Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 1-2/2020

19.02.2020 | ORIGINAL ARTICLE

Peg-on-hole: mathematical investigation of motion of a peg and of forces of its interaction with a vertically fixed hole during their alignment with a three-point contact

verfasst von: Ludmila B. Chernyakhovskaya, Dmitry A. Simakov

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 1-2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The task of the peg-in-hole assembly is a very common task in industry. Despite its intuitive comprehensibility and everyday experience, the industrial assembly faces specific problems. The naive approach of inserting with bare hands an industrial peg inside into an industrial hole can very certainly bring to the jamming and damaging because of a very small gap between them. Therefore, the initial alignment of the details before insertion, so-called peg-on-hole phase, or simply peg-on-hole, is of the special importance in industry to avoid jamming. This paper develops the description and analysis of this phase based on the methods of analytical mechanics. As a common approach, the details in this study are considered as cylindrical, and such that peg is supported at the edge of vertically fixed hole, and could freely move keeping a three-point contact with three degrees of freedom, namely (i) nutation angle or align describing planar motion of aligning parts, (ii) precession angle or slide describing rotational motion around hole axis, and (iii) self-rotation angle or slip describing rotational motion about its axis. The analytical approach implies the system of Lagrange Equations for this particular case of motion, which is called Dynamic Differential Equations (DDE). DDE describes interconnections between motion in three degrees of freedom on one side, reaction forces on another side, and the external forces and torques on the third side. DDE includes geometrical properties of the details, and full descriptions of velocities, normal reactions, and friction forces at the contact points. It is the most general description of the peg-on-hole case. As the example of application, the normal reactions were found for relative large alignment angles far from reduction into a two-point contact, and for a small alignment angles, when system transits to the two-point contact. It was shown that for both cases, reaction forces become larger during alignment because they have to balance the force of gravity. For the larger angles, slip reduces the reaction forces, whereas for small alignment angles, slip and slide increases them.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lefebvre T, Xiao J, Bruyninckx H, De Gersem G (2005) Active compliant motion: a survey. Adv Robot 19(5):479–499CrossRef Lefebvre T, Xiao J, Bruyninckx H, De Gersem G (2005) Active compliant motion: a survey. Adv Robot 19(5):479–499CrossRef
3.
Zurück zum Zitat Whitney DE (1982) Quasi-static assembly of compliantly supported rigid parts. J Dyn Syst Meas Control 104(1):65–77CrossRef Whitney DE (1982) Quasi-static assembly of compliantly supported rigid parts. J Dyn Syst Meas Control 104(1):65–77CrossRef
4.
Zurück zum Zitat Jasim IF, Plapper PW, Voos H (2017) Contact-state modelling in force-controlled robotic peg-in-hole assembly processes of flexible objects using optimised gaussian mixtures. Proc Inst Mech Eng B J Eng Manuf 231(8):1448–1463CrossRef Jasim IF, Plapper PW, Voos H (2017) Contact-state modelling in force-controlled robotic peg-in-hole assembly processes of flexible objects using optimised gaussian mixtures. Proc Inst Mech Eng B J Eng Manuf 231(8):1448–1463CrossRef
5.
Zurück zum Zitat Fei Y, Zhao X (2003) An assembly process modeling and analysis for robotic multiple peg-in-hole. J Intell Robot Syst 36(2):175–189CrossRef Fei Y, Zhao X (2003) An assembly process modeling and analysis for robotic multiple peg-in-hole. J Intell Robot Syst 36(2):175–189CrossRef
6.
Zurück zum Zitat Xu J, Hou Z, Wang Q, Xu B, Zhang K, Chen K (2018) Feedback deep deterministic policy gradient with fuzzy reward for robotic multiple peg-in-hole assembly tasks. IEEE Trans Ind Inf:1–1 Xu J, Hou Z, Wang Q, Xu B, Zhang K, Chen K (2018) Feedback deep deterministic policy gradient with fuzzy reward for robotic multiple peg-in-hole assembly tasks. IEEE Trans Ind Inf:1–1
7.
