Skip to main content
Erschienen in: Physics of Metals and Metallography 9/2020

01.09.2020 | ELECTRICAL AND MAGNETIC PROPERTIES

Peculiarities of Magnetic and Magnetocaloric Properties of Fe–Rh Alloys in the Range of Antiferromagnet–Ferromagnet Transition

verfasst von: R. R. Gimaev, A. A. Vaulin, A. F. Gubkin, V. I. Zverev

Erschienen in: Physics of Metals and Metallography | Ausgabe 9/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Abstract—The present work surveys literature data related to the study of iron–rhodium-based (Fe–Rh) alloys. The crystal, magnetic, and electronic properties of the FeRh alloy and FeRh-based materials in the form of both bulk, thin-film, and nano-structured objects are considered. Peculiarities of the first-order antiferromagnet–ferromagnet transition are analyzed, and various explanations of its nature are discussed. Different approaches to the preparation of the iron–rhodium-based alloys are reported; an analysis of the effect of heat treatment conditions on the properties of the material and their reproducibility in measuring the magnetocaloric properties is performed. Causes for the record values of the magnetocaloric effect (MCE) observed for the material are shown, and prospects of the application of this alloy in magnetic refrigeration technology, medicine, electronics, and magnetic data recording technology are discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. Fallot, Ann. Phys. (Paris, Fr.) 10, 291 (1938). M. Fallot, Ann. Phys. (Paris, Fr.) 10, 291 (1938).
3.
9.
Zurück zum Zitat A. M. Tishin, J. A. Rochev, and A. V. Gorelov, RU Patent No. 2 373 957 C2 (13 October 2016). A. M. Tishin, J. A. Rochev, and A. V. Gorelov, RU Patent No. 2 373 957 C2 (13 October 2016).
10.
Zurück zum Zitat A. M. Tishin, J. A. Rochev, and A. V. Gorelov, UK Patent No. GB 2 458 229 (25 May 2011). A. M. Tishin, J. A. Rochev, and A. V. Gorelov, UK Patent No. GB 2 458 229 (25 May 2011).
11.
Zurück zum Zitat A. M. Tishin, J. A. Rochev, and A. V. Gorelov, WO Patent No. 2008/044963 (17 April 2008). A. M. Tishin, J. A. Rochev, and A. V. Gorelov, WO Patent No. 2008/044963 (17 April 2008).
15.
Zurück zum Zitat S. A. Nikitin, G. Myalikgulyev, A. M. Tishin, M. P. Annaorazov, K. A. Asatryan, and A. L. Tyurin, “The magnetocaloric effect in Fe49Rh51 compound,” Phys. Lett. A 148, 363–366 (1990).CrossRef S. A. Nikitin, G. Myalikgulyev, A. M. Tishin, M. P. Annaorazov, K. A. Asatryan, and A. L. Tyurin, “The magnetocaloric effect in Fe49Rh51 compound,” Phys. Lett. A 148, 363–366 (1990).CrossRef
23.
Zurück zum Zitat M. Fallot and R. Horcart, Rev. Sci. 77, 498 (1939). M. Fallot and R. Horcart, Rev. Sci. 77, 498 (1939).
25.
Zurück zum Zitat A. I. Zakharov, A. M. Kadomtseva, R. Z. Levitin, and E. G. Ponyatovskii, Soviet Physics – JETP 19, 1348 (1964). A. I. Zakharov, A. M. Kadomtseva, R. Z. Levitin, and E. G. Ponyatovskii, Soviet Physics – JETP 19, 1348 (1964).
29.
Zurück zum Zitat F. de Bergevin and L. Muldawer, C. R. Hebd. Seances Acad. Sci. 253, 1347 (1961). F. de Bergevin and L. Muldawer, C. R. Hebd. Seances Acad. Sci. 253, 1347 (1961).
31.
