Skip to main content
Erschienen in: Automatic Control and Computer Sciences 5/2019

01.09.2019

Parameter Identification of Induction Motor by Using Cooperative-Coevolution and a Nonlinear Estimator

verfasst von: Alireza Rezaee, S. M. Mehdi Hoseini

Erschienen in: Automatic Control and Computer Sciences | Ausgabe 5/2019

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Induction motors are one of the critical industrial drivers due to its simplicity, inexpensiveness, and high resistance. Such motors have a nonlinear model divided into two electrical and mechanical equations in terms of modeling. Knowing the values of electric parameters and mechanical moment of inertia is critically important for speed controlling and induction motors’ position. In many algorithms, electric parameters can be obtained by the locked rotor and unloaded tests, conducting these methods in laboratory would probably cost a lot of time and money. In this paper electrical parameters and moment of inertia are used approximately, without doing the above test by currents, voltages, and motor speed sampling in motor normal operation. This paper applies cooperative co-evolution method to remove certain costly tests that are required for induction motors. Two identification algorithms are suggested for all electrical parameters and moment of inertia. All inductances and resistances which are the two input parameters measured in electric equations using Cooperative-Coevolution algorithm. Mechanical model estimated the moment of inertia and load torque by using a nonlinear method based on Lyapunov. Computerized numerical simulations show that electric parameters, moment of inertia, and load torque were properly estimated by integrating the two smart and classic methods. The results show that the stator inductance error is about 1% and rotor inductance error is around 20%. Rotor and stator resistance error and self-Inductance is also less than one percent.
Literatur
1.
Zurück zum Zitat Wang, L. and Yongqiang, L., Application of simulated annealing particle swarm optimization based on correlation in parameter identification of induction motor, Math. Probl. Eng., 2018, no. 12, pp. 9–18. Wang, L. and Yongqiang, L., Application of simulated annealing particle swarm optimization based on correlation in parameter identification of induction motor, Math. Probl. Eng., 2018, no. 12, pp. 9–18.
2.
Zurück zum Zitat Abbondanti, A. and Brennen, M.B., Variable speed induction motor drives use electronic slip calculator based on motor voltages and currents, IEEE Trans. Ind. Appl., 1975, 5, pp. 483–488.CrossRef Abbondanti, A. and Brennen, M.B., Variable speed induction motor drives use electronic slip calculator based on motor voltages and currents, IEEE Trans. Ind. Appl., 1975, 5, pp. 483–488.CrossRef
3.
Zurück zum Zitat Finch, J., Scalar and vector: a simplified treatment of induction motor control performance, IEE Colloquium on Vector Control Revisited (Digest No. 1998/199), 1998. Finch, J., Scalar and vector: a simplified treatment of induction motor control performance, IEE Colloquium on Vector Control Revisited (Digest No. 1998/199), 1998.
4.
Zurück zum Zitat Lindenmeyer, D., et al., An induction motor parameter estimation method, Int. J. Electr. Power Energy Syst., 2001, no. 4, pp. 251–262.CrossRef Lindenmeyer, D., et al., An induction motor parameter estimation method, Int. J. Electr. Power Energy Syst., 2001, no. 4, pp. 251–262.CrossRef
5.
Zurück zum Zitat Sharma, A., Panchal, T.H., and Amrolia, H., Simulation and Analysis of Parameter Identification Techniques for Induction Motor Drive, 2014. Sharma, A., Panchal, T.H., and Amrolia, H., Simulation and Analysis of Parameter Identification Techniques for Induction Motor Drive, 2014.
6.
Zurück zum Zitat Peresada, S., et al., Identification of induction motor parameters for self-commissioning procedure: A new algorithm and experimental verification, 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE), 2014. Peresada, S., et al., Identification of induction motor parameters for self-commissioning procedure: A new algorithm and experimental verification, 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE), 2014.
7.
Zurück zum Zitat Pawlus, W., Choux, M., and Hovland, G., Parameters identification of induction motor dynamic model for offshore applications, 2014 IEEE/ASME 10th International Conference on Mechatronic and Embedded Systems and Applications (MESA), 2014. Pawlus, W., Choux, M., and Hovland, G., Parameters identification of induction motor dynamic model for offshore applications, 2014 IEEE/ASME 10th International Conference on Mechatronic and Embedded Systems and Applications (MESA), 2014.
8.
Zurück zum Zitat Alonge, F., et al., Parameter identification of induction motor model using genetic algorithms, IEE Proc. Control Theory Appl., 1998, vol. 145, no. 6, pp. 587–593.CrossRef Alonge, F., et al., Parameter identification of induction motor model using genetic algorithms, IEE Proc. Control Theory Appl., 1998, vol. 145, no. 6, pp. 587–593.CrossRef
9.
Zurück zum Zitat Pillay, P., et al., In-situ induction motor efficiency determination using the genetic algorithm, IEEE Trans. Energy Convers., 1998, vol. 13, no. 4, pp. 326–333.CrossRef Pillay, P., et al., In-situ induction motor efficiency determination using the genetic algorithm, IEEE Trans. Energy Convers., 1998, vol. 13, no. 4, pp. 326–333.CrossRef
10.
Zurück zum Zitat Nolan, R., Pillay, P., and Haque, T., Application of genetic algorithms to motor parameter determination, Conference Record of the 1994 IEEE Industry Applications Society Annual Meeting, 1994. Nolan, R., Pillay, P., and Haque, T., Application of genetic algorithms to motor parameter determination, Conference Record of the 1994 IEEE Industry Applications Society Annual Meeting, 1994.
11.
Zurück zum Zitat Haque, T., et al., Parameter determination for induction motors, Southeastcon'94. Proceedings of the 1994 IEEE Creative Technology Transfer—A Global Affair, 1994. Haque, T., et al., Parameter determination for induction motors, Southeastcon'94. Proceedings of the 1994 IEEE Creative Technology Transfer—A Global Affair, 1994.
12.
Zurück zum Zitat Abdelhadi, B., Benoudjit, A., and Nait-Said, N., Application of genetic algorithm with a novel adaptive scheme for the identification of induction machine parameters, IEEE Trans. Energy Convers., 2005, vol. 20, no. 2, pp. 284–291.CrossRef Abdelhadi, B., Benoudjit, A., and Nait-Said, N., Application of genetic algorithm with a novel adaptive scheme for the identification of induction machine parameters, IEEE Trans. Energy Convers., 2005, vol. 20, no. 2, pp. 284–291.CrossRef
13.
Zurück zum Zitat Kim, J.-W. and Kim, S.W., Parameter identification of induction motors using dynamic encoding algorithm for searches (DEAS), IEEE Trans. Energy Convers., 2005, vol. 20, no. 1, pp. 16–24.CrossRef Kim, J.-W. and Kim, S.W., Parameter identification of induction motors using dynamic encoding algorithm for searches (DEAS), IEEE Trans. Energy Convers., 2005, vol. 20, no. 1, pp. 16–24.CrossRef
14.
Zurück zum Zitat Huang, K., et al., Parameter identification of an induction machine using genetic algorithms, Proceedings of the 1999 IEEE International Symposium on Computer Aided Control System Design, 1999. Huang, K., et al., Parameter identification of an induction machine using genetic algorithms, Proceedings of the 1999 IEEE International Symposium on Computer Aided Control System Design, 1999.
15.
Zurück zum Zitat Bongard, J.C. and Lipson, H., Nonlinear system identification using coevolution of models and tests, IEEE Trans. Evol. Comput., 2005, vol. 9, no. 4, pp. 361–384.CrossRef Bongard, J.C. and Lipson, H., Nonlinear system identification using coevolution of models and tests, IEEE Trans. Evol. Comput., 2005, vol. 9, no. 4, pp. 361–384.CrossRef
16.
Zurück zum Zitat Handa, H., et al., Genetic algorithm involving coevolution mechanism to search for effective genetic information, IEEE International Conference on Evolutionary Computation, 1997. Handa, H., et al., Genetic algorithm involving coevolution mechanism to search for effective genetic information, IEEE International Conference on Evolutionary Computation, 1997.
17.
Zurück zum Zitat Bavi, O., Bavi, N., and Shishesaz, M., Geometrical optimization of the overlap in mixed adhesive lap joints, J. Adhes., 2013, vol. 89, no. 12, pp. 948–972. Bavi, O., Bavi, N., and Shishesaz, M., Geometrical optimization of the overlap in mixed adhesive lap joints, J. Adhes., 2013, vol. 89, no. 12, pp. 948–972.
18.
Zurück zum Zitat Assareh, E., et al., Application of PSO (particle swarm optimization) and GA (genetic algorithm) techniques on demand estimation of oil in Iran, Energy, 2010, vol. 35, no. 12, pp. 5223–5229.CrossRef Assareh, E., et al., Application of PSO (particle swarm optimization) and GA (genetic algorithm) techniques on demand estimation of oil in Iran, Energy, 2010, vol. 35, no. 12, pp. 5223–5229.CrossRef
19.
Zurück zum Zitat Dasgupta, J., Sikder, J., and Mandal, D., Modeling and optimization of polymer enhanced ultrafiltration using hybrid neural-genetic algorithm based evolutionary approach, Appl. Soft Comput., 2017, vol. 55, pp. 108–126.CrossRef Dasgupta, J., Sikder, J., and Mandal, D., Modeling and optimization of polymer enhanced ultrafiltration using hybrid neural-genetic algorithm based evolutionary approach, Appl. Soft Comput., 2017, vol. 55, pp. 108–126.CrossRef
20.
Zurück zum Zitat Yu, W., et al., Application of multi-objective genetic algorithm to optimize energy efficiency and thermal comfort in building design, Energy Build., 2015, vol. 88, pp. 135–143.CrossRef Yu, W., et al., Application of multi-objective genetic algorithm to optimize energy efficiency and thermal comfort in building design, Energy Build., 2015, vol. 88, pp. 135–143.CrossRef
21.
Zurück zum Zitat Rezaee, A., Using genetic algorithms for designing of FIR digital filters, ICTACT J. Soft Comput., 2010, vol. 1, no. 1, pp. 18–22.CrossRef Rezaee, A., Using genetic algorithms for designing of FIR digital filters, ICTACT J. Soft Comput., 2010, vol. 1, no. 1, pp. 18–22.CrossRef
22.
Zurück zum Zitat Rezaee, A., Using coevolutionary genetic algorithms for estimation of blind FIR channel, Wireless Pers. Commun., 2015, vol. 83, no. 1, pp. 191–201.CrossRef Rezaee, A., Using coevolutionary genetic algorithms for estimation of blind FIR channel, Wireless Pers. Commun., 2015, vol. 83, no. 1, pp. 191–201.CrossRef
23.
Zurück zum Zitat Haupt, R.L., Haupt, S.E., and Haupt, S.E., Practical Genetic Algorithms, New York: Wiley, 1998, vol. 2.MATH Haupt, R.L., Haupt, S.E., and Haupt, S.E., Practical Genetic Algorithms, New York: Wiley, 1998, vol. 2.MATH
24.
Zurück zum Zitat Pagie, L. and Mitchell, M., A comparison of evolutionary and coevolutionary search, Int. J. Comput. Intell. Appl., 2002, vol. 2, no. 1, pp. 53–69.CrossRef Pagie, L. and Mitchell, M., A comparison of evolutionary and coevolutionary search, Int. J. Comput. Intell. Appl., 2002, vol. 2, no. 1, pp. 53–69.CrossRef
25.
Zurück zum Zitat Potter, M.A., The Design and Analysis of a Computational Model of Cooperative Coevolution, Citeseer, 1997. Potter, M.A., The Design and Analysis of a Computational Model of Cooperative Coevolution, Citeseer, 1997.
26.
Zurück zum Zitat Wallin, D., Ryan, C., and Azad, R.M.A., Symbiogenetic coevolution, The 2005 IEEE Congress on Evolutionary Computation, 2005. Wallin, D., Ryan, C., and Azad, R.M.A., Symbiogenetic coevolution, The 2005 IEEE Congress on Evolutionary Computation, 2005.
27.
Zurück zum Zitat Seshadri, M., Comprehensibility, Overfitting and Co-Evolution in Genetic Programming for Technical Trading Rules, Worcester Polytechnic Institute, 2003. Seshadri, M., Comprehensibility, Overfitting and Co-Evolution in Genetic Programming for Technical Trading Rules, Worcester Polytechnic Institute, 2003.
28.
Zurück zum Zitat Rezaee, A., Genetic symbiosis algorithm generating test data for constraint automata, Appl. Comput. Math., 2008, vol. 6, no. 1, pp. 126–137.MathSciNetMATH Rezaee, A., Genetic symbiosis algorithm generating test data for constraint automata, Appl. Comput. Math., 2008, vol. 6, no. 1, pp. 126–137.MathSciNetMATH
29.
Zurück zum Zitat Alonge, F., D’Ippolito, F., and Raimondi, F.M., Least squares and genetic algorithms for parameter identification of induction motors, Control Eng. Pract., 2001, vol. 9, no. 6, pp. 647–657.CrossRef Alonge, F., D’Ippolito, F., and Raimondi, F.M., Least squares and genetic algorithms for parameter identification of induction motors, Control Eng. Pract., 2001, vol. 9, no. 6, pp. 647–657.CrossRef
30.
Zurück zum Zitat Pillay, P., Nolan, R., and Haque, T., Application of genetic algorithms to motor parameter determination for transient torque calculations, IEEE Trans. Ind. Appl., 1997, vol. 33, no. 5, pp. 1273–1282.CrossRef Pillay, P., Nolan, R., and Haque, T., Application of genetic algorithms to motor parameter determination for transient torque calculations, IEEE Trans. Ind. Appl., 1997, vol. 33, no. 5, pp. 1273–1282.CrossRef
Metadaten
Titel
Parameter Identification of Induction Motor by Using Cooperative-Coevolution and a Nonlinear Estimator
verfasst von
Alireza Rezaee
S. M. Mehdi Hoseini
Publikationsdatum
01.09.2019
Verlag
Pleiades Publishing
Erschienen in
Automatic Control and Computer Sciences / Ausgabe 5/2019
Print ISSN: 0146-4116
Elektronische ISSN: 1558-108X
DOI
https://doi.org/10.3103/S0146411619050092

Weitere Artikel der Ausgabe 5/2019

Automatic Control and Computer Sciences 5/2019 Zur Ausgabe

Neuer Inhalt