Skip to main content
Erschienen in: Journal of Scientific Computing 1/2021

01.01.2021

Stability and Error Estimate of the Operator Splitting Method for the Phase Field Crystal Equation

verfasst von: Shuying Zhai, Zhifeng Weng, Xinlong Feng, Yinnian He

Erschienen in: Journal of Scientific Computing | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we propose a second-order fast explicit operator splitting method for the phase field crystal equation. The basic idea lied in our method is to split the original problem into linear and nonlinear parts. The linear subproblem is numerically solved using the Fourier spectral method, which is based on the exact solution and thus has no stability restriction on the time-step size. The nonlinear one is solved via second-order strong stability preserving Runge–Kutta method. The stability and convergence are discussed in \(L^2\)-norm. Numerical experiments are performed to validate the accuracy and efficiency of the proposed method. Moreover, energy degradation and mass conservation are also verified.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Elder, K.R., Katakowski, M., Haataja, M., Grant, M.: Modeling elasticity in crystal growth. Phys. Rev. Lett. 88(24), 245701 (2002)CrossRef Elder, K.R., Katakowski, M., Haataja, M., Grant, M.: Modeling elasticity in crystal growth. Phys. Rev. Lett. 88(24), 245701 (2002)CrossRef
2.
Zurück zum Zitat Elder, K.R., Grant, M.: Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals. Phys. Rev. E 70(5), 051605 (2004)CrossRef Elder, K.R., Grant, M.: Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals. Phys. Rev. E 70(5), 051605 (2004)CrossRef
3.
Zurück zum Zitat Berry, J., Provatas, N., Rottler, J., Sinclair, C.W.: Defect stability in phase-field crystal models: stacking faults and partial dislocations. Phys. Rev. B 86, 224112 (2012)CrossRef Berry, J., Provatas, N., Rottler, J., Sinclair, C.W.: Defect stability in phase-field crystal models: stacking faults and partial dislocations. Phys. Rev. B 86, 224112 (2012)CrossRef
4.
Zurück zum Zitat Provatas, N., Dantzig, J., Athreya, B., Chan, P., Stefanovic, P., Goldenfeld, N., Elder, K.: Using the phase-field crystal method in the multi-scale modeling of microstructure evolution. JOM 59, 83–90 (2007)CrossRef Provatas, N., Dantzig, J., Athreya, B., Chan, P., Stefanovic, P., Goldenfeld, N., Elder, K.: Using the phase-field crystal method in the multi-scale modeling of microstructure evolution. JOM 59, 83–90 (2007)CrossRef
5.
Zurück zum Zitat Stolle, J., Provatas, N.: Characterizing solute segregation and grain boundary energy in binary alloy phase field crystal models. Comput. Mater. Sci. 81, 493–502 (2014)CrossRef Stolle, J., Provatas, N.: Characterizing solute segregation and grain boundary energy in binary alloy phase field crystal models. Comput. Mater. Sci. 81, 493–502 (2014)CrossRef
6.
Zurück zum Zitat Swift, J., Hohenberg, P.C.: Hydrodynamic fluctuations at the convective instability. Phys. Rev. A 15, 319 (1977)CrossRef Swift, J., Hohenberg, P.C.: Hydrodynamic fluctuations at the convective instability. Phys. Rev. A 15, 319 (1977)CrossRef
7.
Zurück zum Zitat Wang, C., Wise, S.M., Lowengrub, J.S.: An energy-stable and convergent finite-difference scheme for the phase field crystal equation. SIAM J. Numer. Anal. 47, 2269–2288 (2009)MathSciNetMATHCrossRef Wang, C., Wise, S.M., Lowengrub, J.S.: An energy-stable and convergent finite-difference scheme for the phase field crystal equation. SIAM J. Numer. Anal. 47, 2269–2288 (2009)MathSciNetMATHCrossRef
8.
Zurück zum Zitat Wang, C., Wise, S.M.: An energy stable and convergent finite-difference scheme for the modified phase field crystal equation. SIAM J. Numer. Anal. 49, 945–969 (2011)MathSciNetMATHCrossRef Wang, C., Wise, S.M.: An energy stable and convergent finite-difference scheme for the modified phase field crystal equation. SIAM J. Numer. Anal. 49, 945–969 (2011)MathSciNetMATHCrossRef
9.
