Skip to main content
Erschienen in: Computational Mechanics 4/2017

27.05.2017 | Original Paper

Partitioned-coupling FSI analysis with active control

verfasst von: Shigeki Kaneko, Giwon Hong, Naoto Mitsume, Tomonori Yamada, Shinobu Yoshimura

Erschienen in: Computational Mechanics | Ausgabe 4/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Fluid–structure interaction (FSI) is an interdependent phenomenon between a fluid and a structure that affects their dynamic behavior. It is important because it often affects the safety and lifetime of structures. Therefore, controlling FSI is important. In the study of the control of FSI, numerical simulations are often used because they are suitable for parametric studies and reduce the need for experiments. A number of numerical studies have examined the control of FSI. However, existing numerical studies have rarely performed both fluid and structural analyses strictly and sufficiently treated interaction conditions on the coupling interface. Therefore, the types of FSI problems that can be analyzed are limited. In order to enable the treatment of a greater variety of FSI problems, it was necessary to develop a new method. The partitioned iterative method has succeeded in analyzing complicated FSI problems, and, in the present study, we propose FSI analysis considering active control by integrating FSI analysis by a partitioned iterative method and an active control algorithm. We explain the proposed method, and we validate the method by solving two-dimensional vortex-induced vibration (VIV) of an elastically mounted cylinder with active control of a velocity feedback. Furthermore, we present an application example by solving the suppression of two-dimensional VIV of a flexible structure in the wake of a bluff body.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Pines DJ, Bohorquez F (2006) Challenges facing future micro-air-vehicle development. J Aircr 43(2):290–305CrossRef Pines DJ, Bohorquez F (2006) Challenges facing future micro-air-vehicle development. J Aircr 43(2):290–305CrossRef
2.
Zurück zum Zitat Mittal S, Tezduyar TE (1992) A finite element study of incompressible flows past oscillating cylinders and aerofoils. Int J Numer Methods Fluids 15:1073–1118CrossRef Mittal S, Tezduyar TE (1992) A finite element study of incompressible flows past oscillating cylinders and aerofoils. Int J Numer Methods Fluids 15:1073–1118CrossRef
3.
Zurück zum Zitat Baz A, Ro J (1991) Active control of flow-induced vibrations of a flexible cylinder using direct velocity feedback. J Sound Vib 146(1):33–45CrossRef Baz A, Ro J (1991) Active control of flow-induced vibrations of a flexible cylinder using direct velocity feedback. J Sound Vib 146(1):33–45CrossRef
4.
Zurück zum Zitat Zhang MM, Cheng L, Zhou Y (2004) Closed-loop-controlled vortex shedding and vibration of a flexibly supported square cylinder under different schemes. Phys Fluids 16(5):1439–1448CrossRefMATH Zhang MM, Cheng L, Zhou Y (2004) Closed-loop-controlled vortex shedding and vibration of a flexibly supported square cylinder under different schemes. Phys Fluids 16(5):1439–1448CrossRefMATH
5.
Zurück zum Zitat Baz A, Kim M (1993) Active modal control of vortex-induced vibrations of a flexible cylinder. J Sound Vib 165(1):69–84CrossRefMATH Baz A, Kim M (1993) Active modal control of vortex-induced vibrations of a flexible cylinder. J Sound Vib 165(1):69–84CrossRefMATH
6.
Zurück zum Zitat Chen Z, Aubry N (2005) Closed-loop control of vortex-induced vibration. Commun Nonlinear Sci Numer Simul 10(3):287–297CrossRefMATH Chen Z, Aubry N (2005) Closed-loop control of vortex-induced vibration. Commun Nonlinear Sci Numer Simul 10(3):287–297CrossRefMATH
7.
Zurück zum Zitat Hasheminejad SM, Rabiee AH, Jarrahi M, Markazi AH (2014) Active vortex-induced vibration control of a circular cylinder at low Reynolds numbers using an adaptive fuzzy sliding mode controller. J Fluids Struct 50:49–65CrossRef Hasheminejad SM, Rabiee AH, Jarrahi M, Markazi AH (2014) Active vortex-induced vibration control of a circular cylinder at low Reynolds numbers using an adaptive fuzzy sliding mode controller. J Fluids Struct 50:49–65CrossRef
8.
Zurück zum Zitat Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational fluid–structure interaction: methods and applications. Wiley, New YorkCrossRefMATH Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational fluid–structure interaction: methods and applications. Wiley, New YorkCrossRefMATH
9.
