Skip to main content

2015 | OriginalPaper | Buchkapitel

Energy Harvesting on Human Bodies

verfasst von : Gregor Rebel, Francisco Estevez, Peter Gloesekoetter, Jose M. Castillo-Secilla

Erschienen in: Smart Health

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Human body has an interesting potential to provide energy to micro-electronic systems. There are several techniques that can harvest energy from human body and convert it in energy to be used by electronic systems. Usually this energy cannot be used immediately and needs to be conditioned. This chapter summarizes about current trends of energy storage systems. Techniques for extracting energy from human body, estimations and experimental results based on previous works are discussed. The merge of all the above mentioned concepts, providing a general idea to the reader about the state of the art in energy harvesting from human bodies.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Maxwell, J., Naing, V., Li, Q.: Biomechanical Energy Harvesting. Locomotion Lab, Simon Fraser University, Burnaby (2009) Maxwell, J., Naing, V., Li, Q.: Biomechanical Energy Harvesting. Locomotion Lab, Simon Fraser University, Burnaby (2009)
2.
Zurück zum Zitat Khan, Q.A., Bang, S.J.: Energy Harvesting for Self Powered Wearable Health Monitoring System, pp. 11–15. Oregon State University (2009) Khan, Q.A., Bang, S.J.: Energy Harvesting for Self Powered Wearable Health Monitoring System, pp. 11–15. Oregon State University (2009)
4.
Zurück zum Zitat Kim, H.H., Mano, N., Yhang, Y., Heller, A.: A miniature membrane-less biofuel cell operating under physiological conditions at 0.5 V. J. Electrochem. Soc. 150(2), A209–A213 (2003)CrossRef Kim, H.H., Mano, N., Yhang, Y., Heller, A.: A miniature membrane-less biofuel cell operating under physiological conditions at 0.5 V. J. Electrochem. Soc. 150(2), A209–A213 (2003)CrossRef
7.
Zurück zum Zitat Di Carlo, S.E., Coliins, H.L.: Submitting illuminations for review. Adv. Physiol. Educ. 25(2), 70–71 (2001) Di Carlo, S.E., Coliins, H.L.: Submitting illuminations for review. Adv. Physiol. Educ. 25(2), 70–71 (2001)
8.
Zurück zum Zitat Nature’s Batteries May Have Helped Power Early Lifeforms Nature’s Batteries May Have Helped Power Early Lifeforms
9.
Zurück zum Zitat Morton, D.: Human Locomotion and Body Form. The Williams & Wilkins Co., Baltimore (1952) Morton, D.: Human Locomotion and Body Form. The Williams & Wilkins Co., Baltimore (1952)
10.
Zurück zum Zitat Deterre, M., Lefeuvre, E., Zhu, Y., Woytasik, M., Bosseboeuf, A., Boutaud, B., Dal Molin, R.: Micromachined piezoelectric spirals and ultra-compliant packaging for blood pressure energy harvesters powering medical implants. In: IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS) (2013) Deterre, M., Lefeuvre, E., Zhu, Y., Woytasik, M., Bosseboeuf, A., Boutaud, B., Dal Molin, R.: Micromachined piezoelectric spirals and ultra-compliant packaging for blood pressure energy harvesters powering medical implants. In: IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS) (2013)
11.
Zurück zum Zitat Gilomen, B., Schmidi, P.: Mouvement a quartz dame dont lenergie est fournie par une generatrice, calibre ETA 204.911. In: Congres Europeen de Chronometrie, Geneva (2000) Gilomen, B., Schmidi, P.: Mouvement a quartz dame dont lenergie est fournie par une generatrice, calibre ETA 204.911. In: Congres Europeen de Chronometrie, Geneva (2000)
12.
Zurück zum Zitat Matsuzawa, K., Saka, M.: Seiko human powered quartz watch Space Power Institute, Auburn Univ. Prospector IX: Human-Powered Systems Technologies, pp. 359–384, Auburn (1997) Matsuzawa, K., Saka, M.: Seiko human powered quartz watch Space Power Institute, Auburn Univ. Prospector IX: Human-Powered Systems Technologies, pp. 359–384, Auburn (1997)
13.
