Skip to main content

2018 | OriginalPaper | Buchkapitel

37. Parametric Optimization of Concentrated Photovoltaic-Thermoelectric Hybrid System

verfasst von : Ravita Lamba, S. C. Kaushik

Erschienen in: The Role of Exergy in Energy and the Environment

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The current cutting edge in photovoltaic technology states that the conversion efficiency of photovoltaic (PV) systems has inverse relation and thermoelectric systems has direct relation with temperature. Therefore, cascading of thermoelectric (TE) systems with concentrated photovoltaic (CPV) systems has the potential to improve the total power output of CPV system by effectively utilizing the solar spectrum. The excess thermal energy of the PV system can be utilized as heat input in thermoelectric system to generate power. In this chapter, a thermodynamic model based on the first and second laws of thermodynamics for concentrated photovoltaic-thermoelectric (CPV-TE) hybrid system has been developed and analysed in a MATLAB Simulink environment. Further, the parametric optimization has been carried out to improve the overall performance of the hybrid system. The effect of concentration ratio, resistance ratio, thermal resistance between the TE module and the environment and the thermal resistance between the PV and TE modules has been discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Makki A, Omer S, Sabir H (2015) Advancements in hybrid photovoltaic systems for enhanced solar cells performance. Renew Sust Energ Rev 41:658–684CrossRef Makki A, Omer S, Sabir H (2015) Advancements in hybrid photovoltaic systems for enhanced solar cells performance. Renew Sust Energ Rev 41:658–684CrossRef
2.
Zurück zum Zitat Yang D, Yin H (2011) Energy conversion efficiency of a novel hybrid solar system for photovoltaic, thermoelectric, and heat utilization. IEEE Trans Energy Convers 26(2):662–670CrossRef Yang D, Yin H (2011) Energy conversion efficiency of a novel hybrid solar system for photovoltaic, thermoelectric, and heat utilization. IEEE Trans Energy Convers 26(2):662–670CrossRef
3.
Zurück zum Zitat Deng Y, Zhu W, Wang Y, Shi Y (2013) Enhanced performance of solar-driven photovoltaic–thermoelectric hybrid system in an integrated design. Sol Energy 88:182–191CrossRef Deng Y, Zhu W, Wang Y, Shi Y (2013) Enhanced performance of solar-driven photovoltaic–thermoelectric hybrid system in an integrated design. Sol Energy 88:182–191CrossRef
4.
Zurück zum Zitat Zhang J, Huan Y, Yuang L (2014) Performance estimation of photovoltaic thermoelectric hybrid systems. Energy 78:895–903CrossRef Zhang J, Huan Y, Yuang L (2014) Performance estimation of photovoltaic thermoelectric hybrid systems. Energy 78:895–903CrossRef
5.
Zurück zum Zitat Ju X, Wang Z, Flamant G, Zhao W (2012) Numerical analysis and optimization of a spectrum splitting concentration photovoltaic–thermoelectric hybrid system. Sol Energy 86(6):1941–1954CrossRef Ju X, Wang Z, Flamant G, Zhao W (2012) Numerical analysis and optimization of a spectrum splitting concentration photovoltaic–thermoelectric hybrid system. Sol Energy 86(6):1941–1954CrossRef
6.
Zurück zum Zitat VanSark WGJHM (2011) Feasibility of photovoltaic–thermoelectric hybrid modules. Appl Energy 88:2785–2790CrossRef VanSark WGJHM (2011) Feasibility of photovoltaic–thermoelectric hybrid modules. Appl Energy 88:2785–2790CrossRef
7.
Zurück zum Zitat Wu G, Yu X (2014) A holistic 3D finite element simulation model for thermoelectric power generator element. Energy Convers Manag 86:99–110CrossRef Wu G, Yu X (2014) A holistic 3D finite element simulation model for thermoelectric power generator element. Energy Convers Manag 86:99–110CrossRef
8.
Zurück zum Zitat Lin J, Liao T, Lin B (2015) Performance analysis and load matching of a photovoltaic– thermoelectric hybrid system. Energy Convers Manag 105:891–899CrossRef Lin J, Liao T, Lin B (2015) Performance analysis and load matching of a photovoltaic– thermoelectric hybrid system. Energy Convers Manag 105:891–899CrossRef
9.
Zurück zum Zitat Tian H, Sun X, Jia Q, Liang X, Shu G, Wang X (2015) Comparison and parameter optimization of a segmented thermoelectric generator by using the high temperature exhaust of a diesel engine. Energy 84:121–130CrossRef Tian H, Sun X, Jia Q, Liang X, Shu G, Wang X (2015) Comparison and parameter optimization of a segmented thermoelectric generator by using the high temperature exhaust of a diesel engine. Energy 84:121–130CrossRef
10.
Zurück zum Zitat Wu YY, Wu SY, Xiao L (2015) Performance analysis of photovoltaic–thermoelectric hybrid system with and without glass cover. Energy Convers Manag 93:151–159CrossRef Wu YY, Wu SY, Xiao L (2015) Performance analysis of photovoltaic–thermoelectric hybrid system with and without glass cover. Energy Convers Manag 93:151–159CrossRef
11.
Zurück zum Zitat Gomez M, Reid R, Ohara B, Lee H (2013) Influence of electrical current variance and thermal resistances on optimum working conditions and geometry for thermoelectric energy harvesting. J Appl Phys 113(17):174908CrossRef Gomez M, Reid R, Ohara B, Lee H (2013) Influence of electrical current variance and thermal resistances on optimum working conditions and geometry for thermoelectric energy harvesting. J Appl Phys 113(17):174908CrossRef
12.
Zurück zum Zitat Najafi H, Woodbury KA (2013) Modeling and analysis of a combined photovoltaic–thermoelectric power generation system. J Sol Energy Eng 135(3):031013CrossRef Najafi H, Woodbury KA (2013) Modeling and analysis of a combined photovoltaic–thermoelectric power generation system. J Sol Energy Eng 135(3):031013CrossRef
13.
Zurück zum Zitat Evans D (1981) Simplified method for predicting photovoltaic array output. Sol Energy 27:555–560CrossRef Evans D (1981) Simplified method for predicting photovoltaic array output. Sol Energy 27:555–560CrossRef
14.
Zurück zum Zitat Lamba R, Kaushik SC (2016) Modeling and performance analysis of a concentrated photovoltaic–thermoelectric hybrid power generation system. Energy Convers Manag 115:288–298CrossRef Lamba R, Kaushik SC (2016) Modeling and performance analysis of a concentrated photovoltaic–thermoelectric hybrid power generation system. Energy Convers Manag 115:288–298CrossRef
15.
Zurück zum Zitat Lamba R, Kaushik SC (2017) Thermodynamic analysis of thermoelectric generator including influence of Thomson effect and leg geometry configuration. Energy Convers Manag 144:388–398CrossRef Lamba R, Kaushik SC (2017) Thermodynamic analysis of thermoelectric generator including influence of Thomson effect and leg geometry configuration. Energy Convers Manag 144:388–398CrossRef
16.
Zurück zum Zitat Xuan XC, Ng KC, Yap C, Chua HT (2002) The maximum temperature difference and polar characteristic of two-stage thermoelectric coolers. Cryogenics 42(5):273–278CrossRef Xuan XC, Ng KC, Yap C, Chua HT (2002) The maximum temperature difference and polar characteristic of two-stage thermoelectric coolers. Cryogenics 42(5):273–278CrossRef
Metadaten
Titel
Parametric Optimization of Concentrated Photovoltaic-Thermoelectric Hybrid System
verfasst von
Ravita Lamba
S. C. Kaushik
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-89845-2_37