Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 13/2019

25.05.2019

PEDOT/graphene/nickel-nanoparticles composites as electrodes for microbial fuel cells

verfasst von: Loreto A. Hernández, Gonzalo Riveros, Darío M. González, Manuel Gacitua, María Angélica del Valle

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 13/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents a new direct electron transfer based glucose/oxygen microbial fuel cell (MFC), whose operating ability has been tested in presence of Escherichia coli (E. coli). A stainless steel electrode was modified to produce an anode. In the first step, electropolymerized film of poly (3,4-ethylenedioxythiophene) (EDOT), nickel nanoparticles (np-Ni) and thermally reduced graphene (TrGO) were used and subsequently reduced to electrochemical reduced graphite oxide (ErGO). Morphological characterization of the anode shows a homogeneous distribution of the Ni nanoparticles and ErGO over the electrode surface. Subsequently, characterization of the films allow to observe an increase in the output power and enhancement biocompatibility between microorganism and modified electrode. Performance of the MFCs is estimated through in situ potential and power generation over time curves using E. coli cultures feed with glucose as the substrate. The PEDOT|ErGO|np-Ni anode displayed an absolute power and maximum power density of 3.9 ± 0.3 mW and 0.32 mW cm−2 respectively, with an internal resistance of 1630 Ω, a 30% enhancement when compared to the PEDOT|ErGO anode.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat B.E. Logan, B. Hamelers, R. Rozendal, U. Schröder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, K. Rabaey, Microbial fuel cells: methodology and technology. Environ. Sci. Technol. 40, 5181–5192 (2006)CrossRef B.E. Logan, B. Hamelers, R. Rozendal, U. Schröder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, K. Rabaey, Microbial fuel cells: methodology and technology. Environ. Sci. Technol. 40, 5181–5192 (2006)CrossRef
2.
Zurück zum Zitat B.E. Logan, J.M. Regan, Microbial fuel cells—challenges and applications. Environ. Sci. Technol. 40, 5172–5180 (2006)CrossRef B.E. Logan, J.M. Regan, Microbial fuel cells—challenges and applications. Environ. Sci. Technol. 40, 5172–5180 (2006)CrossRef
3.
Zurück zum Zitat Z. He, Microbial fuel cells: now let us talk about energy. Environ. Sci. Technol. 47, 332–333 (2013)CrossRef Z. He, Microbial fuel cells: now let us talk about energy. Environ. Sci. Technol. 47, 332–333 (2013)CrossRef
4.
Zurück zum Zitat S. Mateo, P. Cañizares, F.J. Fernandez-Morales, M.A. Rodrigo, A critical view of microbial fuel cells: what is the next stage? Chemsuschem 11, 4183–4192 (2018)CrossRef S. Mateo, P. Cañizares, F.J. Fernandez-Morales, M.A. Rodrigo, A critical view of microbial fuel cells: what is the next stage? Chemsuschem 11, 4183–4192 (2018)CrossRef
5.
Zurück zum Zitat X.A. Walter, A. Stinchcombe, J. Greenman, I. Ieropoulos, Urine transduction to usable energy: a modular MFC approach for smartphone and remote system charging. Appl. Energy 192, 575–581 (2017)CrossRef X.A. Walter, A. Stinchcombe, J. Greenman, I. Ieropoulos, Urine transduction to usable energy: a modular MFC approach for smartphone and remote system charging. Appl. Energy 192, 575–581 (2017)CrossRef
6.
Zurück zum Zitat S. Mateo, A. Cantone, P. Cañizares, F.J. Fernández-Morales, O. Scialdone, M.A. Rodrigo, Development of a module of stacks of air-breathing microbial fuel cells to light-up a strip of LEDs. Electrochim. Acta 274, 152–159 (2018)CrossRef S. Mateo, A. Cantone, P. Cañizares, F.J. Fernández-Morales, O. Scialdone, M.A. Rodrigo, Development of a module of stacks of air-breathing microbial fuel cells to light-up a strip of LEDs. Electrochim. Acta 274, 152–159 (2018)CrossRef
7.