Zurück zum Zitat Bueren, T., Lukowicz, P., Troester, G.: Kinetic energy powered computing - an experimental feasibility study. In: ISWC, pp. 22–24 (2003) Bueren, T., Lukowicz, P., Troester, G.: Kinetic energy powered computing - an experimental feasibility study. In: ISWC, pp. 22–24 (2003)
14.
Zurück zum Zitat Paradiso, J., Feldmeier, M.: A compact, wireless, self-powered pushbutton controller. In: Abowd, G.D., Brumitt, B., Shafer, S. (eds.) Ubicomp 2001: Ubiquitous Computing. LNCS, pp. 299–304. Springer, Heidelberg (2001)CrossRef Paradiso, J., Feldmeier, M.: A compact, wireless, self-powered pushbutton controller. In: Abowd, G.D., Brumitt, B., Shafer, S. (eds.) Ubicomp 2001: Ubiquitous Computing. LNCS, pp. 299–304. Springer, Heidelberg (2001)CrossRef
15.
Zurück zum Zitat Romero, E., Warrington, R.O., Neuman, M.R.: Powering Biomedical Devices with Body Motion. In: Conference on Proceedings of IEEE Engineering in Medicine and Biology Society (2010) Romero, E., Warrington, R.O., Neuman, M.R.: Powering Biomedical Devices with Body Motion. In: Conference on Proceedings of IEEE Engineering in Medicine and Biology Society (2010)
16.
Zurück zum Zitat Stevens, J.: Optimized thermal design of small thermoelectric generators. In: Proceedings of the 34th Intersociety Energy (1999) Stevens, J.: Optimized thermal design of small thermoelectric generators. In: Proceedings of the 34th Intersociety Energy (1999)
17.
Zurück zum Zitat Society of Automotive Engineers: Conversion Engineering Conference Vancouver, BC, Canada, Paper 1999–01-2564, pp. 2–5 (1999) Society of Automotive Engineers: Conversion Engineering Conference Vancouver, BC, Canada, Paper 1999–01-2564, pp. 2–5 (1999)
18.
Zurück zum Zitat Wang, Z., Leonov, V., Fiorini, P., Van Hoof, C.: Micromachined Thermopiles For Energy Scavenging On Human Body. Katholieke Universiteit Leuven, Transducers & Eurosensors, Leuven, Belgium (2007) Wang, Z., Leonov, V., Fiorini, P., Van Hoof, C.: Micromachined Thermopiles For Energy Scavenging On Human Body. Katholieke Universiteit Leuven, Transducers & Eurosensors, Leuven, Belgium (2007)
19.
Zurück zum Zitat Pelrine, R., Kornbluh, R., Eckerle, J., Jeuck, P., Oh, S., Pei, Q., Stanford, S.: Dielectric elastomers: Generator mode fundamentals and applications. In: SPIE Electroactive Polymer Actuators and Devices, vol. 4329, pp. 148–156. Newport Beach (2001) Pelrine, R., Kornbluh, R., Eckerle, J., Jeuck, P., Oh, S., Pei, Q., Stanford, S.: Dielectric elastomers: Generator mode fundamentals and applications. In: SPIE Electroactive Polymer Actuators and Devices, vol. 4329, pp. 148–156. Newport Beach (2001)
20.
Zurück zum Zitat Hellbaum, R.F., Bryant, R.G., Fox, R.L.: Thin layer composite unimorph ferroelectric driver and sensor. US Patent, 27 May 1997 Hellbaum, R.F., Bryant, R.G., Fox, R.L.: Thin layer composite unimorph ferroelectric driver and sensor. US Patent, 27 May 1997
21.
Zurück zum Zitat Shenck, N.S., Paradiso, J.A.: Energy scavenging with shoe-mounted piezoelectrics. IEEE Micro 21(3), 30–42 (2001)CrossRef Shenck, N.S., Paradiso, J.A.: Energy scavenging with shoe-mounted piezoelectrics. IEEE Micro 21(3), 30–42 (2001)CrossRef
22.