Zurück zum Zitat Tang T, Lin HC, Zhao Y, Chen W, Tomizuka M (2016) Autonomous alignment of peg and hole by force/torque measurement for robotic assembly. Automation Science and Engineering (CASE), 2016. IEEE International Conference, New Jersey, pp 162–167 Tang T, Lin HC, Zhao Y, Chen W, Tomizuka M (2016) Autonomous alignment of peg and hole by force/torque measurement for robotic assembly. Automation Science and Engineering (CASE), 2016. IEEE International Conference, New Jersey, pp 162–167
8.
Zurück zum Zitat Abu-Dakka F, Nemec B, Ude A (2012) Peg-in-hole using dynamic movement primitives. In: Proceedings of the RAAD, pp 143–149 Abu-Dakka F, Nemec B, Ude A (2012) Peg-in-hole using dynamic movement primitives. In: Proceedings of the RAAD, pp 143–149
9.
Zurück zum Zitat Zhu Z, Hu H (2018) Robot learning from demonstration in robotic assembly: a survey. Robotics 7(2):17–17CrossRef Zhu Z, Hu H (2018) Robot learning from demonstration in robotic assembly: a survey. Robotics 7(2):17–17CrossRef
10.
Zurück zum Zitat Kyrarini M, Haseeb MA, Risti’c-Durrant D, Gräser A (2018) Robot learning of industrial faassembly task via human demonstrations. Auton Robot:1–19 Kyrarini M, Haseeb MA, Risti’c-Durrant D, Gräser A (2018) Robot learning of industrial faassembly task via human demonstrations. Auton Robot:1–19
11.
Zurück zum Zitat Tang T, Lin HC, Zhao Y, Fan Y, Chen W, Tomizuka M (2016) Teach industrial robots peg-hole-insertion by human demonstration. In: Advanced Intelligent Mechatronics (AIM), 2016. IEEE International Conference, New Jersey, pp 488–494CrossRef Tang T, Lin HC, Zhao Y, Fan Y, Chen W, Tomizuka M (2016) Teach industrial robots peg-hole-insertion by human demonstration. In: Advanced Intelligent Mechatronics (AIM), 2016. IEEE International Conference, New Jersey, pp 488–494CrossRef
14.
Zurück zum Zitat Sutton RS, Barto AG (2018) Reinforcement learning: an introduction MIT press Sutton RS, Barto AG (2018) Reinforcement learning: an introduction MIT press
15.
Zurück zum Zitat Inoue T, Magistris GD, Munawar A, Yokoya T, Tachibana R (2017) Deep reinforcement learning for high precision assembly tasks. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Canada, pp 819–825 Inoue T, Magistris GD, Munawar A, Yokoya T, Tachibana R (2017) Deep reinforcement learning for high precision assembly tasks. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Canada, pp 819–825
16.
Zurück zum Zitat Xu J, Hou Z, Wang W, Xu B, Zhang K, Chen K (2018) Feedback deep deterministic policy gradient with fuzzy reward for robotic multiple peg-in-hole assembly tasks. IEEE Trans Ind Inf:1–1 Xu J, Hou Z, Wang W, Xu B, Zhang K, Chen K (2018) Feedback deep deterministic policy gradient with fuzzy reward for robotic multiple peg-in-hole assembly tasks. IEEE Trans Ind Inf:1–1
20.
Zurück zum Zitat Zamyatin VG(1972) Geometric conditions of the assemblability during automatic assembly of the cylindrical junctions with gap. (Геометрические условия собираемости при автоматической сборке цилиндрический соединений с зазором). Proceedings of higher educational institutions. Маchine Building 12: 162–166 Zamyatin VG(1972) Geometric conditions of the assemblability during automatic assembly of the cylindrical junctions with gap. (Геометрические условия собираемости при автоматической сборке цилиндрический соединений с зазором). Proceedings of higher educational institutions. Маchine Building 12: 162–166
21.