Zurück zum Zitat G. Shirane, C. W. Chen, P. A. Flinn, and R. J. Nathans, J. Appl. Phys. 34, 1044 (1963).CrossRef G. Shirane, C. W. Chen, P. A. Flinn, and R. J. Nathans, J. Appl. Phys. 34, 1044 (1963).CrossRef
33.
Zurück zum Zitat G. Shirane, C. W. Chen, and R. Nathans, Phys. Rev. 134, A1547 (1964).CrossRef G. Shirane, C. W. Chen, and R. Nathans, Phys. Rev. 134, A1547 (1964).CrossRef
39.
Zurück zum Zitat N. A. Zarkevich and D. D. Johnson, “Predicted martensitic and quantified metamagnetic transformations in FeRh,” arXiv:1702.03042 [cond-mat, physics:physics] (2017). N. A. Zarkevich and D. D. Johnson, “Predicted martensitic and quantified metamagnetic transformations in FeRh,” arXiv:1702.03042 [cond-mat, physics:physics] (2017).
45.
Zurück zum Zitat W. Lu, Y. Xu, X. Fang, Y. Song, and X. Li, “Kinetics of first order magnetostructural transition in single crystalline FeRh thin film,” in Proc. of the 2015 IEEE Magnetics Conference (INTERMAG), 1–1 (2015). W. Lu, Y. Xu, X. Fang, Y. Song, and X. Li, “Kinetics of first order magnetostructural transition in single crystalline FeRh thin film,” in Proc. of the 2015 IEEE Magnetics Conference (INTERMAG), 1–1 (2015).
47.
Zurück zum Zitat J. B. McKinnon, D. Melville, and E. W. Lee, Solid State Phys. Conf. (University of Manchester, 1968). J. B. McKinnon, D. Melville, and E. W. Lee, Solid State Phys. Conf. (University of Manchester, 1968).
48.
Zurück zum Zitat E. A. Zavadskii and I. G. Fakidov,” Soviet Phys. Solid State, 9 (1967). E. A. Zavadskii and I. G. Fakidov,” Soviet Phys. Solid State, 9 (1967).
52.
Zurück zum Zitat N. P. Grazhdankina, “Magnetic phase transitions of first order,” Usp. Fiz. Nauk 96, 291–325 (1968)CrossRef N. P. Grazhdankina, “Magnetic phase transitions of first order,” Usp. Fiz. Nauk 96, 291–325 (1968)CrossRef
53.
Zurück zum Zitat P. Perrot, A to Z of Thermodynamics (Oxford University, 1998). P. Perrot, A to Z of Thermodynamics (Oxford University, 1998).
55.
Zurück zum Zitat A. P. Kamantsev, V. V. Koledov, A. V. Mashirov, E. T. Dilmieva, V. G. Shavrov, J. Cwik, I. S. Tereshina, M. V. Lyange, V. V. Khovaylo, G. Porcari, et al., “Properties of metamagnetic alloy Fe48Rh52 in high magnetic fields,” Bull. Russ. Acad. Sci.: Phys. 79, 1086–1088 (2015). https://doi.org/10.3103/S1062873815090105CrossRef A. P. Kamantsev, V. V. Koledov, A. V. Mashirov, E. T. Dilmieva, V. G. Shavrov, J. Cwik, I. S. Tereshina, M. V. Lyange, V. V. Khovaylo, G. Porcari, et al., “Properties of metamagnetic alloy Fe48Rh52 in high magnetic fields,” Bull. Russ. Acad. Sci.: Phys. 79, 1086–1088 (2015). https://​doi.​org/​10.​3103/​S106287381509010​5CrossRef
58.
