Skip to main content

2023 | OriginalPaper | Buchkapitel

Personal Thermal Management Materials (PTMMs)

verfasst von : Wenfang Song, Wenyue Lu

Erschienen in: Personal Comfort Systems for Improving Indoor Thermal Comfort and Air Quality

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Personal thermal management is a promising solution to improve human body thermal comfort and reduce building energy consumption. Personal management materials (PTMMs) with zero or near-zero power supply are being developed to effectively regulate heat exchange between human body and the ambient. This chapter provides an in-depth overview of the recent progress on the various advanced PTMMs for thermal management under various ambient conditions, including cooling fabrics, heating fabrics, and due-modes fabrics. The functioning principle, engineering methods as well as the cooling/heating effects of the various PTMMs were discussed. Finally, an outlook discussing the development and research of PTMMs is also presented.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ma Z, Zhao D, She C, Yang Y, Yang R (2021) Personal thermal management techniques for thermal comfort and building energy saving. Mater Today Phys 20:100465CrossRef Ma Z, Zhao D, She C, Yang Y, Yang R (2021) Personal thermal management techniques for thermal comfort and building energy saving. Mater Today Phys 20:100465CrossRef
2.
Zurück zum Zitat Peng Y, Cui Y (2020) Advanced textiles for personal thermal management and energy. Joule 4(4):724–742CrossRef Peng Y, Cui Y (2020) Advanced textiles for personal thermal management and energy. Joule 4(4):724–742CrossRef
3.
Zurück zum Zitat Watanabe K, Rijal HB, Nakaya T (2013) Investigation of clothing insulation and thermal comfort in Japanese houses. PLEA, Munich, Germany Watanabe K, Rijal HB, Nakaya T (2013) Investigation of clothing insulation and thermal comfort in Japanese houses. PLEA, Munich, Germany
4.
Zurück zum Zitat Rupp RF, Kazanci OB, Toftum J (2021) Investigating current trends in clothing insulation using a global thermal comfort database. Energ Build 252:111431CrossRef Rupp RF, Kazanci OB, Toftum J (2021) Investigating current trends in clothing insulation using a global thermal comfort database. Energ Build 252:111431CrossRef
5.
Zurück zum Zitat Kong M, Dong B, Zhang R, O’Neill Z (2022) HVAC energy savings, thermal comfort and air quality for occupant-centric control through a side-by-side experimental study. Appl Energy 306:117987CrossRef Kong M, Dong B, Zhang R, O’Neill Z (2022) HVAC energy savings, thermal comfort and air quality for occupant-centric control through a side-by-side experimental study. Appl Energy 306:117987CrossRef
6.
Zurück zum Zitat Solano JC, Caamano-Martin E, Olivieri L, Almeida-Galarraga D (2021) HVAC systems and thermal comfort in buildings climate control: an experimental case study. Energ Rep 7:269–277 Solano JC, Caamano-Martin E, Olivieri L, Almeida-Galarraga D (2021) HVAC systems and thermal comfort in buildings climate control: an experimental case study. Energ Rep 7:269–277
7.
Zurück zum Zitat ASHRAE (2017) ANSI/ASHRAE Standard 55–2017: Thermal environmental conditions for human occupancy. American Society of Heating, Refrigerating and Air Conditioning Engineers, Technology Park, GA ASHRAE (2017) ANSI/ASHRAE Standard 55–2017: Thermal environmental conditions for human occupancy. American Society of Heating, Refrigerating and Air Conditioning Engineers, Technology Park, GA
8.
Zurück zum Zitat Rawal R, Schweiker M, Kazanci OB, Vardhan V, Jin Q, Duanmu L (2020) Personal comfort systems: a review on comfort, energy, and economics. Energ Build 214:109858CrossRef Rawal R, Schweiker M, Kazanci OB, Vardhan V, Jin Q, Duanmu L (2020) Personal comfort systems: a review on comfort, energy, and economics. Energ Build 214:109858CrossRef
9.
Zurück zum Zitat Song W, Zhang Z, Chen Z, Wang F, Yang B (2022) Thermal comfort and energy performance of personal comfort systems (PCS): a systematic review and meta-analysis. Energ Build 256:111747CrossRef Song W, Zhang Z, Chen Z, Wang F, Yang B (2022) Thermal comfort and energy performance of personal comfort systems (PCS): a systematic review and meta-analysis. Energ Build 256:111747CrossRef
10.
Zurück zum Zitat Yang B, Wu M, Li Z, Yao H, Wang F (2022) Thermal comfort and energy savings of personal comfort systems in low temperature office: a field study. Energy Build 270:112276CrossRef Yang B, Wu M, Li Z, Yao H, Wang F (2022) Thermal comfort and energy savings of personal comfort systems in low temperature office: a field study. Energy Build 270:112276CrossRef
11.
Zurück zum Zitat Hu J, Irfan Iqbal M, Sun F (2020) Wool can be cool: water-actuating woolen knitwear for both hot and cold. Adv Func Mater 30(51):2005033CrossRef Hu J, Irfan Iqbal M, Sun F (2020) Wool can be cool: water-actuating woolen knitwear for both hot and cold. Adv Func Mater 30(51):2005033CrossRef
12.
Zurück zum Zitat Hu R, Liu Y, Shin S, Huang S, Ren X, Shu W, Cheng J, Tao G, Xu W, Chen R, Luo X (2020) Emerging materials and strategies for personal thermal management. Adv Energy Mater 10(17):1903921CrossRef Hu R, Liu Y, Shin S, Huang S, Ren X, Shu W, Cheng J, Tao G, Xu W, Chen R, Luo X (2020) Emerging materials and strategies for personal thermal management. Adv Energy Mater 10(17):1903921CrossRef
13.
Zurück zum Zitat Zhang X, Chao X, Lou L, Fan J, Chen Q, Li B, Lin Y, Shou D (2021) Personal thermal management by thermally conductive composites: a review. Compos Commun 23:100595CrossRef Zhang X, Chao X, Lou L, Fan J, Chen Q, Li B, Lin Y, Shou D (2021) Personal thermal management by thermally conductive composites: a review. Compos Commun 23:100595CrossRef
14.