Zurück zum Zitat T. Catal, S. Yavaser, V. Enisoglu-Atalay, H. Bermek, S. Ozilhan, Monitoring of neomycin sulfate antibiotic in microbial fuel cells. Bioresour. Technol. 268, 116–120 (2018)CrossRef T. Catal, S. Yavaser, V. Enisoglu-Atalay, H. Bermek, S. Ozilhan, Monitoring of neomycin sulfate antibiotic in microbial fuel cells. Bioresour. Technol. 268, 116–120 (2018)CrossRef
8.
Zurück zum Zitat Y.C. Tan, S. Kharkwal, K.K.W. Chew, R. Alwi, S.F.W. Mak, H.Y. Ng, Enhancing the robustness of microbial fuel cell sensor for continuous copper(II) detection against organic strength fluctuations by acetate and glucose addition. Bioresour. Technol. 259, 357–364 (2018)CrossRef Y.C. Tan, S. Kharkwal, K.K.W. Chew, R. Alwi, S.F.W. Mak, H.Y. Ng, Enhancing the robustness of microbial fuel cell sensor for continuous copper(II) detection against organic strength fluctuations by acetate and glucose addition. Bioresour. Technol. 259, 357–364 (2018)CrossRef
9.
Zurück zum Zitat Y. Jiang, P. Liang, X. Huang, Z.J. Ren, A novel microbial fuel cell sensor with a gas diffusion biocathode sensing element for water and air quality monitoring. Chemosphere 203, 21–25 (2018)CrossRef Y. Jiang, P. Liang, X. Huang, Z.J. Ren, A novel microbial fuel cell sensor with a gas diffusion biocathode sensing element for water and air quality monitoring. Chemosphere 203, 21–25 (2018)CrossRef
10.
Zurück zum Zitat J.M. Sonawane, S. Al-Saadi, R.K. Singh Raman, P.C. Ghosh, S.B. Adeloju, Exploring the use of polyaniline-modified stainless steel plates as low-cost, high-performance anodes for microbial fuel cells. Electrochim. Acta 268, 484–493 (2018)CrossRef J.M. Sonawane, S. Al-Saadi, R.K. Singh Raman, P.C. Ghosh, S.B. Adeloju, Exploring the use of polyaniline-modified stainless steel plates as low-cost, high-performance anodes for microbial fuel cells. Electrochim. Acta 268, 484–493 (2018)CrossRef
11.
Zurück zum Zitat J.M. Sonawane, S.A. Patil, P.C. Ghosh, S.B. Adeloju, Low-cost stainless-steel wool anodes modified with polyaniline and polypyrrole for high-performance microbial fuel cells. J. Power Sources 379, 103–114 (2018)CrossRef J.M. Sonawane, S.A. Patil, P.C. Ghosh, S.B. Adeloju, Low-cost stainless-steel wool anodes modified with polyaniline and polypyrrole for high-performance microbial fuel cells. J. Power Sources 379, 103–114 (2018)CrossRef
12.
Zurück zum Zitat J. Heinze, B.A. Frontana-Uribe, S. Ludwigs, Electrochemistry of conducting polymers—persistent models and new concepts. Chem. Rev. 110, 4724–4771 (2010)CrossRef J. Heinze, B.A. Frontana-Uribe, S. Ludwigs, Electrochemistry of conducting polymers—persistent models and new concepts. Chem. Rev. 110, 4724–4771 (2010)CrossRef
13.
Zurück zum Zitat M.A. del Valle, F.R. Díaz, M.E. Bodini, G. Alfonso, G.M. Soto, E.D. Borrego, Electrosynthesis and characterization of o-phenylenediamine oligomers. Polym. Int. 54, 526–532 (2005)CrossRef M.A. del Valle, F.R. Díaz, M.E. Bodini, G. Alfonso, G.M. Soto, E.D. Borrego, Electrosynthesis and characterization of o-phenylenediamine oligomers. Polym. Int. 54, 526–532 (2005)CrossRef
14.
Zurück zum Zitat L.A. Hernández, M.A. del Valle, F.R. Díaz, D.J. Fermin, T.A.G. Risbridger, Polymeric nanowires directly electrosynthesized on the working electrode. Electrochim. Acta 166, 163–167 (2015)CrossRef L.A. Hernández, M.A. del Valle, F.R. Díaz, D.J. Fermin, T.A.G. Risbridger, Polymeric nanowires directly electrosynthesized on the working electrode. Electrochim. Acta 166, 163–167 (2015)CrossRef
15.