Zurück zum Zitat I. Dubenko, T. Samanta, A. Quetz, A. Kazakov, I. Rodionov, D. Mettus, V. Prudnikov, S. Stadler, P. Adams, J. Prestigiacomo, et al., “The comparison of direct and indirect methods for determining the magnetocaloric parameters in the Heusler alloy Ni50Mn34.8In14.2B,” Appl. Phys. Lett. 100, 192 402 (2012). https://doi.org/10.1063/1.4714539CrossRef I. Dubenko, T. Samanta, A. Quetz, A. Kazakov, I. Rodionov, D. Mettus, V. Prudnikov, S. Stadler, P. Adams, J. Prestigiacomo, et al., “The comparison of direct and indirect methods for determining the magnetocaloric parameters in the Heusler alloy Ni50Mn34.8In14.2B,” Appl. Phys. Lett. 100, 192 402 (2012). https://​doi.​org/​10.​1063/​1.​4714539CrossRef
59.
Zurück zum Zitat I. Dubenko, T. Samanta, A. Quetz, A. Kazakov, I. Rodionov, D. Mettus, V. Prudnikov, S. Stadler, P. W. Adams, J. Prestigiacomo, et al., “The adiabatic temperature changes in the vicinity of the first-order paramagnetic-ferromagnetic transition in the Ni–Mn–In–B Heusler alloy,” IEEE Trans. Magn. 48, 3738–3741 (2012). https://doi.org/10.1109/TMAG.2012.2197596CrossRef I. Dubenko, T. Samanta, A. Quetz, A. Kazakov, I. Rodionov, D. Mettus, V. Prudnikov, S. Stadler, P. W. Adams, J. Prestigiacomo, et al., “The adiabatic temperature changes in the vicinity of the first-order paramagnetic-ferromagnetic transition in the Ni–Mn–In–B Heusler alloy,” IEEE Trans. Magn. 48, 3738–3741 (2012). https://​doi.​org/​10.​1109/​TMAG.​2012.​2197596CrossRef
61.
Zurück zum Zitat M. Sharma, H. M. Aarbogh, J. -U. Thiele, S. Maat, E. E. Fullerton, and C. Leighton, “Magnetotransport properties of epitaxial MgO(001)/FeRh films across the antiferromagnet to ferromagnet transition,” J. Appl. Phys. 109, 083 913 (2011). https://doi.org/10.1063/1.3573503CrossRef M. Sharma, H. M. Aarbogh, J. -U. Thiele, S. Maat, E. E. Fullerton, and C. Leighton, “Magnetotransport properties of epitaxial MgO(001)/FeRh films across the antiferromagnet to ferromagnet transition,” J. Appl. Phys. 109, 083 913 (2011). https://​doi.​org/​10.​1063/​1.​3573503CrossRef
63.
Zurück zum Zitat I. Suzuki, T. Naito, M. Itoh, T. Sato, and T. Taniyama, “Clear correspondence between magnetoresistance and magnetization of epitaxially grown ordered FeRh thin films,” J. Appl. Phys. 109, 07C717 (2011). https://doi.org/10.1063/1.3556754 I. Suzuki, T. Naito, M. Itoh, T. Sato, and T. Taniyama, “Clear correspondence between magnetoresistance and magnetization of epitaxially grown ordered FeRh thin films,” J. Appl. Phys. 109, 07C717 (2011). https://​doi.​org/​10.​1063/​1.​3556754
75.
87.
Zurück zum Zitat A. Hernando, J. M. Rojo, J. C. Gómez Sal, and J. M. Barandiarán, “Density of states and indirect exchange in metallic systems,” Acta Phys. Pol., A 90, 1227 (1997). A. Hernando, J. M. Rojo, J. C. Gómez Sal, and J. M. Barandiarán, “Density of states and indirect exchange in metallic systems,” Acta Phys. Pol., A 90, 1227 (1997).
96.
Zurück zum Zitat P. A. Igoshev, E. E. Kokorina, and I. A. Nekrasov, “Study of the magnetocaloric effect in correlated metallic systems with Van Hove singularities in the electronic spectrum,” Fiz. Met. Metalloved., 100–106 (1991). P. A. Igoshev, E. E. Kokorina, and I. A. Nekrasov, “Study of the magnetocaloric effect in correlated metallic systems with Van Hove singularities in the electronic spectrum,” Fiz. Met. Metalloved., 100–106 (1991).
103.
Zurück zum Zitat A. Heidarian, R. Bali, J. Grenzer, R. A. Wilhelm, R. Heller, O. Yildirim, J. Lindner, and K. Potzger, “Tuning the antiferromagnetic to ferromagnetic phase transition in FeRh thin films by means of low-energy/low fluence ion irradiation,” Nucl. Instrum. Methods Phys. Res., Sect. B 358, 251–254 (2015). https://doi.org/10.1016/j.nimb.2015.06.027CrossRef A. Heidarian, R. Bali, J. Grenzer, R. A. Wilhelm, R. Heller, O. Yildirim, J. Lindner, and K. Potzger, “Tuning the antiferromagnetic to ferromagnetic phase transition in FeRh thin films by means of low-energy/low fluence ion irradiation,” Nucl. Instrum. Methods Phys. Res., Sect. B 358, 251–254 (2015). https://​doi.​org/​10.​1016/​j.​nimb.​2015.​06.​027CrossRef
106.
Zurück zum Zitat A. Hernando, J. M. Rojo, R. Yavari, E. Navarro, J. M. Barandiarán, and M. R. Ibarra, “On the Antiferromagnetism of Fe–Rh,” Mater. Sci. Forum 235–238, 675–684 (1997). https://doi.org/10.4028/www.scientific.net/MSF.235-238.675 A. Hernando, J. M. Rojo, R. Yavari, E. Navarro, J. M. Barandiarán, and M. R. Ibarra, “On the Antiferromagnetism of Fe–Rh,” Mater. Sci. Forum 235238, 675–684 (1997). https://doi.org/10.4028/www.scientific.net/MSF.235-238.675
108.
Zurück zum Zitat A. Hernando and E. Navarro, “Nanocrystalline ball milled fcc-FeRh alloys,” Mater. Sci. Forum 343–346, 787–792 (2000). https://doi.org/10.4028/www.scientific.net/MSF.343-346.787 A. Hernando and E. Navarro, “Nanocrystalline ball milled fcc-FeRh alloys,” Mater. Sci. Forum 343–346, 787–792 (2000). https://doi.org/10.4028/www.scientific.net/MSF.343-346.787
110.
Zurück zum Zitat E. Navarro, D. Fiorani, R. Yavari, M. Rosenberg, M. Multigner, A. Hernando, R. Caciuffo, D. Rinaldi, and S. Gialanella, “Low temperature magnetic properties of FCC FeRh obtained by ball milling,” Mater. Sci. Forum 269–272, 133–138 (1998). https://doi.org/10.4028/www.scientific.net/MSF.269-272.133 E. Navarro, D. Fiorani, R. Yavari, M. Rosenberg, M. Multigner, A. Hernando, R. Caciuffo, D. Rinaldi, and S. Gialanella, “Low temperature magnetic properties of FCC FeRh obtained by ball milling,” Mater. Sci. Forum 269–272, 133–138 (1998). https://doi.org/10.4028/www.scientific.net/MSF.269-272.133
111.
Zurück zum Zitat A. Hernando, E. Navarro, A. R. Yavari, D. Fiorani, and M. Rosenberg, “Grain-boundary structure in nanocrystalline ball-milled FeRh,” J. Metastable Nanocryst. Mater. 1, 191–196 (1999). doi 10.4028/www.scientific.net/JMNM.1.191 A. Hernando, E. Navarro, A. R. Yavari, D. Fiorani, and M. Rosenberg, “Grain-boundary structure in nanocrystalline ball-milled FeRh,” J. Metastable Nanocryst. Mater. 1, 191–196 (1999). doi 10.4028/www.scientific.net/JMNM.1.191
124.
Zurück zum Zitat I. Fina, A. Quintana, J. Padilla-Pantoja, X. Martí, F. Macià, F. Sánchez, M. Foerster, L. Aballe, J. Fontcuberta, and J. Sort, “Electric-field-adjustable time-dependent magnetoelectric response in martensitic FeRh alloy,” ACS Appl. Mater. Interfaces 9, 15 577–15 582 (2017). https://doi.org/10.1021/acsami.7b00476CrossRef I. Fina, A. Quintana, J. Padilla-Pantoja, X. Martí, F. Macià, F. Sánchez, M. Foerster, L. Aballe, J. Fontcuberta, and J. Sort, “Electric-field-adjustable time-dependent magnetoelectric response in martensitic FeRh alloy,” ACS Appl. Mater. Interfaces 9, 15 577–15 582 (2017). https://​doi.​org/​10.​1021/​acsami.​7b00476CrossRef
126.
Zurück zum Zitat Q. B. Hu, J. Li, C. C. Wang, Z. J. Zhou, Q. Q. Cao, T. J. Zhou, D. H. Wang, and Y. W. Du, “Electric field tuning of magnetocaloric effect in FeRh0.96Pd0.04/PMN-PT composite near room temperature,” Appl. Phys. Lett. 110, 222 408 (2017). https://doi.org/10.1063/1.4984901CrossRef Q. B. Hu, J. Li, C. C. Wang, Z. J. Zhou, Q. Q. Cao, T. J. Zhou, D. H. Wang, and Y. W. Du, “Electric field tuning of magnetocaloric effect in FeRh0.96Pd0.04/PMN-PT composite near room temperature,” Appl. Phys. Lett. 110, 222 408 (2017). https://​doi.​org/​10.​1063/​1.​4984901CrossRef
132.
Zurück zum Zitat A. M. Chirkova, A. S. Volegov, D. S. Neznakhin, E. A. Stepanova, and N. V. Baranov, “Pressure induced AF–F–AF magnetic phase transformations in Pd substituted FeRh compound,” Solid State Phenom. 190, 299–302 (2012). https://doi.org/10.4028/www.scientific.net/SSP.190.299 A. M. Chirkova, A. S. Volegov, D. S. Neznakhin, E. A. Stepanova, and N. V. Baranov, “Pressure induced AF–F–AF magnetic phase transformations in Pd substituted FeRh compound,” Solid State Phenom. 190, 299–302 (2012). https://doi.org/10.4028/www.scientific.net/SSP.190.299
133.
Zurück zum Zitat S. Yuasa, H. Miyajima, Y. Otani, K. Tsuji, Y. Katayama, K. Kusumi, H. Yokoyama, K. Yaoita, and O. Shimomura, “First-order magnetic phase transition in bcc FeRh–Ir alloy under high pressures up to 6.2 GPa,” J. Phys. Soc. Jpn. 63, 855–858 (1994). https://doi.org/10.1143/JPSJ.63.855CrossRef S. Yuasa, H. Miyajima, Y. Otani, K. Tsuji, Y. Katayama, K. Kusumi, H. Yokoyama, K. Yaoita, and O. Shimomura, “First-order magnetic phase transition in bcc FeRh–Ir alloy under high pressures up to 6.2 GPa,” J. Phys. Soc. Jpn. 63, 855–858 (1994). https://​doi.​org/​10.​1143/​JPSJ.​63.​855CrossRef
135.
Zurück zum Zitat Y. Kibata, F. Hori, R. Oshima, M. Komatsu, and M. Kiritani, “Defect structures of intermetallic FeRh alloys induced by high-speed deformation,” In Proceedings of the Symposium BB—Defect Properties and Related Phenomena in Intermetallic Alloys (2002) p. 753. Y. Kibata, F. Hori, R. Oshima, M. Komatsu, and M. Kiritani, “Defect structures of intermetallic FeRh alloys induced by high-speed deformation,” In Proceedings of the Symposium BB—Defect Properties and Related Phenomena in Intermetallic Alloys (2002) p. 753.