Zurück zum Zitat Sajjad U, Hamid K, Rehman TU, Sultan M, Abbas N, Ali HM, Imran M, Muneeshwaran M, Chang JY, Wang CC (2022) Personal thermal management—a review on strategies, progress, and prospects. Int Commun Heat Mass Transfer 130:105739CrossRef Sajjad U, Hamid K, Rehman TU, Sultan M, Abbas N, Ali HM, Imran M, Muneeshwaran M, Chang JY, Wang CC (2022) Personal thermal management—a review on strategies, progress, and prospects. Int Commun Heat Mass Transfer 130:105739CrossRef
16.
Zurück zum Zitat Lan X, Wang Y, Peng J, Si Y, Ren J, Ding B, Li B (2021) Designing heat transfer pathways for advanced thermoregulatory textiles. Mater Today Phys 17:100342CrossRef Lan X, Wang Y, Peng J, Si Y, Ren J, Ding B, Li B (2021) Designing heat transfer pathways for advanced thermoregulatory textiles. Mater Today Phys 17:100342CrossRef
17.
Zurück zum Zitat Zhu FL, Feng QQ (2021) Recent advances in textile materials for personal radiative thermal management in indoor and outdoor environments. Int J Therm Sci 165:106899CrossRef Zhu FL, Feng QQ (2021) Recent advances in textile materials for personal radiative thermal management in indoor and outdoor environments. Int J Therm Sci 165:106899CrossRef
19.
Zurück zum Zitat Nilsson JÅ, Molokwu MN, Olsson O (2016) Body temperature regulation in hot environments. PLoS ONE 11(8):e0161481CrossRef Nilsson JÅ, Molokwu MN, Olsson O (2016) Body temperature regulation in hot environments. PLoS ONE 11(8):e0161481CrossRef
20.
Zurück zum Zitat Cui Y, Gao S, Zhang R, Cheng L, Yu J (2020) Study on the moisture absorption and thermal properties of hygroscopic exothermic fibers and related interactions with water molecules. Polymers 12(1):98CrossRef Cui Y, Gao S, Zhang R, Cheng L, Yu J (2020) Study on the moisture absorption and thermal properties of hygroscopic exothermic fibers and related interactions with water molecules. Polymers 12(1):98CrossRef
21.
Zurück zum Zitat Karthik T, Senthilkumar P, Murugan R (2018) Analysis of comfort and moisture management properties of polyester/milkweed blended plated knitted fabrics for active wear applications. J Ind Text 47(5):897–920CrossRef Karthik T, Senthilkumar P, Murugan R (2018) Analysis of comfort and moisture management properties of polyester/milkweed blended plated knitted fabrics for active wear applications. J Ind Text 47(5):897–920CrossRef
22.
Zurück zum Zitat Suganthi T, Senthilkumar P (2018) Moisture-management properties of bi-layer knitted fabrics for sportswear. J Ind Text 47(7):1447–1463CrossRef Suganthi T, Senthilkumar P (2018) Moisture-management properties of bi-layer knitted fabrics for sportswear. J Ind Text 47(7):1447–1463CrossRef
23.
Zurück zum Zitat Yilma KT, Limeneh DY (2021) Review on moisture management finish: mechanism and evaluation. J Nat Fibers 19(7):1–9 Yilma KT, Limeneh DY (2021) Review on moisture management finish: mechanism and evaluation. J Nat Fibers 19(7):1–9
24.
Zurück zum Zitat Gavin TP (2003) Clothing and thermoregulation during exercise. Sports Med 33(13):941–947CrossRef Gavin TP (2003) Clothing and thermoregulation during exercise. Sports Med 33(13):941–947CrossRef
25.
Zurück zum Zitat Söz CK, Trosien S, Biesalski M (2020) Janus interface materials: a critical review and comparative study. ACS Mater Lett 2(4):336–357CrossRef Söz CK, Trosien S, Biesalski M (2020) Janus interface materials: a critical review and comparative study. ACS Mater Lett 2(4):336–357CrossRef
26.
Zurück zum Zitat Tang S, Pi H, Zhang Y, Wu J, Zhang X (2019) Novel Janus fibrous membranes with enhanced directional water vapor transmission. Appl Sci 9(16):3302CrossRef Tang S, Pi H, Zhang Y, Wu J, Zhang X (2019) Novel Janus fibrous membranes with enhanced directional water vapor transmission. Appl Sci 9(16):3302CrossRef
27.
Zurück zum Zitat Lim HS, Park SH, Koo SH, Kwark YJ, Thomas EL, Jeong Y, Cho JH (2010) Superamphiphilic Janus fabric. Langmuir 26(24):19159–19162CrossRef Lim HS, Park SH, Koo SH, Kwark YJ, Thomas EL, Jeong Y, Cho JH (2010) Superamphiphilic Janus fabric. Langmuir 26(24):19159–19162CrossRef
28.
Zurück zum Zitat Xiao YQ, Kan CW (2022) Review on the development and application of directional water transport textile arterials. Coatings 12(3):301CrossRef Xiao YQ, Kan CW (2022) Review on the development and application of directional water transport textile arterials. Coatings 12(3):301CrossRef
29.
Zurück zum Zitat Hu R, Wang N, Hou L, Liu J, Cui Z, Zhang C, Zhao Y (2022) Bilayer nanoporous polyethylene membrane with anisotropic wettability for rapid water transportation/evaporation and radiative cooling. ACS Appl Mater Interfaces 14(7):9833–9843CrossRef Hu R, Wang N, Hou L, Liu J, Cui Z, Zhang C, Zhao Y (2022) Bilayer nanoporous polyethylene membrane with anisotropic wettability for rapid water transportation/evaporation and radiative cooling. ACS Appl Mater Interfaces 14(7):9833–9843CrossRef
30.
Zurück zum Zitat You JB, Yoo Y, Oh MS, Im SG (2014) Simple and reliable method to incorporate the Janus property onto arbitrary porous substrates. ACS Appl Mater Interfaces 6(6):4005–4010CrossRef You JB, Yoo Y, Oh MS, Im SG (2014) Simple and reliable method to incorporate the Janus property onto arbitrary porous substrates. ACS Appl Mater Interfaces 6(6):4005–4010CrossRef
31.