Zurück zum Zitat Mateu, L., Condrea, C., Lucas, N., Pollack, M., Spies, P.: Human Body Energy Harvesting Thermogenerator for Sensing Applications. In: Proceedings of IEEE International Conference on Sensor Technologies and Applications (2007) Mateu, L., Condrea, C., Lucas, N., Pollack, M., Spies, P.: Human Body Energy Harvesting Thermogenerator for Sensing Applications. In: Proceedings of IEEE International Conference on Sensor Technologies and Applications (2007)
25.
Zurück zum Zitat Olivares, A., Olivares, G., Gloesekoetter, P., Gorriz, J.M., Ramirez, J.: A study of vibration based energy harvesting in activities of daily living. In: Proceedings of International Conference on Pervasive Computing Technologies for Healthcare, pp. 1–4, March 2010 Olivares, A., Olivares, G., Gloesekoetter, P., Gorriz, J.M., Ramirez, J.: A study of vibration based energy harvesting in activities of daily living. In: Proceedings of International Conference on Pervasive Computing Technologies for Healthcare, pp. 1–4, March 2010
26.
Zurück zum Zitat Pollak, M., Mateu, L., Spies, P.: Step-Up DC-DC-Converter with Coupled Inductors for Low Input Voltages Thermogenerators. Power Efficient Systems Department, Fraunhofer IIS, Nuremberg Pollak, M., Mateu, L., Spies, P.: Step-Up DC-DC-Converter with Coupled Inductors for Low Input Voltages Thermogenerators. Power Efficient Systems Department, Fraunhofer IIS, Nuremberg
27.
Zurück zum Zitat Mateu, L., Pollak, M., Spies, P.: Analog Maximum Power Point Circuit Applied to Thermogenerators. Power Efficient Systems Department, Fraunhofer IIS, Nuremberg Mateu, L., Pollak, M., Spies, P.: Analog Maximum Power Point Circuit Applied to Thermogenerators. Power Efficient Systems Department, Fraunhofer IIS, Nuremberg
28.
Zurück zum Zitat Meninger, S., Mur-Miranda, J., Lang, J., Chandrakasan, A., Slocum, A., Schmidt, M., Amirtharajah, R.: Vibration to electric energy conversion. IEEE Trans. Very Large Scale Integr. VLSI Syst. 9, 64–76 (2001)CrossRef Meninger, S., Mur-Miranda, J., Lang, J., Chandrakasan, A., Slocum, A., Schmidt, M., Amirtharajah, R.: Vibration to electric energy conversion. IEEE Trans. Very Large Scale Integr. VLSI Syst. 9, 64–76 (2001)CrossRef
29.
Zurück zum Zitat Ma, W., Wong, M., Ruber, L.: Dynamic simulation of an implemented electrostatic power micro-generator. In: Proceedings of Design, Test, Integration and Packaging of MEMS and MOEMS, pp. 380–385 (2005) Ma, W., Wong, M., Ruber, L.: Dynamic simulation of an implemented electrostatic power micro-generator. In: Proceedings of Design, Test, Integration and Packaging of MEMS and MOEMS, pp. 380–385 (2005)
30.
Zurück zum Zitat Despesse, G., Jager, T., Chaillout, J., Leger, J., Vassilev, A., Basrour, S., Chalot, B.: Fabrication and characterisation of high damping electrostatic micro devices for vibration energy scavenging.In: Proceedings of Design, Test, Integration and Packaging of MEMS and MOEMS, pp. 386–90 (2005) Despesse, G., Jager, T., Chaillout, J., Leger, J., Vassilev, A., Basrour, S., Chalot, B.: Fabrication and characterisation of high damping electrostatic micro devices for vibration energy scavenging.In: Proceedings of Design, Test, Integration and Packaging of MEMS and MOEMS, pp. 386–90 (2005)
31.