Zurück zum Zitat L.A. Hernández, M.A. del Valle, F. Armijo, Electrosynthesis and characterization of nanostructured polyquinone for use in detection and quantification of naturally occurring dsDNA. Biosens. Bioelectron. 79, 280–287 (2016)CrossRef L.A. Hernández, M.A. del Valle, F. Armijo, Electrosynthesis and characterization of nanostructured polyquinone for use in detection and quantification of naturally occurring dsDNA. Biosens. Bioelectron. 79, 280–287 (2016)CrossRef
16.
Zurück zum Zitat M.A. del Valle, A.M. Ramírez, L.A. Hernández, F. Armijo, F.R. Díaz, G.C. Arteaga, Influence of the supporting electrolyte on the electrochemical polymerization of 3,4-ethylenedioxythiophene. Effect on p- and n-doping/undoping, conductivity and morphology. Int. J. Electrochem. Sci. 11, 7048–7065 (2016)CrossRef M.A. del Valle, A.M. Ramírez, L.A. Hernández, F. Armijo, F.R. Díaz, G.C. Arteaga, Influence of the supporting electrolyte on the electrochemical polymerization of 3,4-ethylenedioxythiophene. Effect on p- and n-doping/undoping, conductivity and morphology. Int. J. Electrochem. Sci. 11, 7048–7065 (2016)CrossRef
17.
Zurück zum Zitat M. Sookhakian, E. Zalnezhad, Y. Alias, Layer-by-layer electrodeposited nanowall-like palladium-reduced graphene oxide film as a highly-sensitive electrochemical non-enzymatic sensor. Sens. Actuat. B 241, 1–7 (2017)CrossRef M. Sookhakian, E. Zalnezhad, Y. Alias, Layer-by-layer electrodeposited nanowall-like palladium-reduced graphene oxide film as a highly-sensitive electrochemical non-enzymatic sensor. Sens. Actuat. B 241, 1–7 (2017)CrossRef
18.
Zurück zum Zitat D. Chen, H. Feng, J. Li, Graphene oxide: preparation, functionalization, and electrochemical applications. Chem. Rev. 112, 6027–6053 (2012)CrossRef D. Chen, H. Feng, J. Li, Graphene oxide: preparation, functionalization, and electrochemical applications. Chem. Rev. 112, 6027–6053 (2012)CrossRef
19.
Zurück zum Zitat Y.H. Kwok, Y.F. Wang, A.C.H. Tsang, D.Y.C. Leung, Graphene-carbon nanotube composite aerogel with Ru@Pt nanoparticle as a porous electrode for direct methanol microfluidic fuel cell. Appl. Energy 217, 258–265 (2018)CrossRef Y.H. Kwok, Y.F. Wang, A.C.H. Tsang, D.Y.C. Leung, Graphene-carbon nanotube composite aerogel with Ru@Pt nanoparticle as a porous electrode for direct methanol microfluidic fuel cell. Appl. Energy 217, 258–265 (2018)CrossRef
20.
Zurück zum Zitat M.A. Del Valle, L.A. Hernández, A.M. Ramírez, F.R. Díaz, Electrosynthesis of polyquinone nanowires with dispersed platinum nanoparticles toward formic acid oxidation. Ionics 23(1), 191–199 (2017)CrossRef M.A. Del Valle, L.A. Hernández, A.M. Ramírez, F.R. Díaz, Electrosynthesis of polyquinone nanowires with dispersed platinum nanoparticles toward formic acid oxidation. Ionics 23(1), 191–199 (2017)CrossRef
21.
Zurück zum Zitat A. Fedorczyk, R. Pomorski, M. Chmielewski, J. Ratajczak, Z. Kaszkur, M. Skompska, Bimetallic Au@Pt nanoparticles dispersed in conducting polymer—a catalyst of enhanced activity towards formic acid electrooxidation. Electrochim. Acta 246, 1029–1041 (2017)CrossRef A. Fedorczyk, R. Pomorski, M. Chmielewski, J. Ratajczak, Z. Kaszkur, M. Skompska, Bimetallic Au@Pt nanoparticles dispersed in conducting polymer—a catalyst of enhanced activity towards formic acid electrooxidation. Electrochim. Acta 246, 1029–1041 (2017)CrossRef
22.
