Skip to main content
Erschienen in: Journal of Materials Science 1/2016

07.08.2015 | 50th Anniversary

Pd-based nanoflowers catalysts: controlling size, composition, and structures for the 4-nitrophenol reduction and BTX oxidation reactions

verfasst von: Anderson G. M. da Silva, Thenner S. Rodrigues, Laís S. K. Taguchi, Humberto V. Fajardo, Rosana Balzer, Luiz F. D. Probst, Pedro H. C. Camargo

Erschienen in: Journal of Materials Science | Ausgabe 1/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We describe herein the synthesis of solid Au@Pd and hollow AgPd nanoflowers displaying controlled sizes and compositions in order to investigate how their size, composition, and the presence of Au in the core of the nanoparticles influence their catalytic performance toward both liquid and gas-phase transformations. While the size and composition of Au@Pd and AgPd the nanoflowers could be controlled as function of growth time, their structure (solid or hollow) was dependent on the nature of the seeds employed for the synthesis, i.e., Au or Ag nanoparticles. Moreover, Au@Pd and AgPd nanoflowers were successfully supported onto commercial silica displaying truly uniform dispersion. The catalytic activities of Au@Pd and AgPd nanoflowers were investigated toward the 4-nitrophenol reduction and the benzene, toluene, and o-xylene (BTX) oxidation. The catalytic activities for the reduction of 4-nitrophenol decreased as follows: Au58@Pd42 > Au27@Pd73 > Ag20Pd80 and Ag8Pd92 > Au12@Pd88 > Ag38Pd62, suggesting that the Au core enhanced the catalytic activity relative to the hollow material when for Pd at.% was up to 80. Regarding the BTX oxidation, supported Au@Pd displayed higher catalytic activities than AgPd nanoflowers, also illustrating the role of the Au cores in the nanoflowers for improving catalytic performance. We believe these results may serve as a platform for the synthesis of Pd-based bimetallic nanomaterials that enable the correlation between these physical/chemical parameters and properties and thus optimized catalytic activities.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Cheong S, Watt JD, Tilley RD (2010) Shape control of platinum and palladium nanoparticles for catalysis. Nanoscale 2:2045–2053CrossRef Cheong S, Watt JD, Tilley RD (2010) Shape control of platinum and palladium nanoparticles for catalysis. Nanoscale 2:2045–2053CrossRef
2.
Zurück zum Zitat Yin Liebscher J (2006) Carbon–carbon coupling reactions catalyzed by heterogeneous palladium catalysts. Chem Rev 107:133–173CrossRef Yin Liebscher J (2006) Carbon–carbon coupling reactions catalyzed by heterogeneous palladium catalysts. Chem Rev 107:133–173CrossRef
3.
Zurück zum Zitat Long R, Mao K, Ye X et al (2013) Surface facet of palladium nanocrystals: a key parameter to the activation of molecular oxygen for organic catalysis and cancer treatment. J Am Chem Soc 135:3200–3207CrossRef Long R, Mao K, Ye X et al (2013) Surface facet of palladium nanocrystals: a key parameter to the activation of molecular oxygen for organic catalysis and cancer treatment. J Am Chem Soc 135:3200–3207CrossRef
4.
Zurück zum Zitat Speziali MG, da Silva AGM, de Miranda DMV et al (2013) Air stable ligandless heterogeneous catalyst systems based on Pd and Au supported in SiO2 and MCM-41 for Suzuki–Miyaura cross-coupling in aqueous medium. Appl Catal A 462–463:39–45CrossRef Speziali MG, da Silva AGM, de Miranda DMV et al (2013) Air stable ligandless heterogeneous catalyst systems based on Pd and Au supported in SiO2 and MCM-41 for Suzuki–Miyaura cross-coupling in aqueous medium. Appl Catal A 462–463:39–45CrossRef
5.
Zurück zum Zitat Saldan I, Semenyuk Y, Marchuk I, Reshetnyak O (2015) Chemical synthesis and application of palladium nanoparticles. J Mater Sci 50:2337–2354CrossRef Saldan I, Semenyuk Y, Marchuk I, Reshetnyak O (2015) Chemical synthesis and application of palladium nanoparticles. J Mater Sci 50:2337–2354CrossRef
6.