Zurück zum Zitat Baskaran, A., Hu, Z.Z., Lowengrub, J.S., Wang, C., Wise, S.M., Zhou, P.: Energy stable and efficient finite-difference nonlinear multigrid schemes for the modified phase field crystal equation. J. Comput. Phys. 250, 270–292 (2013)MathSciNetMATHCrossRef Baskaran, A., Hu, Z.Z., Lowengrub, J.S., Wang, C., Wise, S.M., Zhou, P.: Energy stable and efficient finite-difference nonlinear multigrid schemes for the modified phase field crystal equation. J. Comput. Phys. 250, 270–292 (2013)MathSciNetMATHCrossRef
10.
Zurück zum Zitat Baskaran, A., Lowengrub, J.S., Wang, C., Wise, S.M.: Convergence analysis of a second order convex splitting scheme for the modified phase field crystal equation. SIAM J. Numer. Anal. 51, 2851–2873 (2013)MathSciNetMATHCrossRef Baskaran, A., Lowengrub, J.S., Wang, C., Wise, S.M.: Convergence analysis of a second order convex splitting scheme for the modified phase field crystal equation. SIAM J. Numer. Anal. 51, 2851–2873 (2013)MathSciNetMATHCrossRef
11.
Zurück zum Zitat Li, Q., Mei, L.Q., You, B.: A second-order, uniquely solvable, energy stable BDF numerical scheme for the phase field crystal model. Appl. Numer. Math. 134, 46–65 (2018)MathSciNetMATHCrossRef Li, Q., Mei, L.Q., You, B.: A second-order, uniquely solvable, energy stable BDF numerical scheme for the phase field crystal model. Appl. Numer. Math. 134, 46–65 (2018)MathSciNetMATHCrossRef
12.
Zurück zum Zitat Xia, B.H., Mei, C.L., Yu, Q., Li, Y.B.: A second order unconditionally stable scheme for the modified phase field crystal model with elastic interaction and stochastic noise effect. Comput. Methods Appl. Mech. Eng. 363, 112795 (2020)MathSciNetMATHCrossRef Xia, B.H., Mei, C.L., Yu, Q., Li, Y.B.: A second order unconditionally stable scheme for the modified phase field crystal model with elastic interaction and stochastic noise effect. Comput. Methods Appl. Mech. Eng. 363, 112795 (2020)MathSciNetMATHCrossRef
13.
Zurück zum Zitat Cheng, K.L., Wang, C., Wise, S.M.: An energy stable BDF2 Fourier pseudo-spectral numerical scheme for the square phase field crystal equation. arXiv:1906.12255 [math.NA] Cheng, K.L., Wang, C., Wise, S.M.: An energy stable BDF2 Fourier pseudo-spectral numerical scheme for the square phase field crystal equation. arXiv:​1906.​12255 [math.NA]
14.
Zurück zum Zitat Yang, X.F., Han, D.Z.: Linearly first- and second-order, unconditionally energy stable schemes for the phase field crystal model. J. Comput. Phys. 330, 1116–1134 (2017)MathSciNetMATHCrossRef Yang, X.F., Han, D.Z.: Linearly first- and second-order, unconditionally energy stable schemes for the phase field crystal model. J. Comput. Phys. 330, 1116–1134 (2017)MathSciNetMATHCrossRef
15.
Zurück zum Zitat Zhao, J., Wang, Q., Yang, X.F.: Numerical approximations for a phase field dendritic crystal growth model based on the invariant energy quadratization approach. Int. J. Numer. Methods Eng. 110, 279–300 (2017)MathSciNetMATHCrossRef Zhao, J., Wang, Q., Yang, X.F.: Numerical approximations for a phase field dendritic crystal growth model based on the invariant energy quadratization approach. Int. J. Numer. Methods Eng. 110, 279–300 (2017)MathSciNetMATHCrossRef
16.