Zurück zum Zitat Guan X, Wang X, Huang Y, Zhao L, Sun X, Owens H, Lu JR, Liu X (2020) Smart textiles with Janus wetting and wicking properties fabricated by graphene oxide coatings. Adv Mater Interfaces 8(2):2001427CrossRef Guan X, Wang X, Huang Y, Zhao L, Sun X, Owens H, Lu JR, Liu X (2020) Smart textiles with Janus wetting and wicking properties fabricated by graphene oxide coatings. Adv Mater Interfaces 8(2):2001427CrossRef
32.
Zurück zum Zitat Zhou H, Guo Z (2019) Superwetting Janus membranes: focusing on unidirectional transport behaviors and multiple applications. J Mater Chem A 7(21):12921–12950CrossRef Zhou H, Guo Z (2019) Superwetting Janus membranes: focusing on unidirectional transport behaviors and multiple applications. J Mater Chem A 7(21):12921–12950CrossRef
33.
Zurück zum Zitat Miao D, Huang Z, Wang XF, Yu JY, Ding B (2018) Continuous, spontaneous, and directional water transport in the trilayered fibrous membranes for functional moisture wicking textiles. Small 14:e1801527CrossRef Miao D, Huang Z, Wang XF, Yu JY, Ding B (2018) Continuous, spontaneous, and directional water transport in the trilayered fibrous membranes for functional moisture wicking textiles. Small 14:e1801527CrossRef
34.
Zurück zum Zitat Wu C, Faruk O, Jin Q, Wang G, Wu J, Qi D (2020) Preparation of Janus fabric by PVDF electrospinning technology and its unidirectional water/moisture transportation performance. J Texte Sci Technol 6(3):144–152CrossRef Wu C, Faruk O, Jin Q, Wang G, Wu J, Qi D (2020) Preparation of Janus fabric by PVDF electrospinning technology and its unidirectional water/moisture transportation performance. J Texte Sci Technol 6(3):144–152CrossRef
35.
Zurück zum Zitat Zhao J, Xu Z, Liu S, Zhang T, Huang L (2021) Tailoring unidirectional water-penetration Janus fabric with surface electrospun deposition. Macromol Mater Eng 306(4):2000578CrossRef Zhao J, Xu Z, Liu S, Zhang T, Huang L (2021) Tailoring unidirectional water-penetration Janus fabric with surface electrospun deposition. Macromol Mater Eng 306(4):2000578CrossRef
36.
Zurück zum Zitat Li D, Xu K, Zhang Y (2022) A review on research progress in plasma-controlled superwetting surface structure and properties. Polymers 14(18):3759CrossRef Li D, Xu K, Zhang Y (2022) A review on research progress in plasma-controlled superwetting surface structure and properties. Polymers 14(18):3759CrossRef
37.
Zurück zum Zitat Li H, Li Y, Wu J, Jia X, Yang J, Shao D, Feng L, Wang S, Song H (2022) Bio-inspired hollow carbon microtubes for multifunctional photothermal protective coatings. ACS Appl Mater Interfaces 14(25):29302–29314CrossRef Li H, Li Y, Wu J, Jia X, Yang J, Shao D, Feng L, Wang S, Song H (2022) Bio-inspired hollow carbon microtubes for multifunctional photothermal protective coatings. ACS Appl Mater Interfaces 14(25):29302–29314CrossRef
38.
Zurück zum Zitat Li L, Liu WD, Liu Q, Chen ZG (2022) Multifunctional wearable thermoelectrics for personal thermal management. Adv Func Mater 32(22):2200548CrossRef Li L, Liu WD, Liu Q, Chen ZG (2022) Multifunctional wearable thermoelectrics for personal thermal management. Adv Func Mater 32(22):2200548CrossRef
39.
Zurück zum Zitat Li X, Yang Y, Quan Z, Wang L, Ji D, Li F, Qin X, Yu J, Ramakrishna S (2022) Tailoring body surface infrared radiation behavior through colored nanofibers for efficient passive radiative heating textiles. Chem Eng J 430:133093CrossRef Li X, Yang Y, Quan Z, Wang L, Ji D, Li F, Qin X, Yu J, Ramakrishna S (2022) Tailoring body surface infrared radiation behavior through colored nanofibers for efficient passive radiative heating textiles. Chem Eng J 430:133093CrossRef
40.
Zurück zum Zitat Xu B, Ding Y, Li A (2022) Wax direct-writing of monolayered Janus fabrics for personal moisture management. Adv Mater Interfaces 9(15):2200438CrossRef Xu B, Ding Y, Li A (2022) Wax direct-writing of monolayered Janus fabrics for personal moisture management. Adv Mater Interfaces 9(15):2200438CrossRef
41.
Zurück zum Zitat Yang S, Zhu Z, Wu Z, Wu J, Yin K (2020) Femtosecond laser rapid fabrication of Janus sweat-permeable fabric for personal cooling. Appl Phys Lett 117(21):213701CrossRef Yang S, Zhu Z, Wu Z, Wu J, Yin K (2020) Femtosecond laser rapid fabrication of Janus sweat-permeable fabric for personal cooling. Appl Phys Lett 117(21):213701CrossRef
42.
Zurück zum Zitat Zou C, Lao L, Chen Q, Fan J, Shou D (2021) Nature-inspired moisture management fabric for unidirectional liquid transport and surface repellence and resistance. Energ Build 248:111203CrossRef Zou C, Lao L, Chen Q, Fan J, Shou D (2021) Nature-inspired moisture management fabric for unidirectional liquid transport and surface repellence and resistance. Energ Build 248:111203CrossRef
43.
Zurück zum Zitat Fu M, Weng W, Chen W, Luo N (2016) Review on modeling heat transfer and thermoregulatory responses in human body. J Therm Biol 62:189–200CrossRef Fu M, Weng W, Chen W, Luo N (2016) Review on modeling heat transfer and thermoregulatory responses in human body. J Therm Biol 62:189–200CrossRef
44.