Zurück zum Zitat Da Silva AM, Robles-Dutenhefner P, Dias A et al (2013) Gold, palladium and gold–palladium supported on silica catalysts prepared by sol–gel method: synthesis, characterization and catalytic behavior in the ethanol steam reforming. J Sol-Gel Sci Technol 67:273–281CrossRef Da Silva AM, Robles-Dutenhefner P, Dias A et al (2013) Gold, palladium and gold–palladium supported on silica catalysts prepared by sol–gel method: synthesis, characterization and catalytic behavior in the ethanol steam reforming. J Sol-Gel Sci Technol 67:273–281CrossRef
7.
Zurück zum Zitat Crespo-Quesada M, Yarulin A, Jin M et al (2011) Structure sensitivity of alkynol hydrogenation on shape- and size-controlled palladium nanocrystals: which sites are most active and selective? J Am Chem Soc 133:12787–12794CrossRef Crespo-Quesada M, Yarulin A, Jin M et al (2011) Structure sensitivity of alkynol hydrogenation on shape- and size-controlled palladium nanocrystals: which sites are most active and selective? J Am Chem Soc 133:12787–12794CrossRef
8.
Zurück zum Zitat Jin M, Zhang H, Xie Z, Xia Y (2012) Palladium nanocrystals enclosed by 100 and 111 facets in controlled proportions and their catalytic activities for formic acid oxidation. Energy Environ Sci 5:6352–6357CrossRef Jin M, Zhang H, Xie Z, Xia Y (2012) Palladium nanocrystals enclosed by 100 and 111 facets in controlled proportions and their catalytic activities for formic acid oxidation. Energy Environ Sci 5:6352–6357CrossRef
9.
Zurück zum Zitat Slater TJA, Macedo A, Schroeder SLM et al (2014) Correlating catalytic activity of Ag–Au nanoparticles with 3D compositional variations. Nano Lett 14:1921–1926CrossRef Slater TJA, Macedo A, Schroeder SLM et al (2014) Correlating catalytic activity of Ag–Au nanoparticles with 3D compositional variations. Nano Lett 14:1921–1926CrossRef
10.
Zurück zum Zitat Bai S, Wang X, Hu C et al (2014) Two-dimensional g-C3N4: an ideal platform for examining facet selectivity of metal co-catalysts in photocatalysis. Chem Commun 50:6094–6097CrossRef Bai S, Wang X, Hu C et al (2014) Two-dimensional g-C3N4: an ideal platform for examining facet selectivity of metal co-catalysts in photocatalysis. Chem Commun 50:6094–6097CrossRef
11.
Zurück zum Zitat Long R, Zhou S, Wiley BJ, Xiong Y (2014) Oxidative etching for controlled synthesis of metal nanocrystals: atomic addition and subtraction. Chem Soc Rev 43:6288–6310CrossRef Long R, Zhou S, Wiley BJ, Xiong Y (2014) Oxidative etching for controlled synthesis of metal nanocrystals: atomic addition and subtraction. Chem Soc Rev 43:6288–6310CrossRef
12.
Zurück zum Zitat Rodrigues T, da Silva AM, Macedo A et al (2015) Probing the catalytic activity of bimetallic versus trimetallic nanoshells. J Mater Sci 50:5620–5629CrossRef Rodrigues T, da Silva AM, Macedo A et al (2015) Probing the catalytic activity of bimetallic versus trimetallic nanoshells. J Mater Sci 50:5620–5629CrossRef
13.
Zurück zum Zitat Wang X, Fu J, Wang M et al (2014) Facile synthesis of Au nanoparticles supported on polyphosphazene functionalized carbon nanotubes for catalytic reduction of 4-nitrophenol. J Mater Sci 49:5056–5065CrossRef Wang X, Fu J, Wang M et al (2014) Facile synthesis of Au nanoparticles supported on polyphosphazene functionalized carbon nanotubes for catalytic reduction of 4-nitrophenol. J Mater Sci 49:5056–5065CrossRef
14.