Zurück zum Zitat Kristal MG (2000) Estimation of the error of the relative positions of the conjugated surfaces during the automated assembly of cylindrical details. (Оценка погрешности относительного расположения сопрягаемых поверхностей при автоматической сборке цилиндрических деталей). Assem Mach Build Dev Build 6:20–23 Kristal MG (2000) Estimation of the error of the relative positions of the conjugated surfaces during the automated assembly of cylindrical details. (Оценка погрешности относительного расположения сопрягаемых поверхностей при автоматической сборке цилиндрических деталей). Assem Mach Build Dev Build 6:20–23
22.
Zurück zum Zitat Peeva II, Vipliemov VD (2009) Passive-active relative orientation in conditions of the automated assembly. (Пассивно-активное относительное ориентирование в условиях автоматической сборки). Assem Mach Build Dev Build 6:23–26 Peeva II, Vipliemov VD (2009) Passive-active relative orientation in conditions of the automated assembly. (Пассивно-активное относительное ориентирование в условиях автоматической сборки). Assem Mach Build Dev Build 6:23–26
23.
Zurück zum Zitat Simakov AL, Simakov AD (2009) Alignment of the stages of the orientation of the attaching detail during the motion on the searching trajectory. (Согласование этапов ориентации присоединяемой детали при движении по поисковой траектории). Assem Mach Build Dev Build 6:20–22 Simakov AL, Simakov AD (2009) Alignment of the stages of the orientation of the attaching detail during the motion on the searching trajectory. (Согласование этапов ориентации присоединяемой детали при движении по поисковой траектории). Assem Mach Build Dev Build 6:20–22
24.
Zurück zum Zitat Kuznetsov SV, Simakov AL (2013) Phase portraits of the relative and angular alignment of the details during the automated alignment. (Фазовые портреты относительного и углового совмещения деталей при автоматической сборке). Assem Mach Build Dev Build 2:12–20 Kuznetsov SV, Simakov AL (2013) Phase portraits of the relative and angular alignment of the details during the automated alignment. (Фазовые портреты относительного и углового совмещения деталей при автоматической сборке). Assem Mach Build Dev Build 2:12–20
25.
Zurück zum Zitat Holodkova AG (2004) Peculiarities of the automated executions of the cylindrical joints with small gap. (Особенности автоматического выполнения цилиндрических соединений с малым зазором). Assem Mach Build Dev Build 4:14–18 Holodkova AG (2004) Peculiarities of the automated executions of the cylindrical joints with small gap. (Особенности автоматического выполнения цилиндрических соединений с малым зазором). Assem Mach Build Dev Build 4:14–18
26.
Zurück zum Zitat Ivanov AA (2009) Analytical conditions of the automated assembly. (Аналитические условия автоматической сборки). Assem Mach Build Dev Build 8:13–17 Ivanov AA (2009) Analytical conditions of the automated assembly. (Аналитические условия автоматической сборки). Assem Mach Build Dev Build 8:13–17
27.
Zurück zum Zitat Chernyakhovskaya LB, Simakov DA (2012) Kinematics and dynamics of the process of the assembly of cylindrical details. (Кинематика и динамика процесса сборки цилиндрических деталей). Assem Mach Build Dev Build 1:27–42 Chernyakhovskaya LB, Simakov DA (2012) Kinematics and dynamics of the process of the assembly of cylindrical details. (Кинематика и динамика процесса сборки цилиндрических деталей). Assem Mach Build Dev Build 1:27–42
28.
Zurück zum Zitat Jarkov GE, Prilutskiy VA (2012) Selfadjustment of the positions of details during the assembly. (Саморегулирование положения детали при сборке). Assem Mach Build Dev Build 9:12–14 Jarkov GE, Prilutskiy VA (2012) Selfadjustment of the positions of details during the assembly. (Саморегулирование положения детали при сборке). Assem Mach Build Dev Build 9:12–14
29.
Zurück zum Zitat Jarkov GE (2014) Method of the assembly by the change of the position of mass center. (Метод сборки изменением положения центра тяжести). Assem Mach Build Dev Build 11:7–9 Jarkov GE (2014) Method of the assembly by the change of the position of mass center. (Метод сборки изменением положения центра тяжести). Assem Mach Build Dev Build 11:7–9
30.