Zurück zum Zitat Gagge AP, Gonzalez RR (2010) Mechanisms of heat exchange: biophysics and physiology. Compr Physiol 45–84 Gagge AP, Gonzalez RR (2010) Mechanisms of heat exchange: biophysics and physiology. Compr Physiol 45–84
45.
Zurück zum Zitat Tong JK, Huang X, Boriskina SV, Loomis J, Xu Y, Chen G (2015) Infrared-transparent visible-opaque fabrics for wearable personal thermal management. ACS Photonics 2(6):769–778CrossRef Tong JK, Huang X, Boriskina SV, Loomis J, Xu Y, Chen G (2015) Infrared-transparent visible-opaque fabrics for wearable personal thermal management. ACS Photonics 2(6):769–778CrossRef
46.
Zurück zum Zitat Hsu PC, Liu C, Song AY, Zhang Z, Peng Y, Xie J, Liu K, Wu CL, Catrysse PB, Cai L, Zhai S, Majumdar A, Fan S, Cui Y (2017) A dual-mode textile for human body radiative heating and cooling. Sci Adv 3(11):e1700895CrossRef Hsu PC, Liu C, Song AY, Zhang Z, Peng Y, Xie J, Liu K, Wu CL, Catrysse PB, Cai L, Zhai S, Majumdar A, Fan S, Cui Y (2017) A dual-mode textile for human body radiative heating and cooling. Sci Adv 3(11):e1700895CrossRef
47.
Zurück zum Zitat Peng Y, Chen J, Song AY, Catrysse PB, Hsu PC, Cai L, Liu B, Zhu Y, Zhou G, Wu DS, Lee HR, Fan S, Cui Y (2018) Nanoporous polyethylene microfibres for large-scale radiative cooling fabric. Nat Sustain 1(2):105–112CrossRef Peng Y, Chen J, Song AY, Catrysse PB, Hsu PC, Cai L, Liu B, Zhu Y, Zhou G, Wu DS, Lee HR, Fan S, Cui Y (2018) Nanoporous polyethylene microfibres for large-scale radiative cooling fabric. Nat Sustain 1(2):105–112CrossRef
48.
Zurück zum Zitat Cai L, Peng Y, Xu J, Zhou C, Zhou C, Wu P, Lin D, Fan S, Cui Y (2019) Temperature regulation in colored infrared-transparent polyethylene textiles. Joule 3(6):1478–1486CrossRef Cai L, Peng Y, Xu J, Zhou C, Zhou C, Wu P, Lin D, Fan S, Cui Y (2019) Temperature regulation in colored infrared-transparent polyethylene textiles. Joule 3(6):1478–1486CrossRef
49.
Zurück zum Zitat Liu R, Wang X, Yu J, Wang Y, Zhu J, Hu Z (2018) A novel approach to design nanoporous polyethylene/polyester composite fabric via TIPS for human body cooling. Macromol Mater Eng 303(3):1700456CrossRef Liu R, Wang X, Yu J, Wang Y, Zhu J, Hu Z (2018) A novel approach to design nanoporous polyethylene/polyester composite fabric via TIPS for human body cooling. Macromol Mater Eng 303(3):1700456CrossRef
50.
Zurück zum Zitat Song YN, Ma RJ, Xu L, Huang HD, Yan DX, Xu JZ, Zhong GJ, Lei J, Li ZM (2018) Wearable polyethylene/polyamide composite fabric for passive human body cooling. ACS Appl Mater Interfaces 10(48):41637–41644CrossRef Song YN, Ma RJ, Xu L, Huang HD, Yan DX, Xu JZ, Zhong GJ, Lei J, Li ZM (2018) Wearable polyethylene/polyamide composite fabric for passive human body cooling. ACS Appl Mater Interfaces 10(48):41637–41644CrossRef
51.
Zurück zum Zitat Rephaeli E, Raman A, Fan S (2013) Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling. Nano Lett 13(4):1457–1461CrossRef Rephaeli E, Raman A, Fan S (2013) Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling. Nano Lett 13(4):1457–1461CrossRef
52.
Zurück zum Zitat Zhao B, Hu M, Ao X, Chen N, Pei G (2019) Radiative cooling: a review of fundamentals, materials, applications, and prospects. Appl Energy 236:489–513CrossRef Zhao B, Hu M, Ao X, Chen N, Pei G (2019) Radiative cooling: a review of fundamentals, materials, applications, and prospects. Appl Energy 236:489–513CrossRef
53.
Zurück zum Zitat Wei W, Zhu Y, Li Q, Cheng Z, Yao Y, Zhao Q, Zhang P, Liu X, Chen Z, Xu F, Gao Y (2020) An Al2O3-cellulose acetate-coated textile for human body cooling. Sol Energy Mater Sol Cells 211:110525CrossRef Wei W, Zhu Y, Li Q, Cheng Z, Yao Y, Zhao Q, Zhang P, Liu X, Chen Z, Xu F, Gao Y (2020) An Al2O3-cellulose acetate-coated textile for human body cooling. Sol Energy Mater Sol Cells 211:110525CrossRef
54.
Zurück zum Zitat Gu B, Liang K, Zhang T, Qiu F, Yang D, Chen M (2020) Multifunctional laminated membranes with adjustable infrared radiation for personal thermal management applications. Cellulose 27(14):8471–8483CrossRef Gu B, Liang K, Zhang T, Qiu F, Yang D, Chen M (2020) Multifunctional laminated membranes with adjustable infrared radiation for personal thermal management applications. Cellulose 27(14):8471–8483CrossRef
55.
Zurück zum Zitat Song YN, Lei MQ, Deng LF, Lei J, Li ZM (2020) Hybrid metamaterial textiles for passive personal cooling indoors and outdoors. ACS Appl Polym Mater 2(11):4379–4386CrossRef Song YN, Lei MQ, Deng LF, Lei J, Li ZM (2020) Hybrid metamaterial textiles for passive personal cooling indoors and outdoors. ACS Appl Polym Mater 2(11):4379–4386CrossRef
56.