Zurück zum Zitat Lou XWD, Archer LA, Yang Z (2008) Hollow micro-/nanostructures: synthesis and applications. Adv Mater 20:3987–4019CrossRef Lou XWD, Archer LA, Yang Z (2008) Hollow micro-/nanostructures: synthesis and applications. Adv Mater 20:3987–4019CrossRef
15.
Zurück zum Zitat Scott RWJ, Datye AK, Crooks RM (2003) Bimetallic palladium–platinum dendrimer-encapsulated catalysts. J Am Chem Soc 125:3708–3709CrossRef Scott RWJ, Datye AK, Crooks RM (2003) Bimetallic palladium–platinum dendrimer-encapsulated catalysts. J Am Chem Soc 125:3708–3709CrossRef
16.
Zurück zum Zitat Wang D, Villa A, Porta F et al (2008) Bimetallic gold/palladium catalysts: correlation between nanostructure and synergistic effects. J Phys Chem C 112:8617–8622CrossRef Wang D, Villa A, Porta F et al (2008) Bimetallic gold/palladium catalysts: correlation between nanostructure and synergistic effects. J Phys Chem C 112:8617–8622CrossRef
17.
Zurück zum Zitat Song HM, Anjum DH, Sougrat R et al (2012) Hollow Au@Pd and Au@Pt core-shell nanoparticles as electrocatalysts for ethanol oxidation reactions. J Mater Chem 22:25003–25010CrossRef Song HM, Anjum DH, Sougrat R et al (2012) Hollow Au@Pd and Au@Pt core-shell nanoparticles as electrocatalysts for ethanol oxidation reactions. J Mater Chem 22:25003–25010CrossRef
18.
Zurück zum Zitat Zhang S, Metin Ö, Su D, Sun S (2013) Monodisperse AgPd alloy nanoparticles and their superior catalysis for the dehydrogenation of formic acid. Angew Chem Int Ed 52:3681–3684CrossRef Zhang S, Metin Ö, Su D, Sun S (2013) Monodisperse AgPd alloy nanoparticles and their superior catalysis for the dehydrogenation of formic acid. Angew Chem Int Ed 52:3681–3684CrossRef
19.
Zurück zum Zitat Xu J, Wilson AR, Rathmell AR et al (2011) Synthesis and catalytic properties of Au–Pd nanoflowers. ACS Nano 5:6119–6127CrossRef Xu J, Wilson AR, Rathmell AR et al (2011) Synthesis and catalytic properties of Au–Pd nanoflowers. ACS Nano 5:6119–6127CrossRef
20.
Zurück zum Zitat Kuai L, Yu X, Wang S et al (2012) Au–Pd alloy and core-shell nanostructures: one-pot coreduction preparation, formation mechanism, and electrochemical properties. Langmuir 28:7168–7173CrossRef Kuai L, Yu X, Wang S et al (2012) Au–Pd alloy and core-shell nanostructures: one-pot coreduction preparation, formation mechanism, and electrochemical properties. Langmuir 28:7168–7173CrossRef
21.
Zurück zum Zitat Xiong Y, Xia Y (2007) Shape-controlled synthesis of metal nanostructures: the case of palladium. Adv Mater 19:3385–3391CrossRef Xiong Y, Xia Y (2007) Shape-controlled synthesis of metal nanostructures: the case of palladium. Adv Mater 19:3385–3391CrossRef
22.
Zurück zum Zitat Phan NTS, Van Der Sluys M, Jones CW (2006) On the nature of the active species in palladium catalyzed mizoroki-heck and suzuki-miyaura couplings—homogeneous or heterogeneous catalysis, a critical review. Adv Synth Catal 348:609–679CrossRef Phan NTS, Van Der Sluys M, Jones CW (2006) On the nature of the active species in palladium catalyzed mizoroki-heck and suzuki-miyaura couplings—homogeneous or heterogeneous catalysis, a critical review. Adv Synth Catal 348:609–679CrossRef
23.
Zurück zum Zitat Da Silva AGM, Fajardo HV, Balzer R et al (2015) Versatile and efficient catalysts for energy and environmental processes: mesoporous silica containing Au, Pd and Au–Pd. J Power Sources 285:460–468CrossRef Da Silva AGM, Fajardo HV, Balzer R et al (2015) Versatile and efficient catalysts for energy and environmental processes: mesoporous silica containing Au, Pd and Au–Pd. J Power Sources 285:460–468CrossRef
24.