Zurück zum Zitat S.U. Muhamad, N.H. Idris, H.M. Yusoff, M.F.M. Din, S.R. Majid, In-situ encapsulation of nickel nanoparticles in polypyrrole nanofibres with enhanced performance for supercapacitor. Electrochim. Acta 249, 9–15 (2017)CrossRef S.U. Muhamad, N.H. Idris, H.M. Yusoff, M.F.M. Din, S.R. Majid, In-situ encapsulation of nickel nanoparticles in polypyrrole nanofibres with enhanced performance for supercapacitor. Electrochim. Acta 249, 9–15 (2017)CrossRef
23.
Zurück zum Zitat S.A.A. Yahia, L. Hamadou, M.J. Salar-García, A. Kadri, V.M. Ortiz-Martínez, F.J. Hernández-Fernández, A.P. de los Rios, N. Benbrahim, TiO2 nanotubes as alternative cathode in microbial fuel cells: effect of annealing treatment on its performance. Appl. Surf. Sci. 387, 1037–1045 (2016)CrossRef S.A.A. Yahia, L. Hamadou, M.J. Salar-García, A. Kadri, V.M. Ortiz-Martínez, F.J. Hernández-Fernández, A.P. de los Rios, N. Benbrahim, TiO2 nanotubes as alternative cathode in microbial fuel cells: effect of annealing treatment on its performance. Appl. Surf. Sci. 387, 1037–1045 (2016)CrossRef
24.
Zurück zum Zitat F.B. Emre, M. Kesik, F.E. Kanik, H.Z. Akpinar, E. Aslan-Gurel, R.M. Rossi, L. Toppare, A benzimidazole-based conducting polymer and a PMMA–clay nanocomposite containing biosensor platform for glucose sensing. Synth. Met. 207, 102–109 (2015)CrossRef F.B. Emre, M. Kesik, F.E. Kanik, H.Z. Akpinar, E. Aslan-Gurel, R.M. Rossi, L. Toppare, A benzimidazole-based conducting polymer and a PMMA–clay nanocomposite containing biosensor platform for glucose sensing. Synth. Met. 207, 102–109 (2015)CrossRef
25.
Zurück zum Zitat S. Iqbal, S. Ahmad, Recent development in hybrid conducting polymers: synthesis, applications and future prospects. J. Ind. Eng. Chem. 60, 53–84 (2018)CrossRef S. Iqbal, S. Ahmad, Recent development in hybrid conducting polymers: synthesis, applications and future prospects. J. Ind. Eng. Chem. 60, 53–84 (2018)CrossRef
26.
Zurück zum Zitat C. Fu, M. Li, H. Li, C. Li, C. Qu, B. Yang, Fabrication of graphene/titanium carbide nanorod arrays for chemical sensor application. Mat. Sci. Eng. C 72, 425–432 (2017)CrossRef C. Fu, M. Li, H. Li, C. Li, C. Qu, B. Yang, Fabrication of graphene/titanium carbide nanorod arrays for chemical sensor application. Mat. Sci. Eng. C 72, 425–432 (2017)CrossRef
27.
Zurück zum Zitat X. Jiang, S. Setodoi, S. Fukumoto, I. Imae, K. Komaguchi, J. Yano, H. Mizota, Y. Harima, An easy one-step electrosynthesis of graphene/polyaniline composites and electrochemical capacitor. Carbon 67, 662–672 (2014)CrossRef X. Jiang, S. Setodoi, S. Fukumoto, I. Imae, K. Komaguchi, J. Yano, H. Mizota, Y. Harima, An easy one-step electrosynthesis of graphene/polyaniline composites and electrochemical capacitor. Carbon 67, 662–672 (2014)CrossRef
28.
Zurück zum Zitat S. Kesavan, M.A. Raj, S.A. John, Formation of electrochemically reduced graphene oxide on melamine electrografted layers and its application toward the determination of methylxanthines. Anal. Biochem. 496, 14–24 (2016)CrossRef S. Kesavan, M.A. Raj, S.A. John, Formation of electrochemically reduced graphene oxide on melamine electrografted layers and its application toward the determination of methylxanthines. Anal. Biochem. 496, 14–24 (2016)CrossRef
29.