Zurück zum Zitat Beeby, S.P., Tudor, M.J., White, N.M.: Energy harvesting vibration sources for microsystems applications. Meas. Sci. Technol. 17, R175–R195 (2006)CrossRef Beeby, S.P., Tudor, M.J., White, N.M.: Energy harvesting vibration sources for microsystems applications. Meas. Sci. Technol. 17, R175–R195 (2006)CrossRef
32.
Zurück zum Zitat Miyazaki, M., Tanaka, H., Ono, G., Nagano, T., Ohkubo, N., Kawahara, T., Yano, K.: Electric-energy generation using variable-capacitive resonator for power-free LSI: efficiency analysis and fundamental experiment ISLPED 03, pp. 193–198 (2003) Miyazaki, M., Tanaka, H., Ono, G., Nagano, T., Ohkubo, N., Kawahara, T., Yano, K.: Electric-energy generation using variable-capacitive resonator for power-free LSI: efficiency analysis and fundamental experiment ISLPED 03, pp. 193–198 (2003)
33.
Zurück zum Zitat Tashiro, R., Kabei, N., Katayama, K., Tsuboi, F., Tsuchiya, K.: Development of an electrostatic generator for a cardiac pacemaker that harnesses the ventricular wall motion. J. Artif. Organs 5, 239–245 (2002)CrossRef Tashiro, R., Kabei, N., Katayama, K., Tsuboi, F., Tsuchiya, K.: Development of an electrostatic generator for a cardiac pacemaker that harnesses the ventricular wall motion. J. Artif. Organs 5, 239–245 (2002)CrossRef
34.
Zurück zum Zitat Tashiro, R., Kabei, N., Katayama, K., Tsuboi, F., Tsuchiya, K.: Development of an electrostatic generator that harnesses the motion of a living body. JSME Int. J. C 43, 916–922 (2000)CrossRef Tashiro, R., Kabei, N., Katayama, K., Tsuboi, F., Tsuchiya, K.: Development of an electrostatic generator that harnesses the motion of a living body. JSME Int. J. C 43, 916–922 (2000)CrossRef
35.
Zurück zum Zitat Roundy, S., Wright, P., Pister, K.: Micro-electrostatic vibration-to-electricity converters. In: Proceedings of IMECE, pp. 1–10 (2002) Roundy, S., Wright, P., Pister, K.: Micro-electrostatic vibration-to-electricity converters. In: Proceedings of IMECE, pp. 1–10 (2002)
36.
Zurück zum Zitat Niu, P., Chapman, P., Riemer, R., et al.: Evaluation of motions and actuation methods for biomechanical energy harvesting. In: 35th Annual IEEE Power Elecrronics Specialisrs Conference. Piscataway: IEEE, pp. 2100–2106 (2004) Niu, P., Chapman, P., Riemer, R., et al.: Evaluation of motions and actuation methods for biomechanical energy harvesting. In: 35th Annual IEEE Power Elecrronics Specialisrs Conference. Piscataway: IEEE, pp. 2100–2106 (2004)
37.
Zurück zum Zitat Kymissis, J., Kendall, C., Paradiso, J., Gershenfeld, N.: Parasitic power harvesting in shoes. In: IEEE International Symposium on Wearable Computers, pp. 132–139, October 1998 Kymissis, J., Kendall, C., Paradiso, J., Gershenfeld, N.: Parasitic power harvesting in shoes. In: IEEE International Symposium on Wearable Computers, pp. 132–139, October 1998
38.
Zurück zum Zitat Kymissis, J., Kendall, C., Paradiso, J., et al.: Parasitic power harvesting in shoes. In: Second IEEE Conference on Wearable Computing, pp. 132–139. IEEE Computer Society, Washington, DC (1998) Kymissis, J., Kendall, C., Paradiso, J., et al.: Parasitic power harvesting in shoes. In: Second IEEE Conference on Wearable Computing, pp. 132–139. IEEE Computer Society, Washington, DC (1998)
39.