Zurück zum Zitat Lim B, Jiang M, Tao J et al (2009) Shape-controlled synthesis of Pd nanocrystals in aqueous solutions. Adv Funct Mater 19:189–200CrossRef Lim B, Jiang M, Tao J et al (2009) Shape-controlled synthesis of Pd nanocrystals in aqueous solutions. Adv Funct Mater 19:189–200CrossRef
25.
Zurück zum Zitat Xia Y, Xiong Y, Lim B, Skrabalak SE (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 48:60–103CrossRef Xia Y, Xiong Y, Lim B, Skrabalak SE (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 48:60–103CrossRef
26.
Zurück zum Zitat Fu G, Wu K, Lin J et al (2013) One-pot water-based synthesis of Pt–Pd alloy nanoflowers and their superior electrocatalytic activity for the oxygen reduction reaction and remarkable methanol-tolerant ability in acid media. J Phys Chem C 117:9826–9834CrossRef Fu G, Wu K, Lin J et al (2013) One-pot water-based synthesis of Pt–Pd alloy nanoflowers and their superior electrocatalytic activity for the oxygen reduction reaction and remarkable methanol-tolerant ability in acid media. J Phys Chem C 117:9826–9834CrossRef
27.
Zurück zum Zitat Yin Z, Zheng H, Ma D, Bao X (2008) Porous palladium nanoflowers that have enhanced methanol electro-oxidation activity. J Phys Chem C 113:1001–1005CrossRef Yin Z, Zheng H, Ma D, Bao X (2008) Porous palladium nanoflowers that have enhanced methanol electro-oxidation activity. J Phys Chem C 113:1001–1005CrossRef
28.
Zurück zum Zitat Mohanty A, Garg N, Jin R (2010) A universal approach to the synthesis of noble metal nanodendrites and their catalytic properties. Angew Chem Int Ed 49:4962–4966CrossRef Mohanty A, Garg N, Jin R (2010) A universal approach to the synthesis of noble metal nanodendrites and their catalytic properties. Angew Chem Int Ed 49:4962–4966CrossRef
29.
Zurück zum Zitat Gao Q, Gao M-R, Liu J-W et al (2013) One-pot synthesis of branched palladium nanodendrites with superior electrocatalytic performance. Nanoscale 5:3202–3207CrossRef Gao Q, Gao M-R, Liu J-W et al (2013) One-pot synthesis of branched palladium nanodendrites with superior electrocatalytic performance. Nanoscale 5:3202–3207CrossRef
30.
Zurück zum Zitat Damato TC, de Oliveira CCS, Ando RA, Camargo PHC (2013) A facile approach to TiO2 colloidal spheres decorated with Au nanoparticles displaying well-defined sizes and uniform dispersion. Langmuir 29:1642–1649CrossRef Damato TC, de Oliveira CCS, Ando RA, Camargo PHC (2013) A facile approach to TiO2 colloidal spheres decorated with Au nanoparticles displaying well-defined sizes and uniform dispersion. Langmuir 29:1642–1649CrossRef
31.
Zurück zum Zitat Saha S, Pal A, Kundu S et al (2009) Photochemical green synthesis of calcium–alginate–stabilized Ag and Au nanoparticles and their catalytic application to 4-nitrophenol reduction. Langmuir 26:2885–2893CrossRef Saha S, Pal A, Kundu S et al (2009) Photochemical green synthesis of calcium–alginate–stabilized Ag and Au nanoparticles and their catalytic application to 4-nitrophenol reduction. Langmuir 26:2885–2893CrossRef
32.
Zurück zum Zitat Khan FI, Ghoshal AK (2000) Removal of volatile organic compounds from polluted air. J Loss Prev Process Ind 13:527–545CrossRef Khan FI, Ghoshal AK (2000) Removal of volatile organic compounds from polluted air. J Loss Prev Process Ind 13:527–545CrossRef
33.
Zurück zum Zitat Iranpour R, Cox HHJ, Deshusses MA, Schroeder ED (2005) Literature review of air pollution control biofilters and biotrickling filters for odor and volatile organic compound removal. Environ Prog 24:254–267CrossRef Iranpour R, Cox HHJ, Deshusses MA, Schroeder ED (2005) Literature review of air pollution control biofilters and biotrickling filters for odor and volatile organic compound removal. Environ Prog 24:254–267CrossRef
34.
