Skip to main content

2024 | OriginalPaper | Buchkapitel

Performance Analysis of Methanol Steam Reforming 5 kW HT-PEM Fuel Cell System

verfasst von : Zisheng Lin, Yu Jiao, Tao Liang, Jianyue Shen

Erschienen in: Proceedings of China SAE Congress 2023: Selected Papers

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The energy crisis and environmental problems make the energy revolution urgent. Hydrogen energy, as green energy without pollution, has become a hot research topic. Hydrogen production by methanol steam reforming technology bypassed the current high cost of hydrogen transportation and storage, making it possible to use cheap hydrogen energy on mobile terminals. This paper analyzes the energy flow of BOP components, fuel cell performance, system efficiency, and economic feasibility of the methanol steam reforming 5 kW HT-PEM fuel cell system. Through energy flow analysis, the actual energy consumption and energy consumption distribution of each BOP component in the system can be understood, which is helpful for the subsequent improvement and upgrading of the control strategy and preheating mode of the system, and also has reference significance for the optimization of the selection of BOP components and the improvement of the overall system efficiency. The energy consumption of various types of heating rods in the system accounts for 90.8% of the total energy consumption during the preheating stage. In the power generation stage, the maximum fuel cell efficiency reaches 54.1% when the fuel cell output current is 20A, and the maximum system efficiency reaches 46.2% when the fuel cell output current is 33A. In terms of economic feasibility, the methanol steam reforming HT-PEM fuel cell as an automotive power system incurs fuel costs that are less than 30% of traditional fuel-powered vehicles.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Pei, P., Wang, M., Chen, D., et al.: Key technologies for polymer electrolyte membrane fuel cell systems fueled impure hydrogen. Prog. Nat. Sci.: Mater. Int. 30(6), 751–763 (2020)CrossRef Pei, P., Wang, M., Chen, D., et al.: Key technologies for polymer electrolyte membrane fuel cell systems fueled impure hydrogen. Prog. Nat. Sci.: Mater. Int. 30(6), 751–763 (2020)CrossRef
2.
Zurück zum Zitat Sun, Z., Sun, Z.: Hydrogen generation from methanol-reforming for fuel cell applications: a review. J. Central South Univ. 27(4), 1074–1103 (2020)CrossRef Sun, Z., Sun, Z.: Hydrogen generation from methanol-reforming for fuel cell applications: a review. J. Central South Univ. 27(4), 1074–1103 (2020)CrossRef
3.
Zurück zum Zitat Peng, B., Gan, C., Yan, T.: Advances in methanol-steam catalytic reforming process. Prog. Chem. 16(03), 414 (2004) Peng, B., Gan, C., Yan, T.: Advances in methanol-steam catalytic reforming process. Prog. Chem. 16(03), 414 (2004)
4.
Zurück zum Zitat Fan, L., Tu, Z., Chan, S.H.: Recent development of hydrogen and fuel cell technologies: a review. Energy Rep. 7, 8421–8446 (2021)CrossRef Fan, L., Tu, Z., Chan, S.H.: Recent development of hydrogen and fuel cell technologies: a review. Energy Rep. 7, 8421–8446 (2021)CrossRef
5.
Zurück zum Zitat Wang, Y., Wu, Q., Mei, D., et al.: A methanol fuel processing system with methanol steam reforming and CO selective methanation modules for PEMFC application. Int. J. Energy Res. 45(4), 6163–6173 (2021)CrossRef Wang, Y., Wu, Q., Mei, D., et al.: A methanol fuel processing system with methanol steam reforming and CO selective methanation modules for PEMFC application. Int. J. Energy Res. 45(4), 6163–6173 (2021)CrossRef
6.
Zurück zum Zitat Chen, B., Xie, H.P., Liu, T.: Principles and progress of advanced hydrogen production technologies in the context of carbon neutrality. Adv. Eng. Sci. 54(1), 106 (2022) Chen, B., Xie, H.P., Liu, T.: Principles and progress of advanced hydrogen production technologies in the context of carbon neutrality. Adv. Eng. Sci. 54(1), 106 (2022)
7.
Zurück zum Zitat Park, D.E., Kim, T., Kwon, S., et al.: Micromachined methanol steam reforming system as a hydrogen supplier for portable proton exchange membrane fuel cells. Sens. Actuators, A 135(1), 58–66 (2007)CrossRef Park, D.E., Kim, T., Kwon, S., et al.: Micromachined methanol steam reforming system as a hydrogen supplier for portable proton exchange membrane fuel cells. Sens. Actuators, A 135(1), 58–66 (2007)CrossRef