144.
Zurück zum Zitat P. M. Marcus, V. L. Moruzzi, and S. L. Qiu, “Type-II antiferromagnetism in compounds of iron with 4d metals,” Phys. Rev. B: Condens. Matter Mater. Phys. 54, 11 933–11 935 (1996).CrossRef P. M. Marcus, V. L. Moruzzi, and S. L. Qiu, “Type-II antiferromagnetism in compounds of iron with 4d metals,” Phys. Rev. B: Condens. Matter Mater. Phys. 54, 11 933–11 935 (1996).CrossRef
151.
154.
Zurück zum Zitat C. F. Sánchez–Valdés, R. R. Gimaev, M. López-Cruz, J. L. Sánchez Llamazares, V. I. Zverev, A. M. Tishin, A. M. G. Carvalho, D. J. M. Aguiar, Y. Mudryk, and V. K. Pecharsky, “The effect of cooling rate on magnetothermal properties of Fe49Rh51,” J. Magn. Magn. Mater. 498, 166 130 (2020). https://doi.org/10.1016/j.jmmm.2019.166130CrossRef C. F. Sánchez–Valdés, R. R. Gimaev, M. López-Cruz, J. L. Sánchez Llamazares, V. I. Zverev, A. M. Tishin, A. M. G. Carvalho, D. J. M. Aguiar, Y. Mudryk, and V. K. Pecharsky, “The effect of cooling rate on magnetothermal properties of Fe49Rh51,” J. Magn. Magn. Mater. 498, 166 130 (2020). https://​doi.​org/​10.​1016/​j.​jmmm.​2019.​166130CrossRef
156.
Zurück zum Zitat A. M. Tishin and Y. I. Spichkin, The Magnetocaloric Effect and its Applications (CRC Press, 2003). ISBN 978-1-4200-3337-3.CrossRef A. M. Tishin and Y. I. Spichkin, The Magnetocaloric Effect and its Applications (CRC Press, 2003). ISBN 978-1-4200-3337-3.CrossRef
157.
Zurück zum Zitat M. P. Annaorazov, K. A. Asatryan, S. A. Nikitin, A. M. Tishin, and A. L. Tyurin, Pis’ma Zh. Tekh. Fiz., 12 (1991). M. P. Annaorazov, K. A. Asatryan, S. A. Nikitin, A. M. Tishin, and A. L. Tyurin, Pis’ma Zh. Tekh. Fiz., 12 (1991).
161.
Zurück zum Zitat A. M. Aliev, A. B. Batdalov, L. N. Khanov, A. P. Kamantsev, V. V. Koledov, A. V. Mashirov, V. G. Shavrov, R. M. Grechishkin, A. R. Kaul’, and V. Sampath, “Reversible magnetocaloric effect in materials with first order phase transitions in cyclic magnetic fields: Fe48Rh52 and Sm0.6Sr0.4MnO3,” Appl. Phys. Lett. 109, 202 407 (2016). https://doi.org/10.1063/1.4968241CrossRef A. M. Aliev, A. B. Batdalov, L. N. Khanov, A. P. Kamantsev, V. V. Koledov, A. V. Mashirov, V. G. Shavrov, R. M. Grechishkin, A. R. Kaul’, and V. Sampath, “Reversible magnetocaloric effect in materials with first order phase transitions in cyclic magnetic fields: Fe48Rh52 and Sm0.6Sr0.4MnO3,” Appl. Phys. Lett. 109, 202 407 (2016). https://​doi.​org/​10.​1063/​1.​4968241CrossRef
166.
Zurück zum Zitat K. A. Gschneidner and V. K. Pecharsky, ”Intermetallic compounds for magnetic refrigeration,” in Intermetallic Compounds – Principles and Practice, Ed. by J. H. Westbrook and R. L. Fleischer (Wiley, New York, 2001), Vol. 3. K. A. Gschneidner and V. K. Pecharsky, ”Intermetallic compounds for magnetic refrigeration,” in Intermetallic Compounds – Principles and Practice, Ed. by J. H. Westbrook and R. L. Fleischer (Wiley, New York, 2001), Vol. 3.