Zurück zum Zitat Everaert K, Baeyens J (2004) Catalytic combustion of volatile organic compounds. J Hazard Mater 109:113–139CrossRef Everaert K, Baeyens J (2004) Catalytic combustion of volatile organic compounds. J Hazard Mater 109:113–139CrossRef
35.
Zurück zum Zitat Rezlescu N, Rezlescu E, Popa PD et al (2013) Nanostructured GdAlO3 perovskite, a new possible catalyst for combustion of volatile organic compounds. J Mater Sci 48:4297–4304CrossRef Rezlescu N, Rezlescu E, Popa PD et al (2013) Nanostructured GdAlO3 perovskite, a new possible catalyst for combustion of volatile organic compounds. J Mater Sci 48:4297–4304CrossRef
36.
Zurück zum Zitat Gennequin C, Lamallem M, Cousin R et al (2009) Total oxidation of volatile organic compounds on Au/Ce–Ti–O and Au/Ce–Ti–Zr–O mesoporous catalysts. J Mater Sci 44:6654–6662CrossRef Gennequin C, Lamallem M, Cousin R et al (2009) Total oxidation of volatile organic compounds on Au/Ce–Ti–O and Au/Ce–Ti–Zr–O mesoporous catalysts. J Mater Sci 44:6654–6662CrossRef
37.
Zurück zum Zitat da Silva AGM, Rodrigues TS, Macedo A et al (2014) An undergraduate level experiment on the synthesis of Au nanoparticles and their size-dependent optical and catalytic properties. Quím Nova 37:1716–1720 da Silva AGM, Rodrigues TS, Macedo A et al (2014) An undergraduate level experiment on the synthesis of Au nanoparticles and their size-dependent optical and catalytic properties. Quím Nova 37:1716–1720
38.
Zurück zum Zitat Silvert P-Y, Herrera-Urbina R, Duvauchelle N et al (1996) Preparation of colloidal silver dispersions by the polyol process. Part 1-synthesis and characterization. J Mater Chem 6:573–577CrossRef Silvert P-Y, Herrera-Urbina R, Duvauchelle N et al (1996) Preparation of colloidal silver dispersions by the polyol process. Part 1-synthesis and characterization. J Mater Chem 6:573–577CrossRef
39.
Zurück zum Zitat Boudart M (1995) Turnover rates in heterogeneous catalysis. Chem Rev 95:661–666CrossRef Boudart M (1995) Turnover rates in heterogeneous catalysis. Chem Rev 95:661–666CrossRef
40.
Zurück zum Zitat Jiang SP (2006) A review of wet impregnation—an alternative method for the fabrication of high performance and nano-structured electrodes of solid oxide fuel cells. Mater Sci Eng, A 418:199–210CrossRef Jiang SP (2006) A review of wet impregnation—an alternative method for the fabrication of high performance and nano-structured electrodes of solid oxide fuel cells. Mater Sci Eng, A 418:199–210CrossRef
41.
Zurück zum Zitat da Silva AGM, de Souza ML, Rodrigues TS et al (2014) Rapid synthesis of hollow Ag–Au nanodendrites in 15 seconds by combining galvanic replacement and precursor reduction reactions. Chem Eur J 20:15040–15046CrossRef da Silva AGM, de Souza ML, Rodrigues TS et al (2014) Rapid synthesis of hollow Ag–Au nanodendrites in 15 seconds by combining galvanic replacement and precursor reduction reactions. Chem Eur J 20:15040–15046CrossRef
42.
Zurück zum Zitat Wang S, Zhang J, Yuan P et al (2015) Au nanoparticle decorated N-containing polymer spheres: additive-free synthesis and remarkable catalytic behavior for reduction of 4-nitrophenol. J Mater Sci 50:1323–1332CrossRef Wang S, Zhang J, Yuan P et al (2015) Au nanoparticle decorated N-containing polymer spheres: additive-free synthesis and remarkable catalytic behavior for reduction of 4-nitrophenol. J Mater Sci 50:1323–1332CrossRef
43.