8.
Zurück zum Zitat Lee, H., Jung, I., Roh, G., et al.: Comparative analysis of onboard methane and methanol-reforming systems combined with HT-PEM fuel cell and CO2 capture/liquefaction system for hydrogen-fueled ship application. Energies 13(1), 224 (2020)CrossRef Lee, H., Jung, I., Roh, G., et al.: Comparative analysis of onboard methane and methanol-reforming systems combined with HT-PEM fuel cell and CO2 capture/liquefaction system for hydrogen-fueled ship application. Energies 13(1), 224 (2020)CrossRef
9.
Zurück zum Zitat Kappis, K., Papavasiliou, J., Avgouropoulos, G.: Methanol steam reforming processes for fuel cell applications. Energies 14(24), 8442 (2021)CrossRef Kappis, K., Papavasiliou, J., Avgouropoulos, G.: Methanol steam reforming processes for fuel cell applications. Energies 14(24), 8442 (2021)CrossRef
10.
Zurück zum Zitat Gu, Y., Wang, D., Chen, Q., et al.: Techno-economic analysis of green methanol plant with optimal design of renewable hydrogen production: a case study in China. Int. J. Hydrogen Energy 47(8), 5085–5100 (2022)CrossRef Gu, Y., Wang, D., Chen, Q., et al.: Techno-economic analysis of green methanol plant with optimal design of renewable hydrogen production: a case study in China. Int. J. Hydrogen Energy 47(8), 5085–5100 (2022)CrossRef
11.
Zurück zum Zitat Wang, X., Yang, Y., Zhong, H., et al.: Molecular H 2O promoted catalytic bicarbonate reduction with methanol into formate over Pd 0.5 Cu 0.5/C under mild hydrothermal conditions. Green Chem. 23(1), 430–439 (2021) Wang, X., Yang, Y., Zhong, H., et al.: Molecular H 2O promoted catalytic bicarbonate reduction with methanol into formate over Pd 0.5 Cu 0.5/C under mild hydrothermal conditions. Green Chem. 23(1), 430–439 (2021)
12.
Zurück zum Zitat Meng, X., Chen, M., Gu, A., et al.: China’s hydrogen development strategy in the context of double carbon targets. Nat. Gas Ind. B 9(6), 521–547 (2022)CrossRef Meng, X., Chen, M., Gu, A., et al.: China’s hydrogen development strategy in the context of double carbon targets. Nat. Gas Ind. B 9(6), 521–547 (2022)CrossRef
13.
Zurück zum Zitat Zhai, S., Jiang, S., Liu, C., et al.: Liquid sunshine: formic acid. J. Phys. Chem. Lett. 13(36), 8586–8600 (2022)CrossRef Zhai, S., Jiang, S., Liu, C., et al.: Liquid sunshine: formic acid. J. Phys. Chem. Lett. 13(36), 8586–8600 (2022)CrossRef
14.
Zurück zum Zitat Fontanella, J.J., Wintersgill, M.C., Wainright, J.S., et al.: High-pressure electrical conductivity studies of acid doped polybenzimidazole. Electrochim. Acta 43(10–11), 1289–1294 (1998)CrossRef Fontanella, J.J., Wintersgill, M.C., Wainright, J.S., et al.: High-pressure electrical conductivity studies of acid doped polybenzimidazole. Electrochim. Acta 43(10–11), 1289–1294 (1998)CrossRef
15.
Zurück zum Zitat Boaventura, M., Sander, H., Friedrich, K.A., et al.: The influence of CO on the current density distribution of high temperature polymer electrolyte membrane fuel cells. Electrochim. Acta 56(25), 9467–9475 (2011)CrossRef Boaventura, M., Sander, H., Friedrich, K.A., et al.: The influence of CO on the current density distribution of high temperature polymer electrolyte membrane fuel cells. Electrochim. Acta 56(25), 9467–9475 (2011)CrossRef
16.
Zurück zum Zitat Feroldi, D., Serra, M., Riera, J.: Design and analysis of fuel-cell hybrid systems oriented to automotive applications. IEEE Trans. Veh. Technol. 58(9), 4720–4729 (2009)CrossRef Feroldi, D., Serra, M., Riera, J.: Design and analysis of fuel-cell hybrid systems oriented to automotive applications. IEEE Trans. Veh. Technol. 58(9), 4720–4729 (2009)CrossRef
17.
Zurück zum Zitat Update P.: China’s New Energy Vehicle Industrial Development Plan for 2021 to 2035. Policy (2021) Update P.: China’s New Energy Vehicle Industrial Development Plan for 2021 to 2035. Policy (2021)
Metadaten
Titel
Performance Analysis of Methanol Steam Reforming 5 kW HT-PEM Fuel Cell System
verfasst von
Zisheng Lin
Yu Jiao
Tao Liang
Jianyue Shen
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-0252-7_101

    Premium Partner