Skip to main content
Erschienen in: Journal of Scientific Computing 1/2021

01.01.2021

Convergence of Adaptive Weak Galerkin Finite Element Methods for Second Order Elliptic Problems

verfasst von: Yingying Xie, Liuqiang Zhong

Erschienen in: Journal of Scientific Computing | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We consider a standard Adaptive weak Galerkin (AWG) finite element method for second order elliptic problems. We prove that the sum of the energy error and the scaled error estimator of AWG method, between two consecutive adaptive loops, is a contraction. At last, we present some numerical experiments to support the theoretical results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Binev, P., Dahmen, W., DeVore, R.A.: Adaptive finite element methods with convergence rates. Numer. Math. 97(2), 219–268 (2004)MathSciNetCrossRef Binev, P., Dahmen, W., DeVore, R.A.: Adaptive finite element methods with convergence rates. Numer. Math. 97(2), 219–268 (2004)MathSciNetCrossRef
2.
Zurück zum Zitat Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)CrossRef Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)CrossRef
3.
Zurück zum Zitat Cascon, J.M., Kreuzer, C., Nochetto, R.H., Siebert, K.G.: Quasi-optimal convergence rate for an adaptive finite element method. SIAM J. Numer. Anal. 46(5), 2524–2550 (2008)MathSciNetCrossRef Cascon, J.M., Kreuzer, C., Nochetto, R.H., Siebert, K.G.: Quasi-optimal convergence rate for an adaptive finite element method. SIAM J. Numer. Anal. 46(5), 2524–2550 (2008)MathSciNetCrossRef
4.
Zurück zum Zitat Chen, L.: iFEM: An Integrated Finite Element Methods Package in MATLAB. University of California, Irvine (2009) Chen, L.: iFEM: An Integrated Finite Element Methods Package in MATLAB. University of California, Irvine (2009)
5.
Zurück zum Zitat Chen, L., Holst, M., Xu, J.: Convergence and optimality of adaptive mixed finite element methods. Math. Comput. 78(265), 35–53 (2009)MathSciNetCrossRef Chen, L., Holst, M., Xu, J.: Convergence and optimality of adaptive mixed finite element methods. Math. Comput. 78(265), 35–53 (2009)MathSciNetCrossRef
6.
Zurück zum Zitat Chen, L., Wang, J., Ye, X.: A posteriori error estimates for weak Galerkin finite element methods for second order elliptic problems. J. Sci. Comput. 59(2), 496–511 (2014)MathSciNetCrossRef Chen, L., Wang, J., Ye, X.: A posteriori error estimates for weak Galerkin finite element methods for second order elliptic problems. J. Sci. Comput. 59(2), 496–511 (2014)MathSciNetCrossRef
7.
Zurück zum Zitat Du, Y., Zhang, Z.: A numerical analysis of the weak Galerkin method for the Helmholtz equation with high wave number. Commun. Comput. Phys. 22(1), 133–156 (2017)MathSciNetCrossRef Du, Y., Zhang, Z.: A numerical analysis of the weak Galerkin method for the Helmholtz equation with high wave number. Commun. Comput. Phys. 22(1), 133–156 (2017)MathSciNetCrossRef
8.
Zurück zum Zitat Dörfler, W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33(3), 1106–1124 (1996)MathSciNetCrossRef Dörfler, W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33(3), 1106–1124 (1996)MathSciNetCrossRef
9.
Zurück zum Zitat Huang, J., Xu, Y.: Convergence and complexity of arbitrary order adaptive mixed element methods for the Poisson equation. Sci. China Math. 55(5), 1083–1098 (2012)MathSciNetCrossRef Huang, J., Xu, Y.: Convergence and complexity of arbitrary order adaptive mixed element methods for the Poisson equation. Sci. China Math. 55(5), 1083–1098 (2012)MathSciNetCrossRef
10.
11.
Zurück zum Zitat Li, H.G., Mu, L., Ye, X.: A posteriori error estimates for the weak Galerkin finite element methods on polytopal meshes. Commun. Comput. Phys. 26(2), 558–578 (2019)MathSciNetCrossRef Li, H.G., Mu, L., Ye, X.: A posteriori error estimates for the weak Galerkin finite element methods on polytopal meshes. Commun. Comput. Phys. 26(2), 558–578 (2019)MathSciNetCrossRef
12.
Zurück zum Zitat Lin, G., Liu, J., Mu, L., Ye, X.: Weak Galerkin finite element methods for Darcy flow: anisotropy and heterogeneity. J. Comput. Phys. 276, 422–437 (2014)MathSciNetCrossRef Lin, G., Liu, J., Mu, L., Ye, X.: Weak Galerkin finite element methods for Darcy flow: anisotropy and heterogeneity. J. Comput. Phys. 276, 422–437 (2014)MathSciNetCrossRef