Zurück zum Zitat Song YN, Lei MQ, Lei J, Li ZM (2020) A scalable hybrid fiber and its textile with pore and wrinkle structures for passive personal cooling. Adv Mater Technol 5(7):2000287CrossRef Song YN, Lei MQ, Lei J, Li ZM (2020) A scalable hybrid fiber and its textile with pore and wrinkle structures for passive personal cooling. Adv Mater Technol 5(7):2000287CrossRef
57.
Zurück zum Zitat Song YN, Lei MQ, Lei J, Li ZM (2020) Spectrally selective polyvinylidene fluoride textile for passive human body cooling. Mater Today Energy 18:100504CrossRef Song YN, Lei MQ, Lei J, Li ZM (2020) Spectrally selective polyvinylidene fluoride textile for passive human body cooling. Mater Today Energy 18:100504CrossRef
58.
Zurück zum Zitat Kim G, Park K, Hwang K, Choi C, Zheng Z, Seydel R, Coza A, Jin S (2021) Black textile with bottom metallized surface having enhanced radiative cooling under solar irradiation. Nano Energy 82:105715CrossRef Kim G, Park K, Hwang K, Choi C, Zheng Z, Seydel R, Coza A, Jin S (2021) Black textile with bottom metallized surface having enhanced radiative cooling under solar irradiation. Nano Energy 82:105715CrossRef
59.
Zurück zum Zitat Cai L, Song AY, Li W et al (2018) Spectrally selective nanocomposite textile for outdoor personal cooling. Adv Mater 30(35):1802152CrossRef Cai L, Song AY, Li W et al (2018) Spectrally selective nanocomposite textile for outdoor personal cooling. Adv Mater 30(35):1802152CrossRef
60.
Zurück zum Zitat Iqbal MI, Lin K, Sun F, Chen S, Pan A, Lee HH, Kan CW, Lin CSK, Tso CY (2022) Radiative cooling nanofabric for personal thermal management. ACS Appl Mater Interfaces 14(20):23577–23587CrossRef Iqbal MI, Lin K, Sun F, Chen S, Pan A, Lee HH, Kan CW, Lin CSK, Tso CY (2022) Radiative cooling nanofabric for personal thermal management. ACS Appl Mater Interfaces 14(20):23577–23587CrossRef
61.
Zurück zum Zitat Liu Y, Zhang H, Zhang Y, Liang C, An Q (2022) Rendering passive radiative cooling capability to cotton textile by an alginate/CaCO3 coating via synergistic light manipulation and high water permeation. Compos B Eng 240:109988CrossRef Liu Y, Zhang H, Zhang Y, Liang C, An Q (2022) Rendering passive radiative cooling capability to cotton textile by an alginate/CaCO3 coating via synergistic light manipulation and high water permeation. Compos B Eng 240:109988CrossRef
62.
Zurück zum Zitat Panwar K, Jassal M, Agrawal AK (2017) TiO2–SiO2 Janus particles treated cotton fabric for thermal regulation. Surf Coat Technol 309:897–903CrossRef Panwar K, Jassal M, Agrawal AK (2017) TiO2–SiO2 Janus particles treated cotton fabric for thermal regulation. Surf Coat Technol 309:897–903CrossRef
63.
Zurück zum Zitat Zeng S, Pian S, Su M et al (2021) Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science 373(6555):692–696CrossRef Zeng S, Pian S, Su M et al (2021) Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science 373(6555):692–696CrossRef
64.
Zurück zum Zitat Miao D, Cheng N, Wang X, Yu J, Ding B (2022) Sandwich-structured textiles with hierarchically nanofibrous network and Janus wettability for outdoor personal thermal and moisture management. Chem Eng J 450:138012CrossRef Miao D, Cheng N, Wang X, Yu J, Ding B (2022) Sandwich-structured textiles with hierarchically nanofibrous network and Janus wettability for outdoor personal thermal and moisture management. Chem Eng J 450:138012CrossRef
65.
Zurück zum Zitat Sivarenjini TM, Panbude A, Sathiyamoorthy S, Kumar R, Maaza M, Jayabal K, Veluswamy P (2021) Design and optimization of flexible thermoelectric coolers for wearable applications. ECS J Solid State Sci Technol 10(8):081006CrossRef Sivarenjini TM, Panbude A, Sathiyamoorthy S, Kumar R, Maaza M, Jayabal K, Veluswamy P (2021) Design and optimization of flexible thermoelectric coolers for wearable applications. ECS J Solid State Sci Technol 10(8):081006CrossRef
66.
Zurück zum Zitat Zhang X, Chao X, Lou L, Fan J, Chen Q, Li B, Ye L, Shou D (2021) Personal thermal management by thermally conductive composites: a review. Compos Commun 23:100595CrossRef Zhang X, Chao X, Lou L, Fan J, Chen Q, Li B, Ye L, Shou D (2021) Personal thermal management by thermally conductive composites: a review. Compos Commun 23:100595CrossRef
67.
Zurück zum Zitat Gao T, Yang Z, Chen C, Li Y, Fu K, Dai J, Hitz EM, Xie H, Liu B, Song J, Yang B, Hu L (2017) Three-dimensional printed thermal regulation textiles. ACS Nano 11(11):11513–11520CrossRef Gao T, Yang Z, Chen C, Li Y, Fu K, Dai J, Hitz EM, Xie H, Liu B, Song J, Yang B, Hu L (2017) Three-dimensional printed thermal regulation textiles. ACS Nano 11(11):11513–11520CrossRef
68.
Zurück zum Zitat Yu X, Li Y, Wang X, Si Y, Yu J, Ding B (2020) Thermoconductive, moisture-permeable, and superhydrophobic nanofibrous membranes with interpenetrated boron nitride network for personal cooling fabrics. ACS Appl Mater Interfaces 12(28):32078–32089CrossRef Yu X, Li Y, Wang X, Si Y, Yu J, Ding B (2020) Thermoconductive, moisture-permeable, and superhydrophobic nanofibrous membranes with interpenetrated boron nitride network for personal cooling fabrics. ACS Appl Mater Interfaces 12(28):32078–32089CrossRef
69.