Zurück zum Zitat Esumi K, Isono R, Yoshimura T (2003) Preparation of PAMAM- and PPI-metal (silver, platinum, and palladium) nanocomposites and their catalytic activities for reduction of 4-nitrophenol. Langmuir 20:237–243CrossRef Esumi K, Isono R, Yoshimura T (2003) Preparation of PAMAM- and PPI-metal (silver, platinum, and palladium) nanocomposites and their catalytic activities for reduction of 4-nitrophenol. Langmuir 20:237–243CrossRef
44.
Zurück zum Zitat Oh S-D, Kim M-R, Choi S-H et al (2008) Radiolytic synthesis of Pd–M (M = Ag, Au, Cu, Ni and Pt) alloy nanoparticles and their use in reduction of 4-nitrophenol. J Ind Eng Chem 14:687–692CrossRef Oh S-D, Kim M-R, Choi S-H et al (2008) Radiolytic synthesis of Pd–M (M = Ag, Au, Cu, Ni and Pt) alloy nanoparticles and their use in reduction of 4-nitrophenol. J Ind Eng Chem 14:687–692CrossRef
45.
Zurück zum Zitat Endo T, Kuno T, Yoshimura T, Esumi K (2005) Preparation and catalytic activity of Au–Pd, Au–Pt, and Pt–Pd binary metal dendrimer nanocomposites. J Nanosci Nanotechnol 5:1875–1882CrossRef Endo T, Kuno T, Yoshimura T, Esumi K (2005) Preparation and catalytic activity of Au–Pd, Au–Pt, and Pt–Pd binary metal dendrimer nanocomposites. J Nanosci Nanotechnol 5:1875–1882CrossRef
46.
Zurück zum Zitat Abbasi Z, Haghighi M, Fatehifar E, Saedy S (2011) Synthesis and physicochemical characterizations of nanostructured Pt/Al2O3–CeO2 catalysts for total oxidation of VOCs. J Hazard Mater 186:1445–1454CrossRef Abbasi Z, Haghighi M, Fatehifar E, Saedy S (2011) Synthesis and physicochemical characterizations of nanostructured Pt/Al2O3–CeO2 catalysts for total oxidation of VOCs. J Hazard Mater 186:1445–1454CrossRef
47.
Zurück zum Zitat Liotta LF (2010) Catalytic oxidation of volatile organic compounds on supported noble metals. Appl Catal B Environ 100:403–412CrossRef Liotta LF (2010) Catalytic oxidation of volatile organic compounds on supported noble metals. Appl Catal B Environ 100:403–412CrossRef
48.
Zurück zum Zitat Hosseini M, Barakat T, Cousin R et al (2012) Catalytic performance of core–shell and alloy Pd–Au nanoparticles for total oxidation of VOC: the effect of metal deposition. Appl Catal B Environ 111–112:218–224CrossRef Hosseini M, Barakat T, Cousin R et al (2012) Catalytic performance of core–shell and alloy Pd–Au nanoparticles for total oxidation of VOC: the effect of metal deposition. Appl Catal B Environ 111–112:218–224CrossRef
49.
Zurück zum Zitat Enache DI, Barker D, Edwards JK et al (2007) Solvent-free oxidation of benzyl alcohol using titania-supported gold–palladium catalysts: effect of Au–Pd ratio on catalytic performance. Catal Today 122:407–411CrossRef Enache DI, Barker D, Edwards JK et al (2007) Solvent-free oxidation of benzyl alcohol using titania-supported gold–palladium catalysts: effect of Au–Pd ratio on catalytic performance. Catal Today 122:407–411CrossRef
Metadaten
Titel
Pd-based nanoflowers catalysts: controlling size, composition, and structures for the 4-nitrophenol reduction and BTX oxidation reactions
verfasst von
Anderson G. M. da Silva
Thenner S. Rodrigues
Laís S. K. Taguchi
Humberto V. Fajardo
Rosana Balzer
Luiz F. D. Probst
Pedro H. C. Camargo
Publikationsdatum
07.08.2015
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 1/2016
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-015-9315-3

Weitere Artikel der Ausgabe 1/2016

Journal of Materials Science 1/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.