Zurück zum Zitat Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space–time procedure: I. The concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94:339–351CrossRefMATHMathSciNet Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space–time procedure: I. The concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94:339–351CrossRefMATHMathSciNet
10.
Zurück zum Zitat Mittal S, Tezduyar TE (1995) Parallel finite element simulation of 3d incompressible flows: fluid–structure interactions. Int J Numer Methods Fluids 21:933–953CrossRefMATH Mittal S, Tezduyar TE (1995) Parallel finite element simulation of 3d incompressible flows: fluid–structure interactions. Int J Numer Methods Fluids 21:933–953CrossRefMATH
11.
Zurück zum Zitat Yamada T, Hong G, Kataoka S, Yoshimura S (2016) Parallel partitioned coupling analysis system for large-scale incompressible viscous fluid–structure interaction problems. Comput Fluids 141:259–269CrossRefMathSciNet Yamada T, Hong G, Kataoka S, Yoshimura S (2016) Parallel partitioned coupling analysis system for large-scale incompressible viscous fluid–structure interaction problems. Comput Fluids 141:259–269CrossRefMathSciNet
12.
Zurück zum Zitat Takizawa K, Henicke B, Puntel A, Spielman T, Tezduyar TE (2012) Space–time computational techniques for the aerodynamics of flapping wings. J Appl Mech 79:010903CrossRefMATH Takizawa K, Henicke B, Puntel A, Spielman T, Tezduyar TE (2012) Space–time computational techniques for the aerodynamics of flapping wings. J Appl Mech 79:010903CrossRefMATH
13.
Zurück zum Zitat Ishihara D, Yoshimura S (2005) A monolithic approach for interaction of incompressible viscous fluid and an elastic body based on fluid pressure Poisson equation. Int J Numer Methods Eng 64(2):167–203CrossRefMATH Ishihara D, Yoshimura S (2005) A monolithic approach for interaction of incompressible viscous fluid and an elastic body based on fluid pressure Poisson equation. Int J Numer Methods Eng 64(2):167–203CrossRefMATH
14.
Zurück zum Zitat Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space–time finite element techniques for computation of fluid–structure interactions. Comput Methods Appl Mech Eng 195:2002–2027CrossRefMATHMathSciNet Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space–time finite element techniques for computation of fluid–structure interactions. Comput Methods Appl Mech Eng 195:2002–2027CrossRefMATHMathSciNet
15.
Zurück zum Zitat Felippa CA, Park KC, Farhat C (2001) Partitioned analysis of coupled mechanical systems. Comput Methods Appl Mech Eng 190(24):3247–3270CrossRefMATH Felippa CA, Park KC, Farhat C (2001) Partitioned analysis of coupled mechanical systems. Comput Methods Appl Mech Eng 190(24):3247–3270CrossRefMATH
16.
Zurück zum Zitat Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Christopher J, Crabtree J (2008) Interface projection techniques for fluid–structure interaction modeling with moving-mesh methods. Comput Mech 43:39–49CrossRefMATH Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Christopher J, Crabtree J (2008) Interface projection techniques for fluid–structure interaction modeling with moving-mesh methods. Comput Mech 43:39–49CrossRefMATH
17.
Zurück zum Zitat Yoshimura S, Shioya R, Noguchi H, Miyamura T (2002) Advanced general-purpose computational mechanics system for large-scale analysis and design. J Comput Appl Math 149(1):279–296CrossRefMATH Yoshimura S, Shioya R, Noguchi H, Miyamura T (2002) Advanced general-purpose computational mechanics system for large-scale analysis and design. J Comput Appl Math 149(1):279–296CrossRefMATH
18.
Zurück zum Zitat Kato C, Yamade Y, Wang H, Guo Y, Miyazawa M, Takaishi T, Yoshimura S, Takano Y (2007) Numerical prediction of sound generated from flows with a low Mach number. Comput Fluids 36(1):53–68CrossRefMATH Kato C, Yamade Y, Wang H, Guo Y, Miyazawa M, Takaishi T, Yoshimura S, Takano Y (2007) Numerical prediction of sound generated from flows with a low Mach number. Comput Fluids 36(1):53–68CrossRefMATH
19.
Zurück zum Zitat Yamada T, Yoshimura S (2008) Line search partitioned approach for fluid–structure interaction analysis of flapping wing. Comput Model Eng Sci 24(1):51–60MATH Yamada T, Yoshimura S (2008) Line search partitioned approach for fluid–structure interaction analysis of flapping wing. Comput Model Eng Sci 24(1):51–60MATH
20.
Zurück zum Zitat Brooks AN, Hughes TJ (1982) Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 32(1):199–259 Brooks AN, Hughes TJ (1982) Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 32(1):199–259