Zurück zum Zitat Bojkova LV, Vartanov MV, Zimina IN (2015) Mathematical model of the robotized assembly with use of adaptation and low-frequency oscilations. (Математическая модель роботизированной сборки с применением адаптации и низкочастотных колебаний). Assem Mach Build Dev Build 16:16–20 Bojkova LV, Vartanov MV, Zimina IN (2015) Mathematical model of the robotized assembly with use of adaptation and low-frequency oscilations. (Математическая модель роботизированной сборки с применением адаптации и низкочастотных колебаний). Assem Mach Build Dev Build 16:16–20
31.
Zurück zum Zitat Ivanov AA (2013) Vibrational assembly systems. (Вибрационные сборочные системы). Assem Mach Building Dev Build 5:7–10 Ivanov AA (2013) Vibrational assembly systems. (Вибрационные сборочные системы). Assem Mach Building Dev Build 5:7–10
32.
Zurück zum Zitat Bakšys B, Chadarovičius A, Pilkauskas K (2009) Experimental research of parts vibratory alignment with remote center compliance device. J Vibroeng 11(2):226–232 Bakšys B, Chadarovičius A, Pilkauskas K (2009) Experimental research of parts vibratory alignment with remote center compliance device. J Vibroeng 11(2):226–232
33.
Zurück zum Zitat Bojkova LV, Vartanov MV, Martynovich NA (2013) Mathematical model of dynamics of the conjunction of the details with use of an industrial robot and a vibrational device (Математическая модель динамики сопряжения деталей с применением промышленного робота и вибрационного устройства). Assem Mach Build Dev Build 1:12–15 Bojkova LV, Vartanov MV, Martynovich NA (2013) Mathematical model of dynamics of the conjunction of the details with use of an industrial robot and a vibrational device (Математическая модель динамики сопряжения деталей с применением промышленного робота и вибрационного устройства). Assem Mach Build Dev Build 1:12–15
34.
Zurück zum Zitat Kristal MG, Chuvilin IA (2008) Investigation of the dynamics of vibrational conjunction with the lower support of the edge of the enclosed detail. (Исследование динамики вибрационного сопряжения с нижней опорой торца охватываемой детали). Assem Mach Build Dev Build 4:13–17 Kristal MG, Chuvilin IA (2008) Investigation of the dynamics of vibrational conjunction with the lower support of the edge of the enclosed detail. (Исследование динамики вибрационного сопряжения с нижней опорой торца охватываемой детали). Assem Mach Build Dev Build 4:13–17
35.
Zurück zum Zitat Kristal MG, Chuvilin IA (2008) Model of the dynamics of rotational assembly of cylindrical details. (Модель динамики ротационной сборки цилиндрических деталей.). Assem Mach Build Dev Build 8:12–15 Kristal MG, Chuvilin IA (2008) Model of the dynamics of rotational assembly of cylindrical details. (Модель динамики ротационной сборки цилиндрических деталей.). Assem Mach Build Dev Build 8:12–15
36.
Zurück zum Zitat Kremleva NG, Bezrukova TB (2015) Investigation of the process of automated rotational assembly of cylindrical details. (Исследование процесса автоматической ротационной сборки цилиндрических деталей). Assem Mach Build Dev Build 6:29–32 Kremleva NG, Bezrukova TB (2015) Investigation of the process of automated rotational assembly of cylindrical details. (Исследование процесса автоматической ротационной сборки цилиндрических деталей). Assem Mach Build Dev Build 6:29–32
Metadaten
Titel
Peg-on-hole: mathematical investigation of motion of a peg and of forces of its interaction with a vertically fixed hole during their alignment with a three-point contact
verfasst von
Ludmila B. Chernyakhovskaya
Dmitry A. Simakov
Publikationsdatum
19.02.2020
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 1-2/2020
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-019-04806-8

Weitere Artikel der Ausgabe 1-2/2020

The International Journal of Advanced Manufacturing Technology 1-2/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.