Zurück zum Zitat Li, Q., Mei, L.Q., Yang, X.F., Li, Y.B.: Efficient numerical schemes with unconditional energy stabilities for the modified phase field crystal equation. Adv. Comput. Math. 45, 1551–1580 (2019)MathSciNetMATHCrossRef Li, Q., Mei, L.Q., Yang, X.F., Li, Y.B.: Efficient numerical schemes with unconditional energy stabilities for the modified phase field crystal equation. Adv. Comput. Math. 45, 1551–1580 (2019)MathSciNetMATHCrossRef
17.
Zurück zum Zitat Liu, Z.G., Li, X.L.: Two fast and efficient linear semi-implicit approaches with unconditional energy stability for nonlocal phase field crystal equation. Appl. Numer. Math. 150, 491–506 (2020)MathSciNetMATHCrossRef Liu, Z.G., Li, X.L.: Two fast and efficient linear semi-implicit approaches with unconditional energy stability for nonlocal phase field crystal equation. Appl. Numer. Math. 150, 491–506 (2020)MathSciNetMATHCrossRef
18.
Zurück zum Zitat Liu, Z.G., Li, X.L.: Efficient modified stabilized invariant energy quadratization approaches for phase-field crystal equation. Numer. Algorithms 85, 107–132 (2020)MathSciNetMATHCrossRef Liu, Z.G., Li, X.L.: Efficient modified stabilized invariant energy quadratization approaches for phase-field crystal equation. Numer. Algorithms 85, 107–132 (2020)MathSciNetMATHCrossRef
19.
Zurück zum Zitat Li, X.L., Shen, J.: Stability and error estimates of the SAV Fourier-spectral method for the phase field crystal equation. Adv. Comput. Math. 46, 48 (2020)MathSciNetMATHCrossRef Li, X.L., Shen, J.: Stability and error estimates of the SAV Fourier-spectral method for the phase field crystal equation. Adv. Comput. Math. 46, 48 (2020)MathSciNetMATHCrossRef
20.
Zurück zum Zitat Li, X.L., Shen, J.: Efficient linear and unconditionally energy stable schemes for the modified phase field crystal equation. arXiv:2004.04319 [math.NA] Li, X.L., Shen, J.: Efficient linear and unconditionally energy stable schemes for the modified phase field crystal equation. arXiv:​2004.​04319 [math.NA]
21.
Zurück zum Zitat Goldman, D., Kaper, T.: \(N\)th-order operator splitting schemes and nonreversible systems. SIAM J. Numer. Anal. 33, 349–367 (1996)MathSciNetMATHCrossRef Goldman, D., Kaper, T.: \(N\)th-order operator splitting schemes and nonreversible systems. SIAM J. Numer. Anal. 33, 349–367 (1996)MathSciNetMATHCrossRef
23.
Zurück zum Zitat Yanenko, N.N.: The Method of Fractional Steps: The Solution of Problems of Mathematical Physics in Several Variables. Springer, New York (1971)MATHCrossRef Yanenko, N.N.: The Method of Fractional Steps: The Solution of Problems of Mathematical Physics in Several Variables. Springer, New York (1971)MATHCrossRef
24.
Zurück zum Zitat Holden, H., Karlsen, K.H., Risebro, N.H.: Operator splitting methods for generalized Korteweg-de Vries equations. J. Comput. Phys. 153, 203–222 (1999)MathSciNetMATHCrossRef Holden, H., Karlsen, K.H., Risebro, N.H.: Operator splitting methods for generalized Korteweg-de Vries equations. J. Comput. Phys. 153, 203–222 (1999)MathSciNetMATHCrossRef
25.
Zurück zum Zitat Cheng, Y.Z., Kurganov, A., Qu, Z.L., Tang, T.: Fast and stable explicit operator splitting methods for phase-field models. J. Comput. Phys. 303, 45–65 (2015)MathSciNetMATHCrossRef Cheng, Y.Z., Kurganov, A., Qu, Z.L., Tang, T.: Fast and stable explicit operator splitting methods for phase-field models. J. Comput. Phys. 303, 45–65 (2015)MathSciNetMATHCrossRef
26.