Zurück zum Zitat Beeby, S.P., Tudor, M.J., Koukharenko, E., White, N.M., ODonnell, T., Saha, C., Kulkarni, S., Roy, S.: Micromachined silicon generator for harvesting power from vibration. In: Proceedings of Transducers, Seoul, Korea, pp. 780–3 (2005) Beeby, S.P., Tudor, M.J., Koukharenko, E., White, N.M., ODonnell, T., Saha, C., Kulkarni, S., Roy, S.: Micromachined silicon generator for harvesting power from vibration. In: Proceedings of Transducers, Seoul, Korea, pp. 780–3 (2005)
40.
Zurück zum Zitat Poulin, G., Sarraute, E., Costa, F.: Generation of electrical energy for portable devices comparative study of an electromagnetic and a piezoelectric system. Sens. Actuators, A 116(3), 461–471 (2004)CrossRef Poulin, G., Sarraute, E., Costa, F.: Generation of electrical energy for portable devices comparative study of an electromagnetic and a piezoelectric system. Sens. Actuators, A 116(3), 461–471 (2004)CrossRef
41.
Zurück zum Zitat Saha, C.R., ODonnell, T., Wang, N., et al.: Electromagnetic generator for harvesting energy from human motion. Sens. Actuators, A 137(1), 1–7 (2008) Saha, C.R., ODonnell, T., Wang, N., et al.: Electromagnetic generator for harvesting energy from human motion. Sens. Actuators, A 137(1), 1–7 (2008)
42.
Zurück zum Zitat Kulah, H., Najafi, K.: An electromagnetic micro power generator for low-frequency environmental vibrations. In: 17th IEEE International Conference on MEMS. Piscataway: IEEE, pp. 237–240 (2004) Kulah, H., Najafi, K.: An electromagnetic micro power generator for low-frequency environmental vibrations. In: 17th IEEE International Conference on MEMS. Piscataway: IEEE, pp. 237–240 (2004)
43.
Zurück zum Zitat Huang, W.S., Tzeng, K.E., Cheng, M.C., et al.: Design and fabrication of a vibrational micro-generator for wearable MEMS. In: Proceedings of Eurosensors XVII, pp. 695–69. Eurosensors, Barcelona (2003) Huang, W.S., Tzeng, K.E., Cheng, M.C., et al.: Design and fabrication of a vibrational micro-generator for wearable MEMS. In: Proceedings of Eurosensors XVII, pp. 695–69. Eurosensors, Barcelona (2003)
44.
Zurück zum Zitat Amirtharajah, R., Chandrakasan, A.P., Mit, C.: Self-powered signalprocessing using vibration-based powergeneration. IEEE J. Solid-State Circuits 33(5), 687–695 (1998)CrossRef Amirtharajah, R., Chandrakasan, A.P., Mit, C.: Self-powered signalprocessing using vibration-based powergeneration. IEEE J. Solid-State Circuits 33(5), 687–695 (1998)CrossRef
45.
Zurück zum Zitat Finkenzeller, K.: RFID Handbook: Fundamentals and Applications in Contactless Smart Cards and Identification. Wiley, New York (2003)CrossRef Finkenzeller, K.: RFID Handbook: Fundamentals and Applications in Contactless Smart Cards and Identification. Wiley, New York (2003)CrossRef
46.
Zurück zum Zitat Spillman, W.B., Durkee Jr., S., Kuhns, W.W.: Remotely interrogated sensor electronics (RISE) for smart structures applications. In: Proceedings of the SPIE Second European Conference on Smart Structures and Materials, vol. 2361, pp. 282–284. SPIE, Glasgow, October 1994 Spillman, W.B., Durkee Jr., S., Kuhns, W.W.: Remotely interrogated sensor electronics (RISE) for smart structures applications. In: Proceedings of the SPIE Second European Conference on Smart Structures and Materials, vol. 2361, pp. 282–284. SPIE, Glasgow, October 1994
47.
Zurück zum Zitat Paradiso, J.A., Pardue, L.S., Hsiao, K.-Y., Benbasat, A.Y.: Electromagnetic tagging for electronic music interfaces. J. New Music Res. 32(4), 395–409 (2003)CrossRef Paradiso, J.A., Pardue, L.S., Hsiao, K.-Y., Benbasat, A.Y.: Electromagnetic tagging for electronic music interfaces. J. New Music Res. 32(4), 395–409 (2003)CrossRef
48.