167.
Zurück zum Zitat S. Yu. Dan’kov, T. I. Ivanova, and A. M. Tishin, Pis’ma JTP 18. S. Yu. Dan’kov, T. I. Ivanova, and A. M. Tishin, Pis’ma JTP 18.
175.
184.
Zurück zum Zitat U. Shymanovich, M. Nicoul, W. Lu, A. Tarasevitch, M. Kammler, M. H. Hoegen, D. von Linde, and K. von der Sokolowski-Tinten, “Coherent acoustic and optical phonons in laser-excited solids studied by ultrafast time-resolved X-ray diffraction,” in Proceedings of the AIP Conference Proceedings (AIP Publishing, 2010), vol. 1278, pp. 558–566. U. Shymanovich, M. Nicoul, W. Lu, A. Tarasevitch, M. Kammler, M. H. Hoegen, D. von Linde, and K. von der Sokolowski-Tinten, “Coherent acoustic and optical phonons in laser-excited solids studied by ultrafast time-resolved X-ray diffraction,” in Proceedings of the AIP Conference Proceedings (AIP Publishing, 2010), vol. 1278, pp. 558–566.
186.
Zurück zum Zitat S. Günther, C. Spezzani, R. Ciprian, C. Grazioli, B. Ressel, M. Coreno, L. Poletto, P. Miotti, M. Sacchi, G. Panaccione, et al., “Testing spin-flip scattering as a possible mechanism of ultrafast demagnetization in ordered magnetic alloys,” Phys. Rev. B 90, 180 407 (2014). https://doi.org/10.1103/PhysRevB.90.180407CrossRef S. Günther, C. Spezzani, R. Ciprian, C. Grazioli, B. Ressel, M. Coreno, L. Poletto, P. Miotti, M. Sacchi, G. Panaccione, et al., “Testing spin-flip scattering as a possible mechanism of ultrafast demagnetization in ordered magnetic alloys,” Phys. Rev. B 90, 180 407 (2014). https://​doi.​org/​10.​1103/​PhysRevB.​90.​180407CrossRef
187.
191.
Zurück zum Zitat V. I. Zverev, A. M. Saletsky, R. R. Gimaev, A. M. Tishin, T. Miyanaga, and J. B. Staunton, “Influence of structural defects on the magnetocaloric effect in the vicinity of the first order magnetic transition in Fe50.4Rh49.6,” Appl. Phys. Lett. 108, 192 405 (2016). https://doi.org/10.1063/1.4949355CrossRef V. I. Zverev, A. M. Saletsky, R. R. Gimaev, A. M. Tishin, T. Miyanaga, and J. B. Staunton, “Influence of structural defects on the magnetocaloric effect in the vicinity of the first order magnetic transition in Fe50.4Rh49.6,” Appl. Phys. Lett. 108, 192 405 (2016). https://​doi.​org/​10.​1063/​1.​4949355CrossRef
194.
Zurück zum Zitat S. M. Emelyanova, N. G. Bebenin, V. P. Dyakina, V. V. Chistyakov, T. V. Dyachkova, A. P. Tyutyunnik, R. L. Wang, C. P. Yang, F. Sauerzopf, and V. V. Marchenkov, “Magnetocaloric Effect in Ni50Mn36Sb14 – xZx (Z = Al, Ge, x = 0, 2) Heusler Alloys,” Phys. Met. Metallogr. 119, 121–126 (2018). https://doi.org/10.1134/S0031918X18020047CrossRef S. M. Emelyanova, N. G. Bebenin, V. P. Dyakina, V. V. Chistyakov, T. V. Dyachkova, A. P. Tyutyunnik, R. L. Wang, C. P. Yang, F. Sauerzopf, and V. V. Marchenkov, “Magnetocaloric Effect in Ni50Mn36Sb14 – xZx (Z = Al, Ge, x = 0, 2) Heusler Alloys,” Phys. Met. Metallogr. 119, 121–126 (2018). https://​doi.​org/​10.​1134/​S0031918X1802004​7CrossRef
195.