Zurück zum Zitat Zhai, S.Y., Weng, Z.F., Feng, X.L.: Fast explicit operator splitting method and time-step adaptivity for fractional non-local Allen–Cahn model. Appl. Math. Model. 40, 1315–1324 (2016)MathSciNetMATHCrossRef Zhai, S.Y., Weng, Z.F., Feng, X.L.: Fast explicit operator splitting method and time-step adaptivity for fractional non-local Allen–Cahn model. Appl. Math. Model. 40, 1315–1324 (2016)MathSciNetMATHCrossRef
27.
Zurück zum Zitat Zhai, S.Y., Wu, L.Y., Wang, J.Y., Weng, Z.F.: Numerical approximation of the fractional Cahn–Hilliard equation by operator splitting method. Numer. Algorithms 84, 1155–1178 (2020)MathSciNetMATHCrossRef Zhai, S.Y., Wu, L.Y., Wang, J.Y., Weng, Z.F.: Numerical approximation of the fractional Cahn–Hilliard equation by operator splitting method. Numer. Algorithms 84, 1155–1178 (2020)MathSciNetMATHCrossRef
28.
Zurück zum Zitat Li, X., Qiao, Z.H., Zhang, H.: Convergence of a fast explicit operator splitting method for the epitaxial growth model with slope selection. SIAM J. Numer. Anal. 55, 265–285 (2017)MathSciNetMATHCrossRef Li, X., Qiao, Z.H., Zhang, H.: Convergence of a fast explicit operator splitting method for the epitaxial growth model with slope selection. SIAM J. Numer. Anal. 55, 265–285 (2017)MathSciNetMATHCrossRef
29.
Zurück zum Zitat Bao, W.Z., Li, H.L., Shen, J.: A generalized-Laguerre–Fourier–Hermite pseudospectral method for computing the dynamics of rotating Bose–Einstein condensates. SIAM J. Sci. Comput. 31, 3685–3711 (2009)MathSciNetMATHCrossRef Bao, W.Z., Li, H.L., Shen, J.: A generalized-Laguerre–Fourier–Hermite pseudospectral method for computing the dynamics of rotating Bose–Einstein condensates. SIAM J. Sci. Comput. 31, 3685–3711 (2009)MathSciNetMATHCrossRef
30.
Zurück zum Zitat Shen, J., Wang, Z.Q.: Error analysis of the Strang time-splitting Laguerre–Hermite/Hermite collocation methods for the Gross–Pitaevskii equation. Found. Comput. Math. 13, 99–137 (2013)MathSciNetMATHCrossRef Shen, J., Wang, Z.Q.: Error analysis of the Strang time-splitting Laguerre–Hermite/Hermite collocation methods for the Gross–Pitaevskii equation. Found. Comput. Math. 13, 99–137 (2013)MathSciNetMATHCrossRef
31.
Zurück zum Zitat Zhang, C., Huang, J.F., Wang, C., Yue, X.Y.: On the operator splitting and integral equation preconditioned deferred correction methods for the “Good” Boussinesq equation. J. Sci. Comput. 75, 687–712 (2018)MathSciNetMATHCrossRef Zhang, C., Huang, J.F., Wang, C., Yue, X.Y.: On the operator splitting and integral equation preconditioned deferred correction methods for the “Good” Boussinesq equation. J. Sci. Comput. 75, 687–712 (2018)MathSciNetMATHCrossRef
32.
Zurück zum Zitat Zhang, C., Wang, H., Huang, J.F., Wang, C., Yue, X.Y.: A second order operator splitting numerical scheme for the “good” Boussinesq equation. Appl. Numer. Math. 119, 179–193 (2017)MathSciNetMATHCrossRef Zhang, C., Wang, H., Huang, J.F., Wang, C., Yue, X.Y.: A second order operator splitting numerical scheme for the “good” Boussinesq equation. Appl. Numer. Math. 119, 179–193 (2017)MathSciNetMATHCrossRef
33.
Zurück zum Zitat Lubich, C.: On splitting methods for Schrödinger–Poisson and cubic nonlinear Schrödinger equations. Math. Comput. 77, 2141–2153 (2008)MathSciNetMATHCrossRef Lubich, C.: On splitting methods for Schrödinger–Poisson and cubic nonlinear Schrödinger equations. Math. Comput. 77, 2141–2153 (2008)MathSciNetMATHCrossRef
34.