Zurück zum Zitat Bartels, O.: Apparatus for wire-free transmission from moving parts. US Patent, 30 April 2002 Bartels, O.: Apparatus for wire-free transmission from moving parts. US Patent, 30 April 2002
49.
Zurück zum Zitat Pohl, A., Steindl, R., Reindl, L.: The intelligent tire: utilizing passive SAW sensors-measurement of tire friction. IEEE Trans. Instrum. Meas. 48(6), 1041–1046 (1999)CrossRef Pohl, A., Steindl, R., Reindl, L.: The intelligent tire: utilizing passive SAW sensors-measurement of tire friction. IEEE Trans. Instrum. Meas. 48(6), 1041–1046 (1999)CrossRef
50.
Zurück zum Zitat Bhuvaneswari, P.T.V., Balakumar, R., Vaidehi, V., Balamuralidhar, P.: Solar energy harvesting. In: First International Conference on Computational Intelligence, Communications Systems and Networks (2009) Bhuvaneswari, P.T.V., Balakumar, R., Vaidehi, V., Balamuralidhar, P.: Solar energy harvesting. In: First International Conference on Computational Intelligence, Communications Systems and Networks (2009)
51.
Zurück zum Zitat Green, M.A., Emery, K., Hishikawa, Y., Warta, W.: Short communication solar cell efficiency tables (version 33). Prog. Photovoltaics Res. Appl. 17, 85–94 (2009)CrossRef Green, M.A., Emery, K., Hishikawa, Y., Warta, W.: Short communication solar cell efficiency tables (version 33). Prog. Photovoltaics Res. Appl. 17, 85–94 (2009)CrossRef
52.
Zurück zum Zitat Penella, M.T., Albesa, J., Gasulla, M.: Powering wireless sensor nodes: primary batteries versus energy harvesting. In: I2MTC 2009 - International Instrumentation and Measurement (2009) Penella, M.T., Albesa, J., Gasulla, M.: Powering wireless sensor nodes: primary batteries versus energy harvesting. In: I2MTC 2009 - International Instrumentation and Measurement (2009)
53.
Zurück zum Zitat Hande, A., Polk, T., Walker, W., Bhatia, D.: Indoor solar energy harvesting for sensor network router nodes. Microprocess. Microsyst. 31, 420–432 (2007)CrossRef Hande, A., Polk, T., Walker, W., Bhatia, D.: Indoor solar energy harvesting for sensor network router nodes. Microprocess. Microsyst. 31, 420–432 (2007)CrossRef
54.
Zurück zum Zitat NASA’s Jet Propulsion Laboratory: Integrated Solar-Energy-Harvesting and - Storage Device. NASA’s Jet Propulsion Laboratory, Pasadena, California NASA’s Jet Propulsion Laboratory: Integrated Solar-Energy-Harvesting and - Storage Device. NASA’s Jet Propulsion Laboratory, Pasadena, California
55.
Zurück zum Zitat Staley, M., Flatau, A.: Characterization of energy harvesting potential of terfenol-d and galfenol. In: Proceedings of SPIE, pp. 630–640, SPIE, Bellingham (2005) Staley, M., Flatau, A.: Characterization of energy harvesting potential of terfenol-d and galfenol. In: Proceedings of SPIE, pp. 630–640, SPIE, Bellingham (2005)
56.
Zurück zum Zitat Wang, L., Yuan, F.G.: Energy harvesting by magnetostrictive material (msm) for powering. Wireless sensors in SHM. In: 2007 SPIE/ ASME Best Student Paper Presentation Contest SPIE, p. 652941, SPIE, Bellingham (2007) Wang, L., Yuan, F.G.: Energy harvesting by magnetostrictive material (msm) for powering. Wireless sensors in SHM. In: 2007 SPIE/ ASME Best Student Paper Presentation Contest SPIE, p. 652941, SPIE, Bellingham (2007)
57.
