: A compact finite difference method on staggered grid for Navier–Stokes flow. Int. J. Numer. Methods Fluids 52, 867–881 (2006)MathSciNetCrossRef Zhang, K.K.O., Shotorban, B., Minkowycz, W.J., Mashayek, A.: A compact finite difference method on staggered grid for Navier–Stokes flow. Int. J. Numer. Methods Fluids 52, 867–881 (2006)MathSciNetCrossRef
31.
Zurück zum Zitat Zhao, S., Wei, G.W.: High-order FDTD methods via derivative matching for Maxwell’s equations with material interfaces. J. Comput. Phys. 200, 60–103 (2004)MathSciNetCrossRef Zhao, S., Wei, G.W.: High-order FDTD methods via derivative matching for Maxwell’s equations with material interfaces. J. Comput. Phys. 200, 60–103 (2004)MathSciNetCrossRef
32.
Zurück zum Zitat Zhao, S., Wei, G.W., Xiang, Y.: DSC analysis of free-edged beams by an iteratively matched boundary method. J. Sound Vib. 284, 487–493 (2005)CrossRef Zhao, S., Wei, G.W., Xiang, Y.: DSC analysis of free-edged beams by an iteratively matched boundary method. J. Sound Vib. 284, 487–493 (2005)CrossRef
33.
Zurück zum Zitat Zhao, S.: On the spurious solutions in the high-order finite difference methods. Comput. Methods Appl. Mech. Eng. 196, 5031–5046 (2007)MathSciNetCrossRef Zhao, S.: On the spurious solutions in the high-order finite difference methods. Comput. Methods Appl. Mech. Eng. 196, 5031–5046 (2007)MathSciNetCrossRef
34.
Zurück zum Zitat Zhao, S.: A fourth order finite difference method for waveguides with curved perfectly conducting boundaries. Comput. Methods Appl. Mech. Eng. 199, 2655–2662 (2010)MathSciNetCrossRef Zhao, S.: A fourth order finite difference method for waveguides with curved perfectly conducting boundaries. Comput. Methods Appl. Mech. Eng. 199, 2655–2662 (2010)MathSciNetCrossRef
35.
Zurück zum Zitat Zhao, S., Wei, G.W.: Matched interface and boundary (MIB) for the implementation of boundary conditions in high order central finite differences. Int. J. Numer. Methods Eng. 77, 1690–1730 (2009)MathSciNetCrossRef Zhao, S., Wei, G.W.: Matched interface and boundary (MIB) for the implementation of boundary conditions in high order central finite differences. Int. J. Numer. Methods Eng. 77, 1690–1730 (2009)MathSciNetCrossRef
36.
Zurück zum Zitat Zhou, Y.C., Zhao, S., Feig, M., Wei, G.W.: High order matched interface and boundary method for elliptic equations with discontinuous coefficients and singular source. J. Comput. Phys. 213, 1–30 (2006)MathSciNetCrossRef Zhou, Y.C., Zhao, S., Feig, M., Wei, G.W.: High order matched interface and boundary method for elliptic equations with discontinuous coefficients and singular source. J. Comput. Phys. 213, 1–30 (2006)MathSciNetCrossRef
37.
Zurück zum Zitat Zhuang, Y., Sun, X.: A high-order fast direct solver for singular Poisson equations. J. Comput. Phys. 20, 79–94 (2001)MathSciNetCrossRef Zhuang, Y., Sun, X.: A high-order fast direct solver for singular Poisson equations. J. Comput. Phys. 20, 79–94 (2001)MathSciNetCrossRef
Metadaten
Titel
FFT-Based High Order Central Difference Schemes for Poisson’s Equation with Staggered Boundaries
verfasst von
Hongsong Feng
Guangqing Long
Shan Zhao
Publikationsdatum
01.01.2021
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 1/2021
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-020-01379-7

Weitere Artikel der Ausgabe 1/2021

Journal of Scientific Computing 1/2021 Zur Ausgabe