Zurück zum Zitat W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958)CrossRef W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958)CrossRef
30.
Zurück zum Zitat L.A. Hernández, G. Riveros, F. Martín, D.M. González, M.C. Lopez, M. León, Enhanced morphology, crystallinity and conductivity of poly (3,4-ethyldioxythiophene)/ErGO composite films by in situ reduction of TrGO partially reduced on PEDOT modified electrode. Electrochim. Acta 240, 155–162 (2017)CrossRef L.A. Hernández, G. Riveros, F. Martín, D.M. González, M.C. Lopez, M. León, Enhanced morphology, crystallinity and conductivity of poly (3,4-ethyldioxythiophene)/ErGO composite films by in situ reduction of TrGO partially reduced on PEDOT modified electrode. Electrochim. Acta 240, 155–162 (2017)CrossRef
31.
Zurück zum Zitat S. Khalid, F. Alvi, M. Fatima, M. Aslam, S. Riaz, R. Farooq, Y. Zhang, Dye degradation and electricity generation using microbial fuel cell with graphene oxide modified anode. Mater. Lett. 220, 272–276 (2018)CrossRef S. Khalid, F. Alvi, M. Fatima, M. Aslam, S. Riaz, R. Farooq, Y. Zhang, Dye degradation and electricity generation using microbial fuel cell with graphene oxide modified anode. Mater. Lett. 220, 272–276 (2018)CrossRef
32.
Zurück zum Zitat M.A. Milani, D. González, R. Quijada, N.R.S. Basso, M.L. Cerrada, D.S. Azambuja, G.B. Galland, Polypropylene/graphene nanosheet nanocomposites by in situ polymerization: synthesis, characterization and fundamental properties. Compos. Sci. Technol. 84, 1–7 (2013)CrossRef M.A. Milani, D. González, R. Quijada, N.R.S. Basso, M.L. Cerrada, D.S. Azambuja, G.B. Galland, Polypropylene/graphene nanosheet nanocomposites by in situ polymerization: synthesis, characterization and fundamental properties. Compos. Sci. Technol. 84, 1–7 (2013)CrossRef
33.
Zurück zum Zitat T. González, M.S. Ureta-Zañartu, J.F. Marco, G. Vidal, Effect of Zeolite-Fe on graphite anode in electroactive biofilm development for application in microbial fuel cells. Appl. Surf. Sci. 467, 851–859 (2019)CrossRef T. González, M.S. Ureta-Zañartu, J.F. Marco, G. Vidal, Effect of Zeolite-Fe on graphite anode in electroactive biofilm development for application in microbial fuel cells. Appl. Surf. Sci. 467, 851–859 (2019)CrossRef
34.
Zurück zum Zitat M. Gebresemati, G. Das, B.J. Park, H.H. Yoon, Electricity production from macroalgae by a microbial fuel cell using nickel nanoparticles as cathode catalysts. Int. J. Hydrog. Energy 42, 29874–29880 (2017)CrossRef M. Gebresemati, G. Das, B.J. Park, H.H. Yoon, Electricity production from macroalgae by a microbial fuel cell using nickel nanoparticles as cathode catalysts. Int. J. Hydrog. Energy 42, 29874–29880 (2017)CrossRef
35.
Zurück zum Zitat S. Mateo, P. Cañizares, M.A. Rodrigo, F.J. Fernandez-Morales, Driving force of the better performance of metal-doped carbonaceous anodes in microbial fuel cells. Appl. Energy 225, 52–59 (2018)CrossRef S. Mateo, P. Cañizares, M.A. Rodrigo, F.J. Fernandez-Morales, Driving force of the better performance of metal-doped carbonaceous anodes in microbial fuel cells. Appl. Energy 225, 52–59 (2018)CrossRef
36.
Zurück zum Zitat X. Jiang, J. Hu, A.M. Lieber, C.S. Jackan, J.C. Biffinger, L.A. Fitzgerald, B.R. Ringeisen, C.M. Lieber, Nanoparticle facilitated extracellular electron transfer in microbial fuel cells. Nano Lett. 14, 6737–6742 (2014)CrossRef X. Jiang, J. Hu, A.M. Lieber, C.S. Jackan, J.C. Biffinger, L.A. Fitzgerald, B.R. Ringeisen, C.M. Lieber, Nanoparticle facilitated extracellular electron transfer in microbial fuel cells. Nano Lett. 14, 6737–6742 (2014)CrossRef
37.