Zurück zum Zitat Dunn-Rankin, D., Martins Leal, E., Walther, D.C.: Personal power systems. Prog. Energy Combust. Sci. 31, 422–465 (2005)CrossRef Dunn-Rankin, D., Martins Leal, E., Walther, D.C.: Personal power systems. Prog. Energy Combust. Sci. 31, 422–465 (2005)CrossRef
58.
Zurück zum Zitat Ragone, D.: Review of battery systems for electrically powered vehicles. Mid-Year meeting of the Society of automotive engineers, pp. 20–24, Detroit, MI, May 1968 Ragone, D.: Review of battery systems for electrically powered vehicles. Mid-Year meeting of the Society of automotive engineers, pp. 20–24, Detroit, MI, May 1968
59.
Zurück zum Zitat Dembowski, K.: Energy Harvesting fr die Mikroelektronik, pp. 41–46. VDE Verlag Gmbh, Berlin (2011). cap. 2 Dembowski, K.: Energy Harvesting fr die Mikroelektronik, pp. 41–46. VDE Verlag Gmbh, Berlin (2011). cap. 2
60.
Zurück zum Zitat Hoffmann, F., Loechte, A., Rebel, G., Krimphove, C., Gloesekoetter, P.: Degradation aware energy storage using hybrid capacitors. In: 2nd IEEE ENERGYCON (2012) Hoffmann, F., Loechte, A., Rebel, G., Krimphove, C., Gloesekoetter, P.: Degradation aware energy storage using hybrid capacitors. In: 2nd IEEE ENERGYCON (2012)
61.
Zurück zum Zitat Chang, T., Wang, X., Evans, D.A., Roberson, S.L., Zheng, J.P.: Characterization of tantalum oxide-ruthenium oxide hybrid capacitors. IEEE Trans. Ind. Electron. 51(6), 1313–1317 (2004)CrossRef Chang, T., Wang, X., Evans, D.A., Roberson, S.L., Zheng, J.P.: Characterization of tantalum oxide-ruthenium oxide hybrid capacitors. IEEE Trans. Ind. Electron. 51(6), 1313–1317 (2004)CrossRef
62.
Zurück zum Zitat Brown, J.T., Klein, M.G.: Design Factors for a Super High Energy Density Ni-MH Battery for Military Uses. Electro Energy Inc., Danbury (1997) Brown, J.T., Klein, M.G.: Design Factors for a Super High Energy Density Ni-MH Battery for Military Uses. Electro Energy Inc., Danbury (1997)
63.
Zurück zum Zitat Dingrando, L., et al.: Chemistry: Matter and Change (Chapter 21). Glencoe/McGraw-Hill, New York (2007). ISBN 978-0-07-877237-5 Dingrando, L., et al.: Chemistry: Matter and Change (Chapter 21). Glencoe/McGraw-Hill, New York (2007). ISBN 978-0-07-877237-5
65.
Zurück zum Zitat Hoffmann, F.: Degradation aware energy storage using hybrid capacitors. In: 2nd IEEE ENERGYCON Conference & Exhibition, 9–12 September 2012, Florence, Italy (2012) Hoffmann, F.: Degradation aware energy storage using hybrid capacitors. In: 2nd IEEE ENERGYCON Conference & Exhibition, 9–12 September 2012, Florence, Italy (2012)
67.
Zurück zum Zitat Beeby, S.: Energy Harvesting for Autonomous Systems. Artech House Publishers, Norwood (2010). ISBN-13: 978-1-59693-718-5 Beeby, S.: Energy Harvesting for Autonomous Systems. Artech House Publishers, Norwood (2010). ISBN-13: 978-1-59693-718-5
70.
Zurück zum Zitat Gholam-Abbas, N.: Lithium Batteries, Science and Technology. Springer, New York (2009). ISBN: 978-1-4020-7628-2 Gholam-Abbas, N.: Lithium Batteries, Science and Technology. Springer, New York (2009). ISBN: 978-1-4020-7628-2
74.