Zurück zum Zitat Abbas A, Zhao Y, Wang X, Lin T (2013) Cooling effect of MWCNT-containing composite coatings on cotton fabrics. J Text Inst 104(8):798–807CrossRef Abbas A, Zhao Y, Wang X, Lin T (2013) Cooling effect of MWCNT-containing composite coatings on cotton fabrics. J Text Inst 104(8):798–807CrossRef
70.
Zurück zum Zitat Guo Y, Dun C, Mu J, Li P, Gu L, Hou C, Hewitt CA, Zhang Q, Li Y, Carroll DL, Wang H (2017) Ultrathin, washable, and large-area graphene papers for personal thermal management. Small 13(44):1702645CrossRef Guo Y, Dun C, Mu J, Li P, Gu L, Hou C, Hewitt CA, Zhang Q, Li Y, Carroll DL, Wang H (2017) Ultrathin, washable, and large-area graphene papers for personal thermal management. Small 13(44):1702645CrossRef
71.
Zurück zum Zitat Peng Y, Li W, Liu B et al (2021) Integrated cooling (i-Cool) textile of heat conduction and sweat transportation for personal perspiration management. Nat Commun 12(1):1–12CrossRef Peng Y, Li W, Liu B et al (2021) Integrated cooling (i-Cool) textile of heat conduction and sweat transportation for personal perspiration management. Nat Commun 12(1):1–12CrossRef
72.
Zurück zum Zitat Ding J, Zhao W, Jin W, Di CA, Zhu D (2021) Advanced thermoelectric materials for flexible cooling application. Adv Func Mater 31(20):2010695CrossRef Ding J, Zhao W, Jin W, Di CA, Zhu D (2021) Advanced thermoelectric materials for flexible cooling application. Adv Func Mater 31(20):2010695CrossRef
73.
Zurück zum Zitat Zhao D, Lu X, Fan T, Wu YS, Lou L, Wang Q, Fan J, Yang R (2018) Personal thermal management using portable thermoelectrics for potential building energy saving. Appl Energy 218:282–291CrossRef Zhao D, Lu X, Fan T, Wu YS, Lou L, Wang Q, Fan J, Yang R (2018) Personal thermal management using portable thermoelectrics for potential building energy saving. Appl Energy 218:282–291CrossRef
74.
Zurück zum Zitat Shoeibi S, Kargarsharifabad H, Sadi M, Arabkoohsar A, Mirjalily SAA (2022) A review on using thermoelectric cooling, heating, and electricity generators in solar energy applications. Sustainable Energy Technol Assess 52:102105CrossRef Shoeibi S, Kargarsharifabad H, Sadi M, Arabkoohsar A, Mirjalily SAA (2022) A review on using thermoelectric cooling, heating, and electricity generators in solar energy applications. Sustainable Energy Technol Assess 52:102105CrossRef
75.
Zurück zum Zitat Zhang T, Li K, Zhang J, Chen M, Wang Z, Ma S, Zhang N, Wei L (2017) High-performance, flexible, and ultralong crystalline thermoelectric fibers. Nano Energy 41:35–42CrossRef Zhang T, Li K, Zhang J, Chen M, Wang Z, Ma S, Zhang N, Wei L (2017) High-performance, flexible, and ultralong crystalline thermoelectric fibers. Nano Energy 41:35–42CrossRef
76.
Zurück zum Zitat Hong S, Gu Y, Seo JK, Wang J, Liu P, Meng YS, Xu S, Chen R (2019) Wearable thermoelectrics for personalized thermoregulation. Sci Adv 5(5):eaaw0536 Hong S, Gu Y, Seo JK, Wang J, Liu P, Meng YS, Xu S, Chen R (2019) Wearable thermoelectrics for personalized thermoregulation. Sci Adv 5(5):eaaw0536
77.
Zurück zum Zitat Gupta D, Srivastava A, Kale S (2013) Thermal properties of single and double layer fabric assemblies. Indian J Fibre Text Res 38:387–394 Gupta D, Srivastava A, Kale S (2013) Thermal properties of single and double layer fabric assemblies. Indian J Fibre Text Res 38:387–394
78.
Zurück zum Zitat Hayashi K (1984) Thermal conductivity of ceramic fibrous insulators at high temperatures. Int J Thermophys 5(2):229–238CrossRef Hayashi K (1984) Thermal conductivity of ceramic fibrous insulators at high temperatures. Int J Thermophys 5(2):229–238CrossRef
79.
Zurück zum Zitat Fu Z, Corker J, Papathanasiou T, Wang Y, Zhou Y, Madyan OA, Liao F, Fan M (2022) Critical review on the thermal conductivity modelling of silica aerogel composites. J Build Eng 57:104814CrossRef Fu Z, Corker J, Papathanasiou T, Wang Y, Zhou Y, Madyan OA, Liao F, Fan M (2022) Critical review on the thermal conductivity modelling of silica aerogel composites. J Build Eng 57:104814CrossRef
80.
Zurück zum Zitat Liu Q, Yan K, Chen J, Xia M, Li M, Liu K, Wang D, Wu C, Xie Y (2021) Recent advances in novel aerogels through the hybrid aggregation of inorganic nanomaterials and polymeric fibers for thermal insulation. Aggregate 2(2):e30 Liu Q, Yan K, Chen J, Xia M, Li M, Liu K, Wang D, Wu C, Xie Y (2021) Recent advances in novel aerogels through the hybrid aggregation of inorganic nanomaterials and polymeric fibers for thermal insulation. Aggregate 2(2):e30
81.
Zurück zum Zitat Tafreshi OA, Mosanenzadeh SG, Karamikamkar S, Saadatnia Z, Park CB, Naguib HE (2022) A review on multifunctional aerogel fibers: processing, fabrication, functionalization, and applications. Mater Today Chem 23:100736CrossRef Tafreshi OA, Mosanenzadeh SG, Karamikamkar S, Saadatnia Z, Park CB, Naguib HE (2022) A review on multifunctional aerogel fibers: processing, fabrication, functionalization, and applications. Mater Today Chem 23:100736CrossRef
82.