13.
Zurück zum Zitat Mitchell, W.F.: A comparison of adaptive refinement techniques for elliptic problems. ACM Trans. Math. Softw. 15(4), 326–347 (1989)MathSciNetCrossRef Mitchell, W.F.: A comparison of adaptive refinement techniques for elliptic problems. ACM Trans. Math. Softw. 15(4), 326–347 (1989)MathSciNetCrossRef
14.
Zurück zum Zitat Morin, P., Nochetto, R.H., Siebert, K.G.: Data oscillation and convergence of adaptive FEM. SIAM J. Numer. Anal. 38(2), 466–488 (2000)MathSciNetCrossRef Morin, P., Nochetto, R.H., Siebert, K.G.: Data oscillation and convergence of adaptive FEM. SIAM J. Numer. Anal. 38(2), 466–488 (2000)MathSciNetCrossRef
15.
Zurück zum Zitat Morin, P., Nochetto, R.H., Siebert, K.G.: Convergence of adaptive finite element methods. SIAM Rev. 44(4), 631–658 (2002)MathSciNetCrossRef Morin, P., Nochetto, R.H., Siebert, K.G.: Convergence of adaptive finite element methods. SIAM Rev. 44(4), 631–658 (2002)MathSciNetCrossRef
16.
Zurück zum Zitat Mu, L.: Weak Galerkin based a posteriori error estimates for second order elliptic interface problems on polygonal meshes. J. Comput. Appl. Math. 361, 413–425 (2019)MathSciNetCrossRef Mu, L.: Weak Galerkin based a posteriori error estimates for second order elliptic interface problems on polygonal meshes. J. Comput. Appl. Math. 361, 413–425 (2019)MathSciNetCrossRef
17.
Zurück zum Zitat Mu, L., Wang, J., Wei, G., Zhao, S.: Weak Galerkin methods for second order elliptic interface problems. J. Comput. Phys. 250, 106–125 (2013)MathSciNetCrossRef Mu, L., Wang, J., Wei, G., Zhao, S.: Weak Galerkin methods for second order elliptic interface problems. J. Comput. Phys. 250, 106–125 (2013)MathSciNetCrossRef
18.
Zurück zum Zitat Mu, L., Wang, J., Ye, X.: Weak Galerkin finite element methods for the biharmonic equation on polytopal meshes. Numer. Methods Part. Differ. Equ. 30(3), 1003–1029 (2014)MathSciNetCrossRef Mu, L., Wang, J., Ye, X.: Weak Galerkin finite element methods for the biharmonic equation on polytopal meshes. Numer. Methods Part. Differ. Equ. 30(3), 1003–1029 (2014)MathSciNetCrossRef
19.
Zurück zum Zitat Mu, L., Wang, J., Ye, X.: A new weak Galerkin finite element method for the Helmholtz equation. IMA J. Numer. Anal. 35(3), 1228–1255 (2015)MathSciNetCrossRef Mu, L., Wang, J., Ye, X.: A new weak Galerkin finite element method for the Helmholtz equation. IMA J. Numer. Anal. 35(3), 1228–1255 (2015)MathSciNetCrossRef
20.
Zurück zum Zitat Mu, L., Wang, J., Ye, X.: A weak Galerkin finite element method with polynomial reduction. J. Comp. Appl. Math. 285, 45–58 (2015)MathSciNetCrossRef Mu, L., Wang, J., Ye, X.: A weak Galerkin finite element method with polynomial reduction. J. Comp. Appl. Math. 285, 45–58 (2015)MathSciNetCrossRef
21.
Zurück zum Zitat Mu, L., Wang, J., Ye, X.: Weak Galerkin finite element methods on polytopal meshes. Int. J. Numer. Anal. Mod. 12(1), 31–53 (2015)MathSciNetMATH Mu, L., Wang, J., Ye, X.: Weak Galerkin finite element methods on polytopal meshes. Int. J. Numer. Anal. Mod. 12(1), 31–53 (2015)MathSciNetMATH
22.
Zurück zum Zitat Mu, L., Wang, J., Ye, X., Zhang, S.: A \(C^{0}\)-weak Galerkin finite element method for the biharmonic equation. J. Sci. Comput. 59(2), 473–495 (2014)MathSciNetCrossRef Mu, L., Wang, J., Ye, X., Zhang, S.: A \(C^{0}\)-weak Galerkin finite element method for the biharmonic equation. J. Sci. Comput. 59(2), 473–495 (2014)MathSciNetCrossRef
23.
Zurück zum Zitat Mu, L., Wang, J., Ye, X., Zhao, S.: A numerical study on the weak Galerkin method for the Helmholtz equation. Commun. Comput. Phys. 15(5), 1461–1479 (2014)MathSciNetCrossRef Mu, L., Wang, J., Ye, X., Zhao, S.: A numerical study on the weak Galerkin method for the Helmholtz equation. Commun. Comput. Phys. 15(5), 1461–1479 (2014)MathSciNetCrossRef
24.
Zurück zum Zitat Nochetto, R.H., Siebert, K.G., Veeser, A.: Theory of adaptive finite element methods: an introduction. In: Devore, R.A., Kunoth, A. (eds.) Multiscale, Nonlinear and Adaptive Approximation, pp. 409–542. Springer, Berlin (2009)CrossRef Nochetto, R.H., Siebert, K.G., Veeser, A.: Theory of adaptive finite element methods: an introduction. In: Devore, R.A., Kunoth, A. (eds.) Multiscale, Nonlinear and Adaptive Approximation, pp. 409–542. Springer, Berlin (2009)CrossRef
