Skip to main content

2023 | OriginalPaper | Buchkapitel

Wearable Personal Thermal Management Systems (PTMS)

verfasst von : Faming Wang

Erschienen in: Personal Comfort Systems for Improving Indoor Thermal Comfort and Air Quality

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Personal thermal management appears to be a promising approach for improving individual thermal comfort while keeping building energy consumption to a minimum. Personal thermal management systems (PTMS) have numerous advantages. First, PTMS could significantly reduce building cooling and heating energy consumption. They also do not require an air distribution system, which is a significant source of energy consumption in traditional personalized ventilation systems (PVS). Furthermore, PTMSs with near-zero energy input could significantly reduce built-environment energy consumption. Furthermore, PTMSs could prevent draught risks caused by high supply air velocity, which is a common issue in TACS (task/ambient conditioning systems) and PVS. This chapter provides an in-depth overview of various existing personal thermal management systems, including their advantages and disadvantages in comparison to other systems such as HVAC (heating, ventilation, and air conditioning) and PECS (personal environment control system). Finally, future trends in PTMS development and research have been discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Du X, Bokel R, van den Dobbelsteen A (2014) Building microclimate and summer thermal comfort in free-running buildings with diverse spaces: a Chinese vernacular house case. Build Environ 82:215–227CrossRef Du X, Bokel R, van den Dobbelsteen A (2014) Building microclimate and summer thermal comfort in free-running buildings with diverse spaces: a Chinese vernacular house case. Build Environ 82:215–227CrossRef
2.
Zurück zum Zitat Dong Y, Coleman M, Miller SA (2021) Greenhouse gas emissions from air conditioning and refrigeration service expansion in developing countries. Annu Rev Environ Resour 46:59–83CrossRef Dong Y, Coleman M, Miller SA (2021) Greenhouse gas emissions from air conditioning and refrigeration service expansion in developing countries. Annu Rev Environ Resour 46:59–83CrossRef
3.
Zurück zum Zitat Jing R, Wang M, Zhang R, Li N, Zhao Y (2017) A study on energy performance of 30 commercial office building in Hong Kong. Energy Build 144:117–128CrossRef Jing R, Wang M, Zhang R, Li N, Zhao Y (2017) A study on energy performance of 30 commercial office building in Hong Kong. Energy Build 144:117–128CrossRef
4.
Zurück zum Zitat Knight IP (2012) Assessing electric energy use in HVAC systems. REHVA J 49(1):6–11 Knight IP (2012) Assessing electric energy use in HVAC systems. REHVA J 49(1):6–11
5.
Zurück zum Zitat Ma H, Du N, Yu S, Lu W, Zhang Z, Deng N, Li C (2017) Analysis of typical public building energy consumption in northern China. Energy Build 136:139–150CrossRef Ma H, Du N, Yu S, Lu W, Zhang Z, Deng N, Li C (2017) Analysis of typical public building energy consumption in northern China. Energy Build 136:139–150CrossRef
6.
Zurück zum Zitat Spyropoulos GN, Balaras CA (2011) Energy consumption and the potential of energy saving in Hellenic office buildings used a bank branches-a case study. Energy Build 43(4):770–778CrossRef Spyropoulos GN, Balaras CA (2011) Energy consumption and the potential of energy saving in Hellenic office buildings used a bank branches-a case study. Energy Build 43(4):770–778CrossRef
7.
Zurück zum Zitat Hsiao SW, Lin HH, Lo CH (2016) A study of thermal comfort enhancement by the optimization of airflow induced by a ceiling fan. J Interdisc Math 19(4):859–891CrossRef Hsiao SW, Lin HH, Lo CH (2016) A study of thermal comfort enhancement by the optimization of airflow induced by a ceiling fan. J Interdisc Math 19(4):859–891CrossRef
8.
Zurück zum Zitat Lipczynska A, Schiavon S, Graham LT (2018) Thermal comfort and self-reported productivity in an office with ceiling fans in the tropics. Build Environ 135:202–212CrossRef Lipczynska A, Schiavon S, Graham LT (2018) Thermal comfort and self-reported productivity in an office with ceiling fans in the tropics. Build Environ 135:202–212CrossRef
9.
Zurück zum Zitat Myhren JA, Holmberg S (2009) Design considerations with ventilation-radiators: comparisons to traditional two-panel radiators. Energy Build 41(1):92–100CrossRef Myhren JA, Holmberg S (2009) Design considerations with ventilation-radiators: comparisons to traditional two-panel radiators. Energy Build 41(1):92–100CrossRef
10.