Zurück zum Zitat Anderson DM, Fessler JR, Pooley MA, Seidel S, Hamblin MR, Beckham HW, Brennan JF (2017) Infrared radiative properties and thermal modeling of ceramic-embedded textile fabrics. Biomed Opt Express 8(3):1698–1711CrossRef Anderson DM, Fessler JR, Pooley MA, Seidel S, Hamblin MR, Beckham HW, Brennan JF (2017) Infrared radiative properties and thermal modeling of ceramic-embedded textile fabrics. Biomed Opt Express 8(3):1698–1711CrossRef
83.
Zurück zum Zitat Hsu PC, Liu X, Liu C, Xie X, Lee HR, Welch AJ, Zhao T, Cui Y (2015) Personal thermal management by metallic nanowire-coated textile. Nano Lett 15(1):365–371CrossRef Hsu PC, Liu X, Liu C, Xie X, Lee HR, Welch AJ, Zhao T, Cui Y (2015) Personal thermal management by metallic nanowire-coated textile. Nano Lett 15(1):365–371CrossRef
84.
Zurück zum Zitat Hayes SG, Venkatraman P (2016) Materials and technology for sportswear and performance apparel. CRC Press, Boca Raton, FL Hayes SG, Venkatraman P (2016) Materials and technology for sportswear and performance apparel. CRC Press, Boca Raton, FL
85.
Zurück zum Zitat Cai L, Song AY, Wu P, Hsu PC, Peng Y, Chen J, Liu C, Catrysse PB, Liu Y, Yang A, Zhou C, Zhou C, Fan S, Cui Y (2017) Warming up human body by nanoporous metallized polyethylene textile. Nat Commun 8(1):1–8CrossRef Cai L, Song AY, Wu P, Hsu PC, Peng Y, Chen J, Liu C, Catrysse PB, Liu Y, Yang A, Zhou C, Zhou C, Fan S, Cui Y (2017) Warming up human body by nanoporous metallized polyethylene textile. Nat Commun 8(1):1–8CrossRef
86.
Zurück zum Zitat Cheng Y, Zhang H, Wang R, Wang X, Zhai H, Wang T, Jin Q, Sun J (2016) Highly stretchable and conductive copper nanowire based fibers with hierarchical structure for wearable heaters. ACS Appl Mater Interfaces 8(48):32925–32933CrossRef Cheng Y, Zhang H, Wang R, Wang X, Zhai H, Wang T, Jin Q, Sun J (2016) Highly stretchable and conductive copper nanowire based fibers with hierarchical structure for wearable heaters. ACS Appl Mater Interfaces 8(48):32925–32933CrossRef
87.
Zurück zum Zitat Wang Z, Wan Y, Zheng X, Yang H, Wang P, Li C (2021) Enhancing the radiative heating performance of down fibers by layer-by-layer self-assembly. J Clean Prod 298:126760CrossRef Wang Z, Wan Y, Zheng X, Yang H, Wang P, Li C (2021) Enhancing the radiative heating performance of down fibers by layer-by-layer self-assembly. J Clean Prod 298:126760CrossRef
88.
Zurück zum Zitat Rodriguez-Navarro C, di Lorenzo F, Elert K (2018) Mineralogy and physicochemical features of Saharan dust wet deposited in the Iberian Peninsula during an extreme red rain event. Atmos Chem Phys 18(13):10089–10122CrossRef Rodriguez-Navarro C, di Lorenzo F, Elert K (2018) Mineralogy and physicochemical features of Saharan dust wet deposited in the Iberian Peninsula during an extreme red rain event. Atmos Chem Phys 18(13):10089–10122CrossRef
89.
Zurück zum Zitat Cui Y, Gong H, Wang Y, Li D, Bai H (2018) A thermally insulating textile inspired by polar bear hair. Adv Mater 30(14):1706807CrossRef Cui Y, Gong H, Wang Y, Li D, Bai H (2018) A thermally insulating textile inspired by polar bear hair. Adv Mater 30(14):1706807CrossRef
90.
Zurück zum Zitat Leblanc G, Francis CM, Soffer R, Kalacska M, De Gea J (2016) Spectral reflectance of polar bear and other large arctic mammal pelts; potential applications to remote sensing surveys. Remote Sens 8(4):273CrossRef Leblanc G, Francis CM, Soffer R, Kalacska M, De Gea J (2016) Spectral reflectance of polar bear and other large arctic mammal pelts; potential applications to remote sensing surveys. Remote Sens 8(4):273CrossRef
91.
Zurück zum Zitat Metwally S, Comesaña SM, Zarzyka M, Szewczyk PK, Karbowniczek JE, Stachewicz U (2019) Thermal insulation design bioinspired by microstructure study of penguin feather and polar bear hair. Acta Biomater 91:270–283CrossRef Metwally S, Comesaña SM, Zarzyka M, Szewczyk PK, Karbowniczek JE, Stachewicz U (2019) Thermal insulation design bioinspired by microstructure study of penguin feather and polar bear hair. Acta Biomater 91:270–283CrossRef
92.
Zurück zum Zitat Shao Z, Wang Y, Bai H (2020) A superhydrophobic textile inspired by polar bear hair for both in air and underwater thermal insulation. Chem Eng J 397:125441CrossRef Shao Z, Wang Y, Bai H (2020) A superhydrophobic textile inspired by polar bear hair for both in air and underwater thermal insulation. Chem Eng J 397:125441CrossRef
93.
Zurück zum Zitat Guo Z, Sun C, Wang J, Cai Z, Ge F (2021) High-performance laminated fabric with enhanced photothermal conversion and joule heating effect for personal thermal management. ACS Appl Mater Interfaces 13(7):8851–8862CrossRef Guo Z, Sun C, Wang J, Cai Z, Ge F (2021) High-performance laminated fabric with enhanced photothermal conversion and joule heating effect for personal thermal management. ACS Appl Mater Interfaces 13(7):8851–8862CrossRef
94.
Zurück zum Zitat Yue X, He M, Zhang T, Yang D, Qiu F (2020) Laminated fibrous membrane inspired by polar bear pelt for outdoor personal radiation management. ACS Appl Mater Interfaces 12(10):12285–12293CrossRef Yue X, He M, Zhang T, Yang D, Qiu F (2020) Laminated fibrous membrane inspired by polar bear pelt for outdoor personal radiation management. ACS Appl Mater Interfaces 12(10):12285–12293CrossRef
95.
Zurück zum Zitat Wang H, Quan X, Yin L, Jin X, Pan Y, Wu C, Huang H, Hong C, Zhang X (2022) Lightweight quartz fiber fabric reinforced phenolic aerogel with surface densified and graded structure for high temperature thermal protection. Compos A Appl Sci Manuf 159:107022CrossRef Wang H, Quan X, Yin L, Jin X, Pan Y, Wu C, Huang H, Hong C, Zhang X (2022) Lightweight quartz fiber fabric reinforced phenolic aerogel with surface densified and graded structure for high temperature thermal protection. Compos A Appl Sci Manuf 159:107022CrossRef
96.
Zurück zum Zitat Wang J, Zhang T, Shen Y, Yang B, Lv J, Zheng Y, Wang Y (2022) Polyethylene glycol/nanofibrous Kevlar aerogel composite: fabrication, confinement effect, thermal energy storage and insulation performance. Mater Today Commun 32:104011CrossRef Wang J, Zhang T, Shen Y, Yang B, Lv J, Zheng Y, Wang Y (2022) Polyethylene glycol/nanofibrous Kevlar aerogel composite: fabrication, confinement effect, thermal energy storage and insulation performance. Mater Today Commun 32:104011CrossRef
97.
Zurück zum Zitat Li C, Chen Z, Dong W et al (2021) A review of silicon-based aerogel thermal insulation materials: performance optimization through composition and microstructure. J Non-Cryst Solids 553:120517CrossRef Li C, Chen Z, Dong W et al (2021) A review of silicon-based aerogel thermal insulation materials: performance optimization through composition and microstructure. J Non-Cryst Solids 553:120517CrossRef
98.
Zurück zum Zitat Nuckols ML, Chao JC, Swiergosz MJ (2005) Manned evaluation of a prototype composite cold water diving garment using liquids and superinsulation aerogel materials. Rubicon Research Repository, Panama City, FL Nuckols ML, Chao JC, Swiergosz MJ (2005) Manned evaluation of a prototype composite cold water diving garment using liquids and superinsulation aerogel materials. Rubicon Research Repository, Panama City, FL
99.
Zurück zum Zitat Trevino LA, Orndoff ES, Tang HH, Gould GL, Trifu R (2002) Aerogel-based insulation for advanced space suit. SAE Technical Paper, San Antonio Trevino LA, Orndoff ES, Tang HH, Gould GL, Trifu R (2002) Aerogel-based insulation for advanced space suit. SAE Technical Paper, San Antonio
100.
Zurück zum Zitat Su W, Lu Y (2020) Development and performance evaluation of aerogel-based cold protective clothing. J Silk 57(9):58–62 (in Chinese) Su W, Lu Y (2020) Development and performance evaluation of aerogel-based cold protective clothing. J Silk 57(9):58–62 (in Chinese)
101.
Zurück zum Zitat Shaid A, Wang L, Padhye R (2016) The thermal protection and comfort properties of aerogel and PCM-coated fabric for firefighter garment. J Ind Text 45(4):611–625CrossRef Shaid A, Wang L, Padhye R (2016) The thermal protection and comfort properties of aerogel and PCM-coated fabric for firefighter garment. J Ind Text 45(4):611–625CrossRef
102.
Zurück zum Zitat Qiu S, Jia H, Jiang SX (2021) Fabrication and characterization of thermal management fabric with heating and cooling modes through magnetron sputtering. Mater Lett 300:130217CrossRef Qiu S, Jia H, Jiang SX (2021) Fabrication and characterization of thermal management fabric with heating and cooling modes through magnetron sputtering. Mater Lett 300:130217CrossRef
103.
Zurück zum Zitat Fu K, Yang Z, Pei Y, Wang Y, Xu B, Wang Y, Yang B, Hu L (2019) Designing textile architectures for high energy-efficiency human body sweat-and cooling-management. Adv Fiber Mater 1(1):61–70CrossRef Fu K, Yang Z, Pei Y, Wang Y, Xu B, Wang Y, Yang B, Hu L (2019) Designing textile architectures for high energy-efficiency human body sweat-and cooling-management. Adv Fiber Mater 1(1):61–70CrossRef
104.
Zurück zum Zitat Zhang XA, Yu S, Xu B, Li M, Peng Z, Wang Y, Deng S, Wu X, Wu Z, Ouyang M, Wang Y (2019) Dynamic gating of infrared radiation in a textile. Science 363(6427):619–623CrossRef Zhang XA, Yu S, Xu B, Li M, Peng Z, Wang Y, Deng S, Wu X, Wu Z, Ouyang M, Wang Y (2019) Dynamic gating of infrared radiation in a textile. Science 363(6427):619–623CrossRef
105.
Zurück zum Zitat Wang W, Yao LN, Cheng CY et al (2017) Harnessing the hygroscopic and biofluorescent behaviors of genetically tractable microbial cells to design biohybrid wearables. Sci Adv 5(3):e1601984CrossRef Wang W, Yao LN, Cheng CY et al (2017) Harnessing the hygroscopic and biofluorescent behaviors of genetically tractable microbial cells to design biohybrid wearables. Sci Adv 5(3):e1601984CrossRef
106.
Zurück zum Zitat Zhong Y, Zhang F, Wang M, Gardner CJ, Kim G, Liu Y, Leng L, Jin S, Chen R (2017) Reversible humidity sensitive clothing for personal thermoregulation. Sci Rep 7(1):1–8 Zhong Y, Zhang F, Wang M, Gardner CJ, Kim G, Liu Y, Leng L, Jin S, Chen R (2017) Reversible humidity sensitive clothing for personal thermoregulation. Sci Rep 7(1):1–8
Metadaten
Titel
Personal Thermal Management Materials (PTMMs)
verfasst von
Wenfang Song
Wenyue Lu
Copyright-Jahr
2023
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-0718-2_11