Zurück zum Zitat N. V. Baranov, S. V. Zemlyanski, and K. Kamenev, “Electrical resistivity and phase transitions in FeRh based compounds: influence of spin fluctuations,” In Itinerant Electron Magnetism: Fluctuation Effects, Ed. by D. Wagner, W. Brauneck, and A. Solontsov (NATO Science Series, Springer Netherlands, 1998) pp. 345–351. ISBN 978-0-7923-5203-7. N. V. Baranov, S. V. Zemlyanski, and K. Kamenev, “Electrical resistivity and phase transitions in FeRh based compounds: influence of spin fluctuations,” In Itinerant Electron Magnetism: Fluctuation Effects, Ed. by D. Wagner, W. Brauneck, and A. Solontsov (NATO Science Series, Springer Netherlands, 1998) pp. 345–351. ISBN 978-0-7923-5203-7.
200.
Zurück zum Zitat A. M. Tishin, V. K. Pecharsky, A. O. Pecharsky, K. A. Gschneidner Jr. Unpublished Results. A. M. Tishin, V. K. Pecharsky, A. O. Pecharsky, K. A. Gschneidner Jr. Unpublished Results.
201.
Zurück zum Zitat S. A. Nikitin, G. Myalikgulyev, A. M. Tishin, M. P. Annaorazov, K. A. Asatryan, and A. L. Tyurin, Working Body of Magnetic Refrigerator (1992). S. A. Nikitin, G. Myalikgulyev, A. M. Tishin, M. P. Annaorazov, K. A. Asatryan, and A. L. Tyurin, Working Body of Magnetic Refrigerator (1992).
204.
Zurück zum Zitat N. V. Baranov, Y. A. Barabanova, and A. I. Kozlov, “The effect of partial substitution of rhodium on the magnetic and electrical properties of the FeRh alloy,” Phys. Met. Metallogr. 72, 65–70 (1991). N. V. Baranov, Y. A. Barabanova, and A. I. Kozlov, “The effect of partial substitution of rhodium on the magnetic and electrical properties of the FeRh alloy,” Phys. Met. Metallogr. 72, 65–70 (1991).
206.
Zurück zum Zitat Yu. I. Spichkin, A. P. Pyatakov, A. M. Tishin, and V. I. Zverev, RU Patent No. 2 563 387 C2 (20 September 2015). Yu. I. Spichkin, A. P. Pyatakov, A. M. Tishin, and V. I. Zverev, RU Patent No. 2 563 387 C2 (20 September 2015).
209.
Zurück zum Zitat C. W. Barton, L. Saharan, G. Hrkac, and T. Thomson, “Effect of Fe under layer in ultrathin FeRh films,” in Proc. of the 2015 IEEE Magnetics Conference (INTERMAG) (2015). C. W. Barton, L. Saharan, G. Hrkac, and T. Thomson, “Effect of Fe under layer in ultrathin FeRh films,” in Proc. of the 2015 IEEE Magnetics Conference (INTERMAG) (2015).
210.
Metadaten
Titel
Peculiarities of Magnetic and Magnetocaloric Properties of Fe–Rh Alloys in the Range of Antiferromagnet–Ferromagnet Transition
verfasst von
R. R. Gimaev
A. A. Vaulin
A. F. Gubkin
V. I. Zverev
Publikationsdatum
01.09.2020
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 9/2020
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X20090045

Weitere Artikel der Ausgabe 9/2020

Physics of Metals and Metallography 9/2020 Zur Ausgabe