Zurück zum Zitat Ottman, G.K., Hofinann, H.F., Lesieutre, G.A.: Optimized piezoelectric energy harvesting circuit using step-down converter in discontinuous conduction mode. IEEE Trans. Power Electron. 18, 696–703 (2003)CrossRef Ottman, G.K., Hofinann, H.F., Lesieutre, G.A.: Optimized piezoelectric energy harvesting circuit using step-down converter in discontinuous conduction mode. IEEE Trans. Power Electron. 18, 696–703 (2003)CrossRef
75.
Zurück zum Zitat Colomer-Farrarons, J., Miribel, P.: A CMOS Self-Powered Front-End Architecture for Subcutaneous Event-Detector Devices. Springer, Heidelberg (2011). ISBN 978-94-007-0686-6CrossRef Colomer-Farrarons, J., Miribel, P.: A CMOS Self-Powered Front-End Architecture for Subcutaneous Event-Detector Devices. Springer, Heidelberg (2011). ISBN 978-94-007-0686-6CrossRef
76.
Zurück zum Zitat Kamierski, T.J., Beeby, S.: Energy Harvesting Systems. Springer, New York (2011). ISBN 978-1-4419-7566-9CrossRef Kamierski, T.J., Beeby, S.: Energy Harvesting Systems. Springer, New York (2011). ISBN 978-1-4419-7566-9CrossRef
77.
Zurück zum Zitat Du, R., Xiu, L.: The Mechanics of Mechanical Watches and Clocks. Springer, Berlin (2013). ISBN 978-3-642-29308-5CrossRefMATH Du, R., Xiu, L.: The Mechanics of Mechanical Watches and Clocks. Springer, Berlin (2013). ISBN 978-3-642-29308-5CrossRefMATH
78.
Zurück zum Zitat Bonfiglio, A., De Rossi, D.: Wearable Monitoring Systems. Springer, New York (2011). ISBN 978-1-4419-7384-9CrossRef Bonfiglio, A., De Rossi, D.: Wearable Monitoring Systems. Springer, New York (2011). ISBN 978-1-4419-7384-9CrossRef
79.
Zurück zum Zitat Zhang, Y.T.: Wearable Medical Sensors and Systems. Springer, New York (2014). ISBN 978-3-319-01005-2 Zhang, Y.T.: Wearable Medical Sensors and Systems. Springer, New York (2014). ISBN 978-3-319-01005-2
80.
Zurück zum Zitat Lay-Ekuakille, A.: Wearable and Autonomous Biomedical Devices and Systems for Smart Environment. Springer, Heidelberg (2011). ISBN 978-3-642-15687-8 Lay-Ekuakille, A.: Wearable and Autonomous Biomedical Devices and Systems for Smart Environment. Springer, Heidelberg (2011). ISBN 978-3-642-15687-8
81.
Zurück zum Zitat Marrn, P.J., Minder, D., Karnouskos, S.: The Emerging Domain of Cooperating Objects. Springer, Heidelberg (2012). ISBN 978-3-642-28469-4CrossRef Marrn, P.J., Minder, D., Karnouskos, S.: The Emerging Domain of Cooperating Objects. Springer, Heidelberg (2012). ISBN 978-3-642-28469-4CrossRef
82.
Zurück zum Zitat Songjun, L., Jagdish, S., He, L., Ipsita, A.B.: Biosensor Nanomaterials. Wiley-VCH, Weinheim (2011). ISBN: 978-3-527-63517-7 Songjun, L., Jagdish, S., He, L., Ipsita, A.B.: Biosensor Nanomaterials. Wiley-VCH, Weinheim (2011). ISBN: 978-3-527-63517-7
83.
Zurück zum Zitat Bhaskaran, M., Sriram, S., Iniewski, K.: Energy Harvesting with Functional Materials and Microsystems. CRC Press, Nottingham (2013). ISBN 978-1-466-58723-6 Bhaskaran, M., Sriram, S., Iniewski, K.: Energy Harvesting with Functional Materials and Microsystems. CRC Press, Nottingham (2013). ISBN 978-1-466-58723-6
Metadaten
Titel
Energy Harvesting on Human Bodies
verfasst von
Gregor Rebel
Francisco Estevez
Peter Gloesekoetter
Jose M. Castillo-Secilla
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-16226-3_6