Zurück zum Zitat Oxizidis S, Papadopoulos AM (2013) Performance of radiant cooling surfaces with respect to energy consumption and thermal comfort. Energy Build 57:199–209CrossRef Oxizidis S, Papadopoulos AM (2013) Performance of radiant cooling surfaces with respect to energy consumption and thermal comfort. Energy Build 57:199–209CrossRef
11.
Zurück zum Zitat Schiavon S, Ak M (2008) Energy saving and improved comfort by increased air movement. Energy Build 40(10):1954–1960CrossRef Schiavon S, Ak M (2008) Energy saving and improved comfort by increased air movement. Energy Build 40(10):1954–1960CrossRef
12.
Zurück zum Zitat Sevilgen G, Kilic M (2011) Numerical analysis of air flow, heat transfer, moisture transport and thermal comfort in a room heated by two-panel radiators. Energy Build 43(1):137–146CrossRef Sevilgen G, Kilic M (2011) Numerical analysis of air flow, heat transfer, moisture transport and thermal comfort in a room heated by two-panel radiators. Energy Build 43(1):137–146CrossRef
13.
Zurück zum Zitat Song W, Zhang Z, Chen Z, Wang F, Yang B (2022) Thermal comfort and energy performance of personal comfort systems (PCS): a systematic review and meta-analysis. Energy Build 256:111747CrossRef Song W, Zhang Z, Chen Z, Wang F, Yang B (2022) Thermal comfort and energy performance of personal comfort systems (PCS): a systematic review and meta-analysis. Energy Build 256:111747CrossRef
14.
Zurück zum Zitat Parsons KC (2002) The effects of gender, acclimation state, the opportunity to adjust clothing and physical disability on requirements for thermal comfort. Energy Build 34(6):593–599CrossRef Parsons KC (2002) The effects of gender, acclimation state, the opportunity to adjust clothing and physical disability on requirements for thermal comfort. Energy Build 34(6):593–599CrossRef
15.
Zurück zum Zitat Yue X, Zhang T, Yang D, Qiu F, Wei G, Zhou H (2019) Multifunctional Janus fibrous hybrid membranes with sandwich structure for on-demand personal thermal management. Nano Energy 63:103808CrossRef Yue X, Zhang T, Yang D, Qiu F, Wei G, Zhou H (2019) Multifunctional Janus fibrous hybrid membranes with sandwich structure for on-demand personal thermal management. Nano Energy 63:103808CrossRef
16.
Zurück zum Zitat Hsu PC, Song AY, Catrysee PB, Liu C, Peng Y, Xie J, Fan S, Cui Y (2016) Radiative human body cooling by nanoporous polyethylene textile. Science 353(6303):1019–1023CrossRef Hsu PC, Song AY, Catrysee PB, Liu C, Peng Y, Xie J, Fan S, Cui Y (2016) Radiative human body cooling by nanoporous polyethylene textile. Science 353(6303):1019–1023CrossRef
17.
Zurück zum Zitat Ma Z, Zhao D, She C, Yang Y, Yang R (2021) Personal thermal management techniques for thermal comfort and building energy saving. Mater Today Phys 20:100465CrossRef Ma Z, Zhao D, She C, Yang Y, Yang R (2021) Personal thermal management techniques for thermal comfort and building energy saving. Mater Today Phys 20:100465CrossRef
18.
Zurück zum Zitat Tong JK, Huang X, Boriskina SV, Loomis J, Xu Y, Chen G (2015) Infrared-transparent visible-opaque fabrics for wearable personal thermal management. ACS Photon 2(6):769–778CrossRef Tong JK, Huang X, Boriskina SV, Loomis J, Xu Y, Chen G (2015) Infrared-transparent visible-opaque fabrics for wearable personal thermal management. ACS Photon 2(6):769–778CrossRef
19.
Zurück zum Zitat Gao C, Kuklane K, Wang F, Holmér I (2012) Personal cooling with phase change materials to improve thermal comfort from a heat wave perspective. Indoor Air 22(6):523–530CrossRef Gao C, Kuklane K, Wang F, Holmér I (2012) Personal cooling with phase change materials to improve thermal comfort from a heat wave perspective. Indoor Air 22(6):523–530CrossRef
20.
Zurück zum Zitat Gu B, Qiu F, Yang D, Zhang T (2022) Waste-to-resource strategy to fabricate wearable Janus membranes derived from corn bracts for application in personal thermal management. Cellulose 29:1219–1230CrossRef Gu B, Qiu F, Yang D, Zhang T (2022) Waste-to-resource strategy to fabricate wearable Janus membranes derived from corn bracts for application in personal thermal management. Cellulose 29:1219–1230CrossRef
21.