Zurück zum Zitat Thalhammer, M.: Convergence analysis of high-order time-splitting pseudospectral methods for nonlinear Schrödinger equations. SIAM J. Numer. Anal. 50, 3231–3258 (2012)MathSciNetMATHCrossRef Thalhammer, M.: Convergence analysis of high-order time-splitting pseudospectral methods for nonlinear Schrödinger equations. SIAM J. Numer. Anal. 50, 3231–3258 (2012)MathSciNetMATHCrossRef
35.
Zurück zum Zitat Zhai, S.Y., Wang, D.L., Weng, Z.F., Zhao, X.: Error analysis and numerical simulations of Strang splitting method for space Fractional nonlinear Schrödinger equation. J. Sci. Comput. 81, 965–989 (2019)MathSciNetMATHCrossRef Zhai, S.Y., Wang, D.L., Weng, Z.F., Zhao, X.: Error analysis and numerical simulations of Strang splitting method for space Fractional nonlinear Schrödinger equation. J. Sci. Comput. 81, 965–989 (2019)MathSciNetMATHCrossRef
36.
Zurück zum Zitat Lee, H.G., Shin, J., Lee, J.Y.: First and second order operator splitting methods for the phase field crystal equation. J. Comput. Phys. 299, 82–91 (2015)MathSciNetMATHCrossRef Lee, H.G., Shin, J., Lee, J.Y.: First and second order operator splitting methods for the phase field crystal equation. J. Comput. Phys. 299, 82–91 (2015)MathSciNetMATHCrossRef
37.
Zurück zum Zitat Shen, J., Tang, T., Wang, L.L.: Spectral Methods Algorithms: Analyses and Applications, 1st edn. Springer, Berlin (2010) Shen, J., Tang, T., Wang, L.L.: Spectral Methods Algorithms: Analyses and Applications, 1st edn. Springer, Berlin (2010)
39.
Zurück zum Zitat Mishra, S., Svärd, M.: On stability of numerical schemes via frozen coefficients and the magnetic induction equations. BIT Numer. Math. 50, 85–108 (2010)MathSciNetMATHCrossRef Mishra, S., Svärd, M.: On stability of numerical schemes via frozen coefficients and the magnetic induction equations. BIT Numer. Math. 50, 85–108 (2010)MathSciNetMATHCrossRef
40.
41.
Zurück zum Zitat Canuto, C., Quarteroni, A., Hussaini, M.Y., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains. Springer, Berlin (2006)MATHCrossRef Canuto, C., Quarteroni, A., Hussaini, M.Y., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains. Springer, Berlin (2006)MATHCrossRef
42.
Zurück zum Zitat Gottlieb, S., Wang, C.: Stability and convergence analysis of fully discrete Fourier collocation spectral method for 3-D viscous Burgers’ Equation. J. Sci. Comput. 53, 102–128 (2012)MathSciNetMATHCrossRef Gottlieb, S., Wang, C.: Stability and convergence analysis of fully discrete Fourier collocation spectral method for 3-D viscous Burgers’ Equation. J. Sci. Comput. 53, 102–128 (2012)MathSciNetMATHCrossRef
43.
Zurück zum Zitat Gottlieb, S., Tone, F., Wang, C., Wang, X., Wirosoetisno, D.: Long time stability of a classical efficient scheme for two-dimensional Navier–Stokes equations. SIAM J. Numer. Anal. 50, 126–150 (2012)MathSciNetMATHCrossRef Gottlieb, S., Tone, F., Wang, C., Wang, X., Wirosoetisno, D.: Long time stability of a classical efficient scheme for two-dimensional Navier–Stokes equations. SIAM J. Numer. Anal. 50, 126–150 (2012)MathSciNetMATHCrossRef
Metadaten
Titel
Stability and Error Estimate of the Operator Splitting Method for the Phase Field Crystal Equation
verfasst von
Shuying Zhai
Zhifeng Weng
Xinlong Feng
Yinnian He
Publikationsdatum
01.01.2021
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 1/2021
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-020-01386-8

Weitere Artikel der Ausgabe 1/2021

Journal of Scientific Computing 1/2021 Zur Ausgabe