Zurück zum Zitat M.A. del Valle, R. Salgado, F. Armijo, PEDOT nanowires and platinum nanoparticles modified electrodes to be assayed in formic acid electro-oxidation. Int. J. Electrochem. Sci. 9, 1557–1564 (2014) M.A. del Valle, R. Salgado, F. Armijo, PEDOT nanowires and platinum nanoparticles modified electrodes to be assayed in formic acid electro-oxidation. Int. J. Electrochem. Sci. 9, 1557–1564 (2014)
38.
Zurück zum Zitat J. Feng, Y. Qian, Z. Wang, X. Wang, S. Xu, K. Chen, P. Ouyang, Enhancing the performance of Escherichia coli-inoculated microbial fuel cells by introduction of the phenazine-1-carboxylic acid pathway. J. Biotechnol. 275, 1–6 (2018)CrossRef J. Feng, Y. Qian, Z. Wang, X. Wang, S. Xu, K. Chen, P. Ouyang, Enhancing the performance of Escherichia coli-inoculated microbial fuel cells by introduction of the phenazine-1-carboxylic acid pathway. J. Biotechnol. 275, 1–6 (2018)CrossRef
39.
Zurück zum Zitat T. Matsumoto, T. Tanaka, A. Kondo, Engineering metabolic pathways in Escherichia coli for constructing a “microbial chassis” for biochemical production. Bioresour. Technol. 245, 1362–1368 (2017)CrossRef T. Matsumoto, T. Tanaka, A. Kondo, Engineering metabolic pathways in Escherichia coli for constructing a “microbial chassis” for biochemical production. Bioresour. Technol. 245, 1362–1368 (2017)CrossRef
40.
Zurück zum Zitat Z. Luo, D. Yang, G. Qi, L. Yuwen, Y. Zhang, L. Weng, L. Wang, W. Huang, Preparation of highly dispersed reduced graphene oxide decorated with chitosan oligosaccharide as electrode material for enhancing the direct electron transfer of Escherichia coli. ACS Appl. Mater. Interfaces. 7, 8539–8544 (2015)CrossRef Z. Luo, D. Yang, G. Qi, L. Yuwen, Y. Zhang, L. Weng, L. Wang, W. Huang, Preparation of highly dispersed reduced graphene oxide decorated with chitosan oligosaccharide as electrode material for enhancing the direct electron transfer of Escherichia coli. ACS Appl. Mater. Interfaces. 7, 8539–8544 (2015)CrossRef
41.
Zurück zum Zitat E. Anane, D.C. López, P. Neubauer, M.N.C. Bournazou, Modelling overflow metabolism in Escherichia coli by acetate cycling. Biochem. Eng. J. 125, 23–30 (2017)CrossRef E. Anane, D.C. López, P. Neubauer, M.N.C. Bournazou, Modelling overflow metabolism in Escherichia coli by acetate cycling. Biochem. Eng. J. 125, 23–30 (2017)CrossRef
42.
Zurück zum Zitat C. Perrin, R. Briandet, G. Jubelin, P. Lejeune, M.-A. Mandrand-Berthelot, A. Rodrigue, C. Dorel, Nickel promotes biofilm formation by Escherichia coli K-12 strains that produce curli. Appl. Environ. Microb. 75, 1723–1733 (2009)CrossRef C. Perrin, R. Briandet, G. Jubelin, P. Lejeune, M.-A. Mandrand-Berthelot, A. Rodrigue, C. Dorel, Nickel promotes biofilm formation by Escherichia coli K-12 strains that produce curli. Appl. Environ. Microb. 75, 1723–1733 (2009)CrossRef
Metadaten
Titel
PEDOT/graphene/nickel-nanoparticles composites as electrodes for microbial fuel cells
verfasst von
Loreto A. Hernández
Gonzalo Riveros
Darío M. González
Manuel Gacitua
María Angélica del Valle
Publikationsdatum
25.05.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 13/2019
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-01555-y

Weitere Artikel der Ausgabe 13/2019

Journal of Materials Science: Materials in Electronics 13/2019 Zur Ausgabe

Neuer Inhalt