Zurück zum Zitat Guo Z, Sun C, Wang J, Cai Z, Ge F (2021) High-performance laminated fabric with enhanced photothermal conversion and joule heating effect for personal thermal management. ACS Appl Mater Interfaces 13:8851–8862CrossRef Guo Z, Sun C, Wang J, Cai Z, Ge F (2021) High-performance laminated fabric with enhanced photothermal conversion and joule heating effect for personal thermal management. ACS Appl Mater Interfaces 13:8851–8862CrossRef
22.
Zurück zum Zitat Ham JF (1965) Use of a Vortex tube in safety clothing. Achieves Environ Health 10(4):619–623CrossRef Ham JF (1965) Use of a Vortex tube in safety clothing. Achieves Environ Health 10(4):619–623CrossRef
23.
Zurück zum Zitat Liu Q, Tian B, Liang J, Wu W (2021) Recent advances in printed flexible heaters for portable and wearable thermal management. Mater Horiz 8:1634–1656CrossRef Liu Q, Tian B, Liang J, Wu W (2021) Recent advances in printed flexible heaters for portable and wearable thermal management. Mater Horiz 8:1634–1656CrossRef
24.
Zurück zum Zitat Song W, Wang F, Wei F (2016) Hybrid cooling clothing to improve thermal comfort of office workers in a hot indoor environment. Build Environ 100:92–101CrossRef Song W, Wang F, Wei F (2016) Hybrid cooling clothing to improve thermal comfort of office workers in a hot indoor environment. Build Environ 100:92–101CrossRef
25.
Zurück zum Zitat Song W, Wang F, Zhang C, Lai D (2015) On the improvement of thermal comfort of university students by using electrically and chemically heated clothing in a cold classroom environment. Build Environ 94:704–713CrossRef Song W, Wang F, Zhang C, Lai D (2015) On the improvement of thermal comfort of university students by using electrically and chemically heated clothing in a cold classroom environment. Build Environ 94:704–713CrossRef
26.
Zurück zum Zitat Udayraj LZ, Ke Y, Wang F, Yang B (2018) Personal cooling strategies to improve thermal comfort in warm indoor environments: comparison of a conventional desk fan and air ventilation clothing. Energy Build 174:439–451CrossRef Udayraj LZ, Ke Y, Wang F, Yang B (2018) Personal cooling strategies to improve thermal comfort in warm indoor environments: comparison of a conventional desk fan and air ventilation clothing. Energy Build 174:439–451CrossRef
27.
Zurück zum Zitat Udayraj LZ, Ke Y, Wang F, Yang B (2018) A study of thermal comfort enhancement using three energy-efficient personalized heating strategies at two low indoor temperatures. Build Environ 143:1–14CrossRef Udayraj LZ, Ke Y, Wang F, Yang B (2018) A study of thermal comfort enhancement using three energy-efficient personalized heating strategies at two low indoor temperatures. Build Environ 143:1–14CrossRef
28.
Zurück zum Zitat Wang Y, Chen L, Cheng H, Wang B, Feng X, Mao Z, Sui X (2020) Mechanically flexible, waterproof, breathable cellulose/polypyrrole/polyurethane composite aerogels as wearable heaters for personal thermal management. Chem Eng J 402:126222CrossRef Wang Y, Chen L, Cheng H, Wang B, Feng X, Mao Z, Sui X (2020) Mechanically flexible, waterproof, breathable cellulose/polypyrrole/polyurethane composite aerogels as wearable heaters for personal thermal management. Chem Eng J 402:126222CrossRef
29.
Zurück zum Zitat Wang Z, Warren K, Luo M, He X, Zhang H, Arens E, Chen W, He Y, Hu Y, Jin L, Liu S, Cohen-Tanugi D, Smith MJ (2020b) Evaluating the comfort of thermally dynamic wearable devices. Buildi Environ 167:106443 Wang Z, Warren K, Luo M, He X, Zhang H, Arens E, Chen W, He Y, Hu Y, Jin L, Liu S, Cohen-Tanugi D, Smith MJ (2020b) Evaluating the comfort of thermally dynamic wearable devices. Buildi Environ 167:106443
30.
Zurück zum Zitat Williams BA, Chambers AB (1972) Effect of neck warming and cooling on thermal comfort. In The 2nd conference on portable life support systems, report No. NASA SP-302, Washington DC, 1972, pp 289–294 Williams BA, Chambers AB (1972) Effect of neck warming and cooling on thermal comfort. In The 2nd conference on portable life support systems, report No. NASA SP-302, Washington DC, 1972, pp 289–294
31.
Zurück zum Zitat Zhang H, Arens E, Taub M, Dickerhoff D, Bauman F, Mountain M, Paust W, Fannon D, Zhai YC, Pigman M (2015) Using footwarmers in office for thermal comfort and energy savings. Energy Build 104:233–243CrossRef Zhang H, Arens E, Taub M, Dickerhoff D, Bauman F, Mountain M, Paust W, Fannon D, Zhai YC, Pigman M (2015) Using footwarmers in office for thermal comfort and energy savings. Energy Build 104:233–243CrossRef
32.
Zurück zum Zitat Zhang X, Chao X, Lou L, Fan J, Chen Q, Li B, Ye L, Shou D (2021) Personal thermal management by thermally conductive composites: a review. Compos Commun 23:100595CrossRef Zhang X, Chao X, Lou L, Fan J, Chen Q, Li B, Ye L, Shou D (2021) Personal thermal management by thermally conductive composites: a review. Compos Commun 23:100595CrossRef
33.
Zurück zum Zitat Zhao D, Lu X, Fan T, Wu YS, Lou L, Wang Q, Fan J, Yang R (2018) Personal thermal management using portable thermoelectric for potential building energy saving. Appl Energy 218:282–291CrossRef Zhao D, Lu X, Fan T, Wu YS, Lou L, Wang Q, Fan J, Yang R (2018) Personal thermal management using portable thermoelectric for potential building energy saving. Appl Energy 218:282–291CrossRef
34.
Zurück zum Zitat Cai L, Song AY, Wu P, Hsu PC, Peng Y, Chen J, Liu C, Catrysse PB, Liu Y, Yang A, Zhou C, Zhou C, Fan S, Cui Y (2017) Warming up human body by nanoporous metalized polyethylene textile. Nat Commun 8:496CrossRef Cai L, Song AY, Wu P, Hsu PC, Peng Y, Chen J, Liu C, Catrysse PB, Liu Y, Yang A, Zhou C, Zhou C, Fan S, Cui Y (2017) Warming up human body by nanoporous metalized polyethylene textile. Nat Commun 8:496CrossRef
35.
Zurück zum Zitat Guo Y, Dun C, Xu J, Mu J, Li P, Gu L, Hou C, Hewitt CA, Zhang Q, Li Y, Carroll DL, Wang H (2017) Ultrathin, washable, and large-area graphene papers for personal thermal management. Small 13(44):1702645CrossRef Guo Y, Dun C, Xu J, Mu J, Li P, Gu L, Hou C, Hewitt CA, Zhang Q, Li Y, Carroll DL, Wang H (2017) Ultrathin, washable, and large-area graphene papers for personal thermal management. Small 13(44):1702645CrossRef
36.
Zurück zum Zitat Hsu PC, Liu X, Liu C, Xie X, Lee HR, Welch AJ, Zhao T, Cui Y (2015) Personal thermal management by metallic nanowire-coated textile. Nano Lett 15(1):365–371CrossRef Hsu PC, Liu X, Liu C, Xie X, Lee HR, Welch AJ, Zhao T, Cui Y (2015) Personal thermal management by metallic nanowire-coated textile. Nano Lett 15(1):365–371CrossRef
37.
Zurück zum Zitat Ke Y, Wang F, Xu P, Yang B (2018) On the use of a novel nanoporous polyethylene (nanoPE) passive cooling materials for personal thermal comfort management under uniform indoor environments. Build Environ 145:85–95CrossRef Ke Y, Wang F, Xu P, Yang B (2018) On the use of a novel nanoporous polyethylene (nanoPE) passive cooling materials for personal thermal comfort management under uniform indoor environments. Build Environ 145:85–95CrossRef
38.
Zurück zum Zitat Liu Q, Huang J, Zhang J, Hong Y, Wan Y, Wang Q, Gong M, Wu Z, Guo CF (2018) Thermal, waterproof. Breathable, and antibacterial cloth with a nanoporous structure. ACS Appl Mater Interfaces 10(2):2026–2032 Liu Q, Huang J, Zhang J, Hong Y, Wan Y, Wang Q, Gong M, Wu Z, Guo CF (2018) Thermal, waterproof. Breathable, and antibacterial cloth with a nanoporous structure. ACS Appl Mater Interfaces 10(2):2026–2032
39.
Zurück zum Zitat Peng L, Su B, Yu A, Jiang X (2019) Review of clothing for thermal management with advanced materials. Cellulose 26(10):6415–6448CrossRef Peng L, Su B, Yu A, Jiang X (2019) Review of clothing for thermal management with advanced materials. Cellulose 26(10):6415–6448CrossRef
40.
Zurück zum Zitat Peng Y, Lee HK, Wu DS, Cui Y (2022) Bifunctional asymmetric fabric with tailored thermal conduction and radiation for personal cooling and warming. Engineering 10:167–173CrossRef Peng Y, Lee HK, Wu DS, Cui Y (2022) Bifunctional asymmetric fabric with tailored thermal conduction and radiation for personal cooling and warming. Engineering 10:167–173CrossRef
41.
Zurück zum Zitat Peng Y, Li W, Liu B, Jin W, Schaadt J, Tang J, Zhou G, Wang G, Zhou J, Zhang C, Zhu Y, Huang W, Wu T, Goodson KE, Dames C, Prasher R, Fan S, Cui Y (2021) Integrated cooling (i-Cool) textile of heat conduction and sweat transportation for personal perspiration management. Nat Commun 12:6122CrossRef Peng Y, Li W, Liu B, Jin W, Schaadt J, Tang J, Zhou G, Wang G, Zhou J, Zhang C, Zhu Y, Huang W, Wu T, Goodson KE, Dames C, Prasher R, Fan S, Cui Y (2021) Integrated cooling (i-Cool) textile of heat conduction and sweat transportation for personal perspiration management. Nat Commun 12:6122CrossRef
42.
Zurück zum Zitat Zhu Z, Zhang J, Tong YL, Peng G, Cui T, Wang CF, Chen S, Weitz DA (2019) Reduced graphene oxide membrane induced robust structural colors toward personal thermal management. ACS Photon 6(1):116–122CrossRef Zhu Z, Zhang J, Tong YL, Peng G, Cui T, Wang CF, Chen S, Weitz DA (2019) Reduced graphene oxide membrane induced robust structural colors toward personal thermal management. ACS Photon 6(1):116–122CrossRef
43.
Zurück zum Zitat Nunneley SA (1970) Water cooled garments: a review. Space Life Sci 2(3):335–360 Nunneley SA (1970) Water cooled garments: a review. Space Life Sci 2(3):335–360
44.
Zurück zum Zitat Speckman KL, Allan A, Sawka MN, Young A, Muza SR, Pandolf KB (1988) Perspectives in microclimate cooling involving protective clothing in hot environments. Int J Ind Ergon 3(2):121–147CrossRef Speckman KL, Allan A, Sawka MN, Young A, Muza SR, Pandolf KB (1988) Perspectives in microclimate cooling involving protective clothing in hot environments. Int J Ind Ergon 3(2):121–147CrossRef
45.
Zurück zum Zitat Gao C, Kuklane K, Holmér I (2010) Cooling vest with phase change material packs: the effects of temperature gradient, mass and covering area. Ergonomics 53(5):716–723CrossRef Gao C, Kuklane K, Holmér I (2010) Cooling vest with phase change material packs: the effects of temperature gradient, mass and covering area. Ergonomics 53(5):716–723CrossRef
46.
Zurück zum Zitat Kang Z, Udayraj WX, Wang F (2018) A new hybrid personal cooling system (HPCS) incorporating insulation pads for thermal comfort management: experimental validation and parametric study. Build Environ 145:276–289CrossRef Kang Z, Udayraj WX, Wang F (2018) A new hybrid personal cooling system (HPCS) incorporating insulation pads for thermal comfort management: experimental validation and parametric study. Build Environ 145:276–289CrossRef
47.
Zurück zum Zitat Udayraj WF, Song W, Ke Y, Xu P, Chow CSW, Noor N (2019) Performance enhancement of hybrid personal cooling clothing in a hot environment: PCM cooling energy management with additional insulation. Ergonomics 62(7):928–939CrossRef Udayraj WF, Song W, Ke Y, Xu P, Chow CSW, Noor N (2019) Performance enhancement of hybrid personal cooling clothing in a hot environment: PCM cooling energy management with additional insulation. Ergonomics 62(7):928–939CrossRef
48.
Zurück zum Zitat Wan X, Wang F, (2018) Numerical analysis of cooling effect of hybrid cooling clothing incorporated with phase change material (PCM) packs and air ventilation fans. Int J Heat Mass Transf 126:636-648 Wan X, Wang F, (2018) Numerical analysis of cooling effect of hybrid cooling clothing incorporated with phase change material (PCM) packs and air ventilation fans. Int J Heat Mass Transf 126:636-648
49.
Zurück zum Zitat Wang F, Chow CSW, Zheng Q et al (2019) On the use of personal cooling suits to mitigate heat strain of mascot actors in a hot and humid environment. Energy Build 205:109561CrossRef Wang F, Chow CSW, Zheng Q et al (2019) On the use of personal cooling suits to mitigate heat strain of mascot actors in a hot and humid environment. Energy Build 205:109561CrossRef
50.
Zurück zum Zitat Wang F, Kang Z, Zhou J (2019) Model validation and parametric study on a personal heating clothing system (PHCS) to help occupant attain thermal comfort in unheated buildings. Build Environ 162:106308CrossRef Wang F, Kang Z, Zhou J (2019) Model validation and parametric study on a personal heating clothing system (PHCS) to help occupant attain thermal comfort in unheated buildings. Build Environ 162:106308CrossRef
51.
Zurück zum Zitat Morrissey M, Wang F (2014) Air and water perfusion-based personal cooling systems (PCSs) to protect against heat stress in protective clothing. In: Wang F, Gao C (eds) Protective clothing: managing thermal stress. Woodhead Publishing, Cambridge, UK, pp 296–315CrossRef Morrissey M, Wang F (2014) Air and water perfusion-based personal cooling systems (PCSs) to protect against heat stress in protective clothing. In: Wang F, Gao C (eds) Protective clothing: managing thermal stress. Woodhead Publishing, Cambridge, UK, pp 296–315CrossRef
52.
Zurück zum Zitat Yang J, Wang F, Song G, Li R (2022) Effects of clothing size and air ventilation rate on cooling performance of air ventilation clothing in a warm condition. Int J Occupational Safety Ergon 28:354–363 Yang J, Wang F, Song G, Li R (2022) Effects of clothing size and air ventilation rate on cooling performance of air ventilation clothing in a warm condition. Int J Occupational Safety Ergon 28:354–363
53.
Zurück zum Zitat Zhao M, Gao C, Wang F, Kuklane K, Holmér I, Li J (2013) A study on local cooling of garments with ventilation fans and openings placed at difference torso sites. Int J Ind Ergon 43(3):232–237CrossRef Zhao M, Gao C, Wang F, Kuklane K, Holmér I, Li J (2013) A study on local cooling of garments with ventilation fans and openings placed at difference torso sites. Int J Ind Ergon 43(3):232–237CrossRef
54.
Zurück zum Zitat Zhao M, Kuklane K, Lundgren K, Gao C, Wang F (2015) A ventilation cooling shirt worn during office work in a hot climate: cool or not? Int J Occup Saf Ergon 21(4):457–463CrossRef Zhao M, Kuklane K, Lundgren K, Gao C, Wang F (2015) A ventilation cooling shirt worn during office work in a hot climate: cool or not? Int J Occup Saf Ergon 21(4):457–463CrossRef
55.
Zurück zum Zitat Yang B, Lei TH, Yang P, Liu Km Wang F (2021) On the use of wearable face and neck cooling fans to improve occupant thermal comfort in warm indoor environments. Energies 14:8077CrossRef Yang B, Lei TH, Yang P, Liu Km Wang F (2021) On the use of wearable face and neck cooling fans to improve occupant thermal comfort in warm indoor environments. Energies 14:8077CrossRef
56.
Zurück zum Zitat Hong S, Gu Y, Seo JK, Wang J, Liu P, Meng YS, Xu S, Chen R (2019) Wearable thermoelectrics for personalized thermoregulation. Sci Adv 5(5):eaaw0536 Hong S, Gu Y, Seo JK, Wang J, Liu P, Meng YS, Xu S, Chen R (2019) Wearable thermoelectrics for personalized thermoregulation. Sci Adv 5(5):eaaw0536
57.
Zurück zum Zitat Kishore RA, Nozariasbmarz A, Poudel B, Sanghadasa M, Priya S (2019) Ultra-high performance wearable thermoelectric coolers with less materials. Nat Commun 10:1765CrossRef Kishore RA, Nozariasbmarz A, Poudel B, Sanghadasa M, Priya S (2019) Ultra-high performance wearable thermoelectric coolers with less materials. Nat Commun 10:1765CrossRef
58.
Zurück zum Zitat Lou L, Shou D, Park H, Zhao D, Wu YS, Hui X, Yang R, Kan EC, Fan J (2020) Thermoelectric air conditioning undergarment for personal thermal management and HVAC energy saving. Energy Build 226:110374CrossRef Lou L, Shou D, Park H, Zhao D, Wu YS, Hui X, Yang R, Kan EC, Fan J (2020) Thermoelectric air conditioning undergarment for personal thermal management and HVAC energy saving. Energy Build 226:110374CrossRef
59.
Zurück zum Zitat Li Z, Zhang M, Yuan T, Wang Q, Hu P, Xu Y (2023) New wearable thermoelectric cooling garment for relieving the thermal stress of body in high temperature environments. Energy Build 278:112600CrossRef Li Z, Zhang M, Yuan T, Wang Q, Hu P, Xu Y (2023) New wearable thermoelectric cooling garment for relieving the thermal stress of body in high temperature environments. Energy Build 278:112600CrossRef
60.
Zurück zum Zitat Bell LE (2008) Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321(5895):1457–1461CrossRef Bell LE (2008) Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321(5895):1457–1461CrossRef
61.
Zurück zum Zitat Li L, Liu WD, Liu Q, Chen ZG (2022) Multifunctional wearable thermoelectrics for personal thermal management. Adv Func Mater 32(22):2200548CrossRef Li L, Liu WD, Liu Q, Chen ZG (2022) Multifunctional wearable thermoelectrics for personal thermal management. Adv Func Mater 32(22):2200548CrossRef
62.
Zurück zum Zitat Wang F, Song W (2017) An investigation of thermophysiological responses of human while using four personal cooling strategies during heatwave. J Therm Biol 70:37–44CrossRef Wang F, Song W (2017) An investigation of thermophysiological responses of human while using four personal cooling strategies during heatwave. J Therm Biol 70:37–44CrossRef
63.
Zurück zum Zitat Song Y, Li Y, Yan DX, Lei J, Li ZM (2020) Novel passive cooling composite textile for both outdoor and indoor personal thermal management. Compos A Appl Sci Manuf 130:105738CrossRef Song Y, Li Y, Yan DX, Lei J, Li ZM (2020) Novel passive cooling composite textile for both outdoor and indoor personal thermal management. Compos A Appl Sci Manuf 130:105738CrossRef
64.
Zurück zum Zitat Hu R, Liu Y, Shin S, Huang S, Ren X, Shu W, Cheng J, Tao G, Xu W, Chen R, Luo X (2020) Emerging materials and strategies for personal thermal management. Adv Energy Mater 10(17):1903921CrossRef Hu R, Liu Y, Shin S, Huang S, Ren X, Shu W, Cheng J, Tao G, Xu W, Chen R, Luo X (2020) Emerging materials and strategies for personal thermal management. Adv Energy Mater 10(17):1903921CrossRef
65.
Zurück zum Zitat Wang F, Gao C, Kuklane K, Holmér I (2010) A review of technology of personal heating garments. Int J Occup Saf Ergon 16(3):387–404CrossRef Wang F, Gao C, Kuklane K, Holmér I (2010) A review of technology of personal heating garments. Int J Occup Saf Ergon 16(3):387–404CrossRef
66.
Zurück zum Zitat Xu P, Wang F, Zhao M (2014) Electrically heated clothing (EHC) for protection against cold stress. In: Wang F, Gao C (eds) Protective clothing: managing thermal stress. Woodhead Publishing, Cambridge, UK, pp 281–295CrossRef Xu P, Wang F, Zhao M (2014) Electrically heated clothing (EHC) for protection against cold stress. In: Wang F, Gao C (eds) Protective clothing: managing thermal stress. Woodhead Publishing, Cambridge, UK, pp 281–295CrossRef
67.
Zurück zum Zitat Zhang C, Ren C, Li Y, Song W, Xu P, Wang F (2016) Designing a smart electrically heated sleeping bag to improve wearers’ feet thermal comfort while sleeping in a cold ambient environment. Text Res J 87(10):1251–1260CrossRef Zhang C, Ren C, Li Y, Song W, Xu P, Wang F (2016) Designing a smart electrically heated sleeping bag to improve wearers’ feet thermal comfort while sleeping in a cold ambient environment. Text Res J 87(10):1251–1260CrossRef
68.
Zurück zum Zitat He Y, Li N, Zhou L, Wang K, Zhang W (2017) Thermal comfort and energy consumption in cold environment with retrofitted Huotong (warm-barrel). Build Environ 112:285–295CrossRef He Y, Li N, Zhou L, Wang K, Zhang W (2017) Thermal comfort and energy consumption in cold environment with retrofitted Huotong (warm-barrel). Build Environ 112:285–295CrossRef
69.
Zurück zum Zitat Pasut W, Zhang H, Arens E, Kaam S, Zhai Y (2013) Effect of a heated and cooled office chair on thermal comfort. HVAC&R Res 19(5):574–583 Pasut W, Zhang H, Arens E, Kaam S, Zhai Y (2013) Effect of a heated and cooled office chair on thermal comfort. HVAC&R Res 19(5):574–583
70.
Zurück zum Zitat Peng Y, Cui Y (2020) Advanced textiles for personal thermal management and energy. Joule 4(4):724–742CrossRef Peng Y, Cui Y (2020) Advanced textiles for personal thermal management and energy. Joule 4(4):724–742CrossRef
71.
Zurück zum Zitat Chai J, Kang Z, Yan Y, Lou L, Zhou Y, Fan J (2022) Thermoregulatory clothing with temperature-adaptive multimodal bod heat regulation. Cell Rep Phys Sci 3(7):100958CrossRef Chai J, Kang Z, Yan Y, Lou L, Zhou Y, Fan J (2022) Thermoregulatory clothing with temperature-adaptive multimodal bod heat regulation. Cell Rep Phys Sci 3(7):100958CrossRef
72.
Zurück zum Zitat Kusiak A, Xu G, Zhang Z (2014) Minimization of energy consumption in HVAC systems with data-driven models and an interior-point method. Energy Convers Manage 85:146–153CrossRef Kusiak A, Xu G, Zhang Z (2014) Minimization of energy consumption in HVAC systems with data-driven models and an interior-point method. Energy Convers Manage 85:146–153CrossRef
73.
Zurück zum Zitat Bauman FS, Zhang H, Arens E et al (1993) Localized comfort control with a desktop task conditioning system: laboratory and field measurements. ASHRAE Trans 99(2):733–749 Bauman FS, Zhang H, Arens E et al (1993) Localized comfort control with a desktop task conditioning system: laboratory and field measurements. ASHRAE Trans 99(2):733–749
74.
Zurück zum Zitat Faulkner D, Fisk WJ, Sullivan DP et al (1999) Ventilation efficiencies of desk-mounted task/ambient conditioning systems. Indoor Air 9(4):273–281CrossRef Faulkner D, Fisk WJ, Sullivan DP et al (1999) Ventilation efficiencies of desk-mounted task/ambient conditioning systems. Indoor Air 9(4):273–281CrossRef
75.
Zurück zum Zitat Fountain M, Arens E, de Dear R et al (1994) Locally controlled air movement preferred in warm isothermal environments. ASHRAE Trans 100(2):937–952 Fountain M, Arens E, de Dear R et al (1994) Locally controlled air movement preferred in warm isothermal environments. ASHRAE Trans 100(2):937–952
76.
Zurück zum Zitat Hedge A, Michael A, Parmelee S (1993) Reactions of facilities managers and office workers to underfloor task air ventilation. J Arch Plan Res 10:203–218 Hedge A, Michael A, Parmelee S (1993) Reactions of facilities managers and office workers to underfloor task air ventilation. J Arch Plan Res 10:203–218
77.
Zurück zum Zitat Kroner WM (1994) Environmentally responsive workstations and office-worker productivity. ASHRAE Trans 100(2):750–755 Kroner WM (1994) Environmentally responsive workstations and office-worker productivity. ASHRAE Trans 100(2):750–755
78.
Zurück zum Zitat Gorji M, Mazinani S, Gharehaghaji AA (2022) A review on emerging developments in thermal and moisture management by membrane-based clothing systems towards personal comfort. J Appl Polym Sci 139(27):e52416CrossRef Gorji M, Mazinani S, Gharehaghaji AA (2022) A review on emerging developments in thermal and moisture management by membrane-based clothing systems towards personal comfort. J Appl Polym Sci 139(27):e52416CrossRef
79.
Zurück zum Zitat Sajjad U, Hamid K, ur-Rehman T, Sultan M, Abbas N, Muhammad A, Imran M, Muneeshwaran M, Chang JY, Wang CC (2022) Personal thermal management-a review on strategies, progress, and prospects. Int Commun Heat Mass Transf 130:105739 Sajjad U, Hamid K, ur-Rehman T, Sultan M, Abbas N, Muhammad A, Imran M, Muneeshwaran M, Chang JY, Wang CC (2022) Personal thermal management-a review on strategies, progress, and prospects. Int Commun Heat Mass Transf 130:105739
80.
Zurück zum Zitat Tabor J, Chatterjee GTK (2020) Smart textile-based personal thermal comfort systems: current status and potential solutions. Adv Mater Technol 5(5):1901155CrossRef Tabor J, Chatterjee GTK (2020) Smart textile-based personal thermal comfort systems: current status and potential solutions. Adv Mater Technol 5(5):1901155CrossRef
81.
Zurück zum Zitat Farooq AS, Zhang P (2021) Fundamentals, materials and strategies for personal thermal management by next-generation textiles. Compos A Appl Sci Manuf 142:106249CrossRef Farooq AS, Zhang P (2021) Fundamentals, materials and strategies for personal thermal management by next-generation textiles. Compos A Appl Sci Manuf 142:106249CrossRef
82.
Zurück zum Zitat Sun K, Dong H, Kou Y, Yang H, Liu H, Li Y, Shi Q (2021) Flexible graphene aerogel-based phase change film for solar-thermal energy conversion and storage in personal thermal management applications. Chem Eng J 419:129637CrossRef Sun K, Dong H, Kou Y, Yang H, Liu H, Li Y, Shi Q (2021) Flexible graphene aerogel-based phase change film for solar-thermal energy conversion and storage in personal thermal management applications. Chem Eng J 419:129637CrossRef
Metadaten
Titel
Wearable Personal Thermal Management Systems (PTMS)
verfasst von
Faming Wang
Copyright-Jahr
2023
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-0718-2_12