Skip to main content

2021 | OriginalPaper | Buchkapitel

Personalized Retrogress-Resilient Framework for Real-World Medical Federated Learning

verfasst von : Zhen Chen, Meilu Zhu, Chen Yang, Yixuan Yuan

Erschienen in: Medical Image Computing and Computer Assisted Intervention – MICCAI 2021

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nowadays, deep learning methods with large-scale datasets can produce clinically useful models for computer-aided diagnosis. However, the privacy and ethical concerns are increasingly critical, which make it difficult to collect large quantities of data from multiple institutions. Federated Learning (FL) provides a promising decentralized solution to train model collaboratively by exchanging client models instead of private data. However, the server aggregation of existing FL methods is observed to degrade the model performance in real-world medical FL setting, which is termed as retrogress. To address this problem, we propose a personalized retrogress-resilient framework to produce a superior personalized model for each client. Specifically, we devise a Progressive Fourier Aggregation (PFA) at the server to achieve more stable and effective global knowledge gathering by integrating client models from low-frequency to high-frequency gradually. Moreover, with an introduced deputy model to receive the aggregated server model, we design a Deputy-Enhanced Transfer (DET) strategy at the client and conduct three steps of Recover-Exchange-Sublimate to ameliorate the personalized local model by transferring the global knowledge smoothly. Extensive experiments on real-world dermoscopic FL dataset prove that our personalized retrogress-resilient framework outperforms state-of-the-art FL methods, as well as the generalization on an out-of-distribution cohort. The code and dataset are available at https://​github.​com/​CityU-AIM-Group/​PRR-FL.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
3.
Zurück zum Zitat Codella, N.C., et al.: Skin lesion analysis toward melanoma detection: a challenge at the 2017 international symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC). In: ISBI 2018, pp. 168–172. IEEE (2018) Codella, N.C., et al.: Skin lesion analysis toward melanoma detection: a challenge at the 2017 international symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC). In: ISBI 2018, pp. 168–172. IEEE (2018)
4.
Zurück zum Zitat Dou, Q., et al.: Federated deep learning for detecting COVID-19 lung abnormalities in CT: a privacy-preserving multinational validation study. NPJ Digit. Med. 4(1), 1–11 (2021)CrossRef Dou, Q., et al.: Federated deep learning for detecting COVID-19 lung abnormalities in CT: a privacy-preserving multinational validation study. NPJ Digit. Med. 4(1), 1–11 (2021)CrossRef
5.
Zurück zum Zitat Esteva, A., et al.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639), 115–118 (2017)CrossRef Esteva, A., et al.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639), 115–118 (2017)CrossRef
6.
Zurück zum Zitat Esteva, A., et al.: A guide to deep learning in healthcare. Nat. Med. 25(1), 24–29 (2019)CrossRef Esteva, A., et al.: A guide to deep learning in healthcare. Nat. Med. 25(1), 24–29 (2019)CrossRef
7.
Zurück zum Zitat Frigo, M., Johnson, S.G.: FFTW: an adaptive software architecture for the FFT. In: ICASSP, vol. 3, pp. 1381–1384. IEEE (1998) Frigo, M., Johnson, S.G.: FFTW: an adaptive software architecture for the FFT. In: ICASSP, vol. 3, pp. 1381–1384. IEEE (1998)
8.
Zurück zum Zitat Li, T., Sahu, A.K., Talwalkar, A., Smith, V.: Federated learning: challenges, methods, and future directions. IEEE Signal Process. Mag. 37(3), 50–60 (2020)CrossRef Li, T., Sahu, A.K., Talwalkar, A., Smith, V.: Federated learning: challenges, methods, and future directions. IEEE Signal Process. Mag. 37(3), 50–60 (2020)CrossRef
9.
Zurück zum Zitat Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Federated optimization in heterogeneous networks. In: Proceedings of Machine Learning and Systems, vol. 2, pp. 429–450 (2020) Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Federated optimization in heterogeneous networks. In: Proceedings of Machine Learning and Systems, vol. 2, pp. 429–450 (2020)
10.
Zurück zum Zitat Li, X., Jiang, M., Zhang, X., Kamp, M., Dou, Q.: Fedbn: federated learning on Non-IID features via local batch normalization. In: ICLR (2021) Li, X., Jiang, M., Zhang, X., Kamp, M., Dou, Q.: Fedbn: federated learning on Non-IID features via local batch normalization. In: ICLR (2021)
11.
Zurück zum Zitat Liu, Z., Xu, J., Peng, X., Xiong, R.: Frequency-domain dynamic pruning for convolutional neural networks. In: NeurIPS, pp. 1051–1061 (2018) Liu, Z., Xu, J., Peng, X., Xiong, R.: Frequency-domain dynamic pruning for convolutional neural networks. In: NeurIPS, pp. 1051–1061 (2018)
13.
Zurück zum Zitat Lotter, W., et al.: Robust breast cancer detection in mammography and digital breast tomosynthesis using an annotation-efficient deep learning approach. Nat. Med. 27, 1–6 (2021)CrossRef Lotter, W., et al.: Robust breast cancer detection in mammography and digital breast tomosynthesis using an annotation-efficient deep learning approach. Nat. Med. 27, 1–6 (2021)CrossRef
14.
Zurück zum Zitat McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017) McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)
15.
16.
Zurück zum Zitat Rahaman, N., et al.: On the spectral bias of deep neural networks. In: ICML (2019) Rahaman, N., et al.: On the spectral bias of deep neural networks. In: ICML (2019)
17.
Zurück zum Zitat Rieke, N., et al.: The future of digital health with federated learning. NPJ Digit. Med. 3(1), 1–7 (2020)CrossRef Rieke, N., et al.: The future of digital health with federated learning. NPJ Digit. Med. 3(1), 1–7 (2020)CrossRef
20.
Zurück zum Zitat Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015) Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)
21.
Zurück zum Zitat Tschandl, P., Rosendahl, C., Kittler, H.: The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data 5(1), 1–9 (2018)CrossRef Tschandl, P., Rosendahl, C., Kittler, H.: The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data 5(1), 1–9 (2018)CrossRef
22.
Zurück zum Zitat Ulyanov, D., Vedaldi, A., Lempitsky, V.: Deep image prior. In: CVPR, pp. 9446–9454 (2018) Ulyanov, D., Vedaldi, A., Lempitsky, V.: Deep image prior. In: CVPR, pp. 9446–9454 (2018)
23.
Zurück zum Zitat Wang, H., Yurochkin, M., Sun, Y., Papailiopoulos, D., Khazaeni, Y.: Federated learning with matched averaging. In: ICLR (2020) Wang, H., Yurochkin, M., Sun, Y., Papailiopoulos, D., Khazaeni, Y.: Federated learning with matched averaging. In: ICLR (2020)
26.
Zurück zum Zitat Zhang, Y., Xiang, T., Hospedales, T.M., Lu, H.: Deep mutual learning. In: CVPR, pp. 4320–4328 (2018) Zhang, Y., Xiang, T., Hospedales, T.M., Lu, H.: Deep mutual learning. In: CVPR, pp. 4320–4328 (2018)
Metadaten
Titel
Personalized Retrogress-Resilient Framework for Real-World Medical Federated Learning
verfasst von
Zhen Chen
Meilu Zhu
Chen Yang
Yixuan Yuan
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-87199-4_33