25.
Zurück zum Zitat Stevenson, R.: The completion of locally refined simplicial partitions created by bisection. Math. Comp. 77(261), 227–241 (2008)MathSciNetCrossRef Stevenson, R.: The completion of locally refined simplicial partitions created by bisection. Math. Comp. 77(261), 227–241 (2008)MathSciNetCrossRef
26.
Zurück zum Zitat Wang, C., Wang, J.: An efficient numerical scheme for the biharmonic equation by weak Galerkin finite element methods on polygonal or polyhedral meshes. Comput. Math. Appl. 68(12), 2314–2330 (2013)MathSciNetCrossRef Wang, C., Wang, J.: An efficient numerical scheme for the biharmonic equation by weak Galerkin finite element methods on polygonal or polyhedral meshes. Comput. Math. Appl. 68(12), 2314–2330 (2013)MathSciNetCrossRef
27.
Zurück zum Zitat Wang, J., Ye, X.: A weak Galerkin finite element method for second-order elliptic problems. J. Comput. Appl. Math. 241(0), 103–115 (2013)MathSciNetCrossRef Wang, J., Ye, X.: A weak Galerkin finite element method for second-order elliptic problems. J. Comput. Appl. Math. 241(0), 103–115 (2013)MathSciNetCrossRef
28.
Zurück zum Zitat Wang, J., Ye, X.: A weak Galerkin mixed finite element method for second-order elliptic problems. Math. Comput. 83(289), 2101–2126 (2014)MathSciNetCrossRef Wang, J., Ye, X.: A weak Galerkin mixed finite element method for second-order elliptic problems. Math. Comput. 83(289), 2101–2126 (2014)MathSciNetCrossRef
29.
Zurück zum Zitat Zhang, T., Chen, Y.: A posteriori error analysis for the weak Galerkin method for solving elliptic problems. Int. J. Comput. Methods 15(8), 1850075 (2018)MathSciNetCrossRef Zhang, T., Chen, Y.: A posteriori error analysis for the weak Galerkin method for solving elliptic problems. Int. J. Comput. Methods 15(8), 1850075 (2018)MathSciNetCrossRef
30.
Zurück zum Zitat Zhang, J., Zhang, K., Li, J., Wang, X.: A weak Galerkin finite element method for the Navier–Stokes equations. Commun. Comput. Phys. 23, 706–746 (2018)MathSciNet Zhang, J., Zhang, K., Li, J., Wang, X.: A weak Galerkin finite element method for the Navier–Stokes equations. Commun. Comput. Phys. 23, 706–746 (2018)MathSciNet
31.
Zurück zum Zitat Zhang, T., Lin, T.: A posteriori error estimate for a modified weak Galerkin method solving elliptic problems. Numer. Methods Part. D. E 33(1), 381–398 (2017)MathSciNetCrossRef Zhang, T., Lin, T.: A posteriori error estimate for a modified weak Galerkin method solving elliptic problems. Numer. Methods Part. D. E 33(1), 381–398 (2017)MathSciNetCrossRef
32.
Zurück zum Zitat Zheng, X., Xie, X.: A posteriori error estimator for a weak Galerkin finite element solution of the Stokes problem. E. Asian. J. Appl. Math. 7(3), 508–529 (2017)MathSciNetCrossRef Zheng, X., Xie, X.: A posteriori error estimator for a weak Galerkin finite element solution of the Stokes problem. E. Asian. J. Appl. Math. 7(3), 508–529 (2017)MathSciNetCrossRef
33.
Zurück zum Zitat Zhong, L., Chen, L., Shu, S., Wittum, G., Xu, J.: Convergence and optimality of adaptive edge finite element methods for time-harmonic Maxwell equations. Math. Comput. 81(278), 623–642 (2012)MathSciNetCrossRef Zhong, L., Chen, L., Shu, S., Wittum, G., Xu, J.: Convergence and optimality of adaptive edge finite element methods for time-harmonic Maxwell equations. Math. Comput. 81(278), 623–642 (2012)MathSciNetCrossRef
34.
Zurück zum Zitat Zhong, L., Shu, S., Chen, L., Xu, J.: Convergence of adaptive edge finite element methods for H(curl)-elliptic problems. Numer. Linear Algebra Appl. 17(2–3), 415–432 (2010)MathSciNetMATH Zhong, L., Shu, S., Chen, L., Xu, J.: Convergence of adaptive edge finite element methods for H(curl)-elliptic problems. Numer. Linear Algebra Appl. 17(2–3), 415–432 (2010)MathSciNetMATH
Metadaten
Titel
Convergence of Adaptive Weak Galerkin Finite Element Methods for Second Order Elliptic Problems
verfasst von
Yingying Xie
Liuqiang Zhong
Publikationsdatum
01.01.2021
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 1/2021
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-020-01387-7

Weitere Artikel der Ausgabe 1/2021

Journal of Scientific Computing 1/2021 Zur Ausgabe