21.
Zurück zum Zitat Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28:1–44MATHMathSciNet Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28:1–44MATHMathSciNet
22.
Zurück zum Zitat Tezduyar TE, Osawa Y (2001) Fluid–structure interactions of a parachute crossing the far wake of an aircraft. Comput Methods Appl Mech Eng 191:717–726 Tezduyar TE, Osawa Y (2001) Fluid–structure interactions of a parachute crossing the far wake of an aircraft. Comput Methods Appl Mech Eng 191:717–726
23.
Zurück zum Zitat Tezduyar TE, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite-element computation of 3D flows. Computer 26:27–36CrossRefMATH Tezduyar TE, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite-element computation of 3D flows. Computer 26:27–36CrossRefMATH
24.
Zurück zum Zitat Herrmann LR (1976) Laplacian-isoparametric grid generation scheme. J Eng Mech Div 102(5):749–907 Herrmann LR (1976) Laplacian-isoparametric grid generation scheme. J Eng Mech Div 102(5):749–907
26.
Zurück zum Zitat Minami S, Yoshimura S (2010) Performance evaluation of nonlinear algorithms with line-search for partitioned coupling techniques for fluid–structure interactions. Int J Numer Methods Fluids 64(10–12):1129–1147CrossRefMATHMathSciNet Minami S, Yoshimura S (2010) Performance evaluation of nonlinear algorithms with line-search for partitioned coupling techniques for fluid–structure interactions. Int J Numer Methods Fluids 64(10–12):1129–1147CrossRefMATHMathSciNet
27.
Zurück zum Zitat Anagnostopoulos P, Bearman PW (1992) Response characteristics of a vortex-excited cylinder at low Reynolds numbers. J Fluids Struct 6(1):39–50CrossRef Anagnostopoulos P, Bearman PW (1992) Response characteristics of a vortex-excited cylinder at low Reynolds numbers. J Fluids Struct 6(1):39–50CrossRef
28.
Zurück zum Zitat Schulz KW, Kallinderis Y (1998) Unsteady flow structure interaction for incompressible flows using deformable hybrid grids. J Comput Phys 143(2):569–597CrossRefMATH Schulz KW, Kallinderis Y (1998) Unsteady flow structure interaction for incompressible flows using deformable hybrid grids. J Comput Phys 143(2):569–597CrossRefMATH
29.
Zurück zum Zitat Yang J, Preidikman S, Balaras E (2008) A strongly coupled, embedded-boundary method for fluid–structure interactions of elastically mounted rigid bodies. J Fluids Struct 24(2):167–182CrossRef Yang J, Preidikman S, Balaras E (2008) A strongly coupled, embedded-boundary method for fluid–structure interactions of elastically mounted rigid bodies. J Fluids Struct 24(2):167–182CrossRef
30.
Zurück zum Zitat Mehmood A, Abdelkefi A, Akhtar I, Nayfeh AH, Nuhait A, Haji MR (2014) Linear and nonlinear active feedback controls for vortex-induced vibrations of circular cylinders. J Vib Control 20(8):1137–1147CrossRef Mehmood A, Abdelkefi A, Akhtar I, Nayfeh AH, Nuhait A, Haji MR (2014) Linear and nonlinear active feedback controls for vortex-induced vibrations of circular cylinders. J Vib Control 20(8):1137–1147CrossRef
31.
Zurück zum Zitat Govardhan RN, Williamson CH (2006) Defining the ‘modified Griffin plot’ in vortex-induced vibration: revealing the effect of Reynolds number using controlled damping. J Fluid Mech 561:147–180CrossRefMATH Govardhan RN, Williamson CH (2006) Defining the ‘modified Griffin plot’ in vortex-induced vibration: revealing the effect of Reynolds number using controlled damping. J Fluid Mech 561:147–180CrossRefMATH
32.
Zurück zum Zitat Dettmer W, Perić D (2006) A computational framework for fluid–structure interaction: finite element formulation and applications. Comput Methods Appl Mech Eng 195(41):5754–5779CrossRefMATH Dettmer W, Perić D (2006) A computational framework for fluid–structure interaction: finite element formulation and applications. Comput Methods Appl Mech Eng 195(41):5754–5779CrossRefMATH
33.
Zurück zum Zitat Joshi SM (1986) Robustness properties of collocated controllers for flexible spacecraft. J Guid Control Dyn 9(1):85–91CrossRefMATH Joshi SM (1986) Robustness properties of collocated controllers for flexible spacecraft. J Guid Control Dyn 9(1):85–91CrossRefMATH
Metadaten
Titel
Partitioned-coupling FSI analysis with active control
verfasst von
Shigeki Kaneko
Giwon Hong
Naoto Mitsume
Tomonori Yamada
Shinobu Yoshimura
Publikationsdatum
27.05.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 4/2017
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-017-1422-3

Weitere Artikel der Ausgabe 4/2017

Computational Mechanics 4/2017 Zur Ausgabe

Neuer Inhalt