1.
Ainsworth, B.E., Haskell, W.L., Whitt, M.C., Irwin, M.L., Swartz, A.M., Strath, S.J., O’Brien, W.L., Bassett, D.R., Schmitz, K.H., Emplaincourt, P.O., Jacobs, D.R., Leon, A.S.: Compendium of physical activities: an update of activity codes and MET intensities. Med. Sci. Sports Exerc.
32(9), 498–516 (2000)
CrossRef
2.
Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recogn.
43(10), 3605–3620 (2010)
CrossRefMATH
3.
Bao, L., Intille, S.S.: Activity recognition from user-annotated acceleration data. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 1–17. Springer, Heidelberg (2004)
CrossRef
4.
Berger, K.: The Developing Person: Through the Life Span. Worth Publishers, New York (2008)
5.
Bishop, C.: Pattern Recognition and Machine Learning. Information Science and Statistics. Springer, New York (2006)
MATH
6.
Bleser, G., Steffen, D., Weber, M., Hendeby, G., Stricker, D., Fradet, L., Marin, F., Ville, N., Carré, F.: A personalized exercise trainer for the elderly. J. Ambient Intell. Smart Environ.
5, 547–562 (2013)
7.
Bloit, J., Rodet, X.: Short-time Viterbi for online HMM decoding: evaluation on a real-time phone recognition task. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 2121–2124 (2008)
8.
Costa, C., Tacconi, D., Tomasi, R., Calva, F., Terreri, V.: RIABLO: a game system for supporting orthopedic rehabilitation. In: Conference of the Italian SIGCHI Chapter (CHItaly 2013), September 2013
9.
Dick, F.W.: Sports Training Principles. A. & C. Black, London (1997)
10.
El-Gohary, M., McNames, J.: Shoulder and elbow joint angle tracking with inertial sensors. IEEE Trans. Biomed. Eng.
59(9), 2635–2641 (2012)
CrossRef
11.
Ermes, M., Pärkkä, J., Cluitmans, L.: Advancing from offline to online activity recognition with wearable sensors. In: Proceedings of 30th Annual International IEEE EMBS Conference, Vancouver, Canada, pp. 4451–4454, August 2008
12.
Fisk, A.D., Rogers, W.A., Charness, N., Czaja, S.J., Sharit, J.: Designing for Older Adults: Principles and Creative Human Factors Approaches. CRC Press, Boca Raton (2009)
CrossRef
13.
Haskell, W.L., Lee, I.-M., Pate, R.R., Powell, K.E., Blair, S.N., Franklin, B.A., Macera, C.A., Heath, G.W., Thompson, P.D., Bauman, A.: Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Med. Sci. Sports Exerc.
39(8), 34–1423 (2007)
CrossRef
15.
Huynh, T., Schiele, B.: Analyzing features for activity recognition. In: Proceedings of Joint Conference on Smart Objects and Ambient Intelligence (sOc-EuSAI), pp. 159–163 (2005)
16.
Kirkendall, D.: Exercise prescription for the healthy adult. Prim. Care
11(1), 23–31 (1984)
17.
Ko, M.H., West, G., Venkatesh, S., Kumar, M.: Using dynamic time warping for online temporal fusion in multisensor systems. Inf. Fusion
9(3), 370–388 (2008)
CrossRef
18.
Long, X., Yin, B., Aarts, R.M.: Single-accelerometer based daily physical activity classification. In: Proceedings of 31st Annual International IEEE EMBS Conference, Minneapolis, MN, USA, pp. 6107–6110, September 2009
19.
Maekawa, T., Watanabe, S.: Unsupervised activity recognition with user’s physical characteristics data. In: Proceedings of IEEE 15th International Symposium on Wearable Computers (ISWC), San Francisco, CA, USA, pp. 89–96, June 2011
20.
Mazzeo, R., Tanaka, H.: Exercise prescription for the elderly: current recommendations. Sports Med.
31, 809–818 (2001)
CrossRef
21.
Miezal, M., Bleser, G., Schmitz, N., Stricker, D.: A generic approach to inertial tracking of arbitrary kinematic chains. In: International Conference on Body Area Networks, Bosten, US, September 2013
22.
Minnen, D., Isbell, C., Essa, I., Starner, T.: Discovering multivariate motifs using subsequence density estimation and greedy mixture learning. In: Proceedings of the 22nd National Conference on Artificial Intelligence (AAAI), vol. 1, pp. 615–620 (2007)
23.
Pärkkä, J., Cluitmans, L., Ermes, M.: Personalization algorithm for real-time activity recognition using PDA, wireless motion bands, and binary decision tree. IEEE Trans. Inf. Technol. Biomed.
14(5), 1211–1215 (2010)
CrossRef
24.
Patel, S., Mancinelli, C., Healey, J., Moy, M., Bonato, P.: Using wearable sensors to monitor physical activities of patients with COPD: a comparison of classifier performance. In: Proceedings of 6th International Workshop on Wearable and Implantable Body Sensor Networks (BSN), Berkeley, CA, USA, pp. 234–239, June 2009
25.
Patel, S., Park, H., Bonato, P., Chan, L., Rodgers, M.: A review of wearable sensors and systems with application in rehabilitation. J. Neuroeng. Rehabil.
9(21), 1–17 (2012)
26.
Rabiner, L.: A tutorial on Hidden Markov Models and selected applications in speech recognition. Proc. IEEE
77(2), 257–286 (1989)
CrossRef
28.
Reiss, A., Hendeby, G., Bleser, G., Stricker, D.: Activity recognition using biomechanical model based pose estimation. In: Lukowicz, P., Kunze, K., Kortuem, G. (eds.) EuroSSC 2010. LNCS, vol. 6446, pp. 42–55. Springer, Heidelberg (2010)
CrossRef
29.
Reiss, A., Hendeby, G., Stricker, D.: Confidence-based multiclass AdaBoost for physical activity monitoring. In: Proceedings of IEEE 17th International Symposium on Wearable Computers (ISWC), Zurich, Switzerland, September 2013
30.
Reiss, A., Hendeby, G., Stricker, D.: Towards robust activity recognition for everyday life: methods and evaluation. In: Proceedings of 7th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth), Venice, Italy, May 2013
31.
Reiss, A., Stricker, D.: Introducing a modular activity monitoring system. In: Proceedings of 33rd Annual International IEEE EMBS Conference, Boston, MA, USA, pp. 5621–5624, August–September 2011
32.
Reiss, A., Stricker, D.: Creating and benchmarking a new dataset for physical activity monitoring. In: Proceedings of 5th Workshop on Affect and Behaviour Related Assistance (ABRA), Crete, Greece, June 2012
33.
Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: Proceedings of IEEE 16th International Symposium on Wearable Computers (ISWC), Newcastle, UK, pp. 108–109, June 2012
34.
Reiss, A., Stricker, D.: Personalized mobile physical activity recognition. In: Proceedings of IEEE 17th International Symposium on Wearable Computers (ISWC), Zurich, Switzerland, September 2013
35.
Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall Series in Artificial Intelligence. Prentice Hall, Englewood Cliffs (2010)
36.
Salehi, S., Bleser, G., Schmitz, N., Stricker, D.: A low-cost and light-weight motion tracking suit. In: IEEE International Conference on Ubiquitous Intelligence and Computing, Vietri sul Mare, Italy, December 2013
37.
Sears, A., Jacko, J.A.: The Human-Computer Interaction Handbook: Fundamentals, Evolving Technologies and Emerging Applications. CRC Press, Baco Raton (2007)
CrossRef
38.
Taylor, M., McCormick, D., Impson, R., Shawis, T., Griffin, M.: Activity promoting gaming systems in exercise and rehabilitation. J. Rehabil. Res. Dev.
48, 1171–1186 (2011)
CrossRef
41.
Warburton, D., Nicol, C., Bredin, S.: Health benefits of physical activity: the evidence. Can. Med. Assoc. J.
174(6), 801–809 (2006)
CrossRef
42.
Weber, M., Bleser, G., Hendeby, G., Reiss, A., Stricker, D.: Unsupervised model generation for motion monitoring. In: IEEE International Conference on Systems, Man and Cybernetics - Workshop on Robust Machine Learning Techniques for Human Activity Recognition, Anchorage, pp. 51–54. IEEE (2011)
43.
Weber, M., Liwicki, M., Bleser, G., Stricker, D.: Unsupervised motion pattern learning for motion segmentation. In: International Conference on Pattern Recognition (ICPR), Tsukuba Science City, Japan (2012)
44.
Welch, P.: The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust.
15(2), 70–73 (1967)
CrossRefMathSciNet
45.
Winnett, R.A., Carpinelli, R.N.: Potential health-related benefits of resistance training. Prev. Med.
33, 503–513 (2001)
CrossRef