Skip to main content
Erschienen in: Journal of Materials Science 8/2019

07.01.2019 | Ceramics

Phase development of silicon oxycarbide nanocomposites during flash pyrolysis

verfasst von: Lixia Wang, Kathy Lu

Erschienen in: Journal of Materials Science | Ausgabe 8/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This work is focused on phase development of silicon oxycarbide (SiOC) nanocomposites during flash pyrolysis. Three important variables evaluated are applied electric field, current limit, and pyrolysis temperature. They significantly facilitate the microstructure evolution of SiOC and cause the formation of more ordered carbon and SiC phases at > 640 °C lower temperature than the typical pyrolysis process. With the increase in the applied electric field, pyrolysis temperature, and current density, the mass loss is higher, the SiC formation and carbon precipitation are more extensive, and the carbon phase is more ordered. The resulting SiOC samples are stable up to 742 °C in air. The fundamental cause is due to the drastically accelerated nucleation rate for both the C and SiC phases from the applied electrical field, through the mechanisms of Joule heating and electromigration. This work provides an accelerated route to synthesize high-temperature SiOC nanocomposites.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Li J, Lu K (2015) Highly porous SiOC bulk ceramics with water vapor assisted pyrolysis. J Am Ceram Soc 98(8):2357–2365CrossRef Li J, Lu K (2015) Highly porous SiOC bulk ceramics with water vapor assisted pyrolysis. J Am Ceram Soc 98(8):2357–2365CrossRef
2.
Zurück zum Zitat Soraru GD, Dallapiccola E, Andrea GD (1996) mechanical characterization of sol–gel-derived silicon oxycarbide glasses. J Am Ceram Soc 79(8):2074–2080CrossRef Soraru GD, Dallapiccola E, Andrea GD (1996) mechanical characterization of sol–gel-derived silicon oxycarbide glasses. J Am Ceram Soc 79(8):2074–2080CrossRef
3.
Zurück zum Zitat Esfehanian M, Oberacker R, Fett T, Hoffmann MJ (2008) Development of dense filler-free polymer-derived SiOC ceramics by field-assisted sintering. