Skip to main content
Erschienen in: Journal of Materials Science 15/2020

19.02.2020 | Computation & theory

Percolation model for conductivity of composites with segregation of small conductive particles on the grain boundaries

verfasst von: Alexander Ukshe, Alexander Glukhov, Yury Dobrovolsky

Erschienen in: Journal of Materials Science | Ausgabe 15/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The percolation model of electrical conductivity of a two-component medium, formed by a mixture of conductive small and non-conductive large particles with the adhesion of small particles to the surface of large ones and subsequent mixture compaction, is suggested. The model describes two main aspects. The first is a strong lowering of percolation threshold as a result of segregation of the conductive component on the non-conductive particle surface. The second is the calculation of the critical indices describing the power-law dependence of conductivity on composition as a consequence of percolation effects on the surface conductivity of large particles. Surface conductivity arises due to segregation of the conductive component and leads to threshold in a three-dimensional grid of conductive surfaces.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
This term, infinite cluster, is usually used in literature for large connected cluster providing conductivity through infinite media.
 
2
Usually CP are the particles of carbon black; they are hard enough.
 
3
Spanning cluster is the cluster from one border of limited medium to another.
 
4
The Shklovsky-de-Gennes network is a model of a medium at the percolation threshold, which assumes the presence of chains of conductive elements whose existence probability is the smaller, the longer such a chain.
 
Literatur
1.
Zurück zum Zitat Lux F (1993) Models proposed to explain the electrical conductivity of mixtures made of conductive and insulating materials. Mater Sci 28:285–301CrossRef Lux F (1993) Models proposed to explain the electrical conductivity of mixtures made of conductive and insulating materials. Mater Sci 28:285–301CrossRef
2.
Zurück zum Zitat Sumita M, Sakata K, Asai S, Miyasaka K, Nakagawa H (1991) Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black. Polym Bull 25:265–271CrossRef Sumita M, Sakata K, Asai S, Miyasaka K, Nakagawa H (1991) Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black. Polym Bull 25:265–271CrossRef
3.
Zurück zum Zitat Sumita M, Sakata K, Hayakawa Y, Asai S, Miyasaka K, Tanemura M (1992) Double percolation effect on the electrical conductivity of conductive particles filled polymer blends. Colloid Polym Sci 270:134–139CrossRef Sumita M, Sakata K, Hayakawa Y, Asai S, Miyasaka K, Tanemura M (1992) Double percolation effect on the electrical conductivity of conductive particles filled polymer blends. Colloid Polym Sci 270:134–139CrossRef
4.
Zurück zum Zitat Zhang Q, Zhang B-Y, Wang W-J, Guo Z-X, Yu J (2017) Highly efficient electrically conductive networks in carbon-black-filled ternary blends through the formation of thermodynamically induced self-assembled hierarchical structures. J Appl Polym Sci 135:45877–45879CrossRef Zhang Q, Zhang B-Y, Wang W-J, Guo Z-X, Yu J (2017) Highly efficient electrically conductive networks in carbon-black-filled ternary blends through the formation of thermodynamically induced self-assembled hierarchical structures. J Appl Polym Sci 135:45877–45879CrossRef
5.
Zurück zum Zitat Uvarov NF, Vanek P (2000) Stabilization of new phases in ion-conductive nanocomposites. J Mater Synth Process 8:319–326CrossRef Uvarov NF, Vanek P (2000) Stabilization of new phases in ion-conductive nanocomposites. J Mater Synth Process 8:319–326CrossRef
6.
Zurück zum Zitat Słupkowski T (1984) Electrical conductivity of mixtures of conducting and insulating particles. Phys Status Solidi A 83:329–333CrossRef Słupkowski T (1984) Electrical conductivity of mixtures of conducting and insulating particles. Phys Status Solidi A 83:329–333CrossRef
7.
Zurück zum Zitat Malliaris A, Turner DY (1971) Influence of particle size on the electrical resistivity of compacted mixtures of polymeric and metallic powders. J Appl Phys 42:614–618CrossRef Malliaris A, Turner DY (1971) Influence of particle size on the electrical resistivity of compacted mixtures of polymeric and metallic powders. J Appl Phys 42:614–618CrossRef
8.
Zurück zum Zitat Yoshida K (1990) Percolative conduction in a composite system of metal and ceramics. J the Phys Soc Jpn 59:4087–4095CrossRef Yoshida K (1990) Percolative conduction in a composite system of metal and ceramics. J the Phys Soc Jpn 59:4087–4095CrossRef
9.
Zurück zum Zitat Zadneprovsky B, Klyuev IY, Turkov VE (2016) The electric conductivity of composites based on various carbonaceous fillers and estimation of their percolation model parameters. Tech Phys Lett 42:872–875CrossRef Zadneprovsky B, Klyuev IY, Turkov VE (2016) The electric conductivity of composites based on various carbonaceous fillers and estimation of their percolation model parameters. Tech Phys Lett 42:872–875CrossRef
10.
Zurück zum Zitat Zallen R (1983) The physics of amorphous solids. Wiley, NewYork Ch. 4 CrossRef Zallen R (1983) The physics of amorphous solids. Wiley, NewYork Ch. 4 CrossRef
11.
Zurück zum Zitat Sher H, Zallen R (1970) Critical density in percolation processes. J Chem Phys 53:3759–3761CrossRef Sher H, Zallen R (1970) Critical density in percolation processes. J Chem Phys 53:3759–3761CrossRef
12.
Zurück zum Zitat Skal A, Shklovskii B (1975) Topology of an infinite cluster in the theory of percolation and its relationship to the theory of hopping conduction. Sov Phys-Semicond 8:1029–1032 Skal A, Shklovskii B (1975) Topology of an infinite cluster in the theory of percolation and its relationship to the theory of hopping conduction. Sov Phys-Semicond 8:1029–1032
13.
Zurück zum Zitat de Gennes P (1976) On a relation between percolation theory and the elasticity of gels. J de Phys Lett 37:L1CrossRef de Gennes P (1976) On a relation between percolation theory and the elasticity of gels. J de Phys Lett 37:L1CrossRef
14.
Zurück zum Zitat Moskalev PV (2009) Analysis of the percolation cluster structure. Tech Phys 54:763–769CrossRef Moskalev PV (2009) Analysis of the percolation cluster structure. Tech Phys 54:763–769CrossRef
15.
Zurück zum Zitat Feng S, Halperin BI, Sen PN (1987) Transport properties of continuum systems near the percolation threshold. Phys Rev B 35:197–214CrossRef Feng S, Halperin BI, Sen PN (1987) Transport properties of continuum systems near the percolation threshold. Phys Rev B 35:197–214CrossRef
16.
Zurück zum Zitat Snarskii AA (1986) Effective conductivity of strongly inhomogeneous media near the percolation threshold. J Exp Theor Phys 64:828 Snarskii AA (1986) Effective conductivity of strongly inhomogeneous media near the percolation threshold. J Exp Theor Phys 64:828
17.
Zurück zum Zitat Zhang Q-H, Chen D-J (2004) Percolation threshold and morphology of composites of conducting carbon black/polypropylene/EVA. Mater Sci 39:1751–1757CrossRef Zhang Q-H, Chen D-J (2004) Percolation threshold and morphology of composites of conducting carbon black/polypropylene/EVA. Mater Sci 39:1751–1757CrossRef
Metadaten
Titel
Percolation model for conductivity of composites with segregation of small conductive particles on the grain boundaries
verfasst von
Alexander Ukshe
Alexander Glukhov
Yury Dobrovolsky
Publikationsdatum
19.02.2020
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 15/2020
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-04408-w

Weitere Artikel der Ausgabe 15/2020

Journal of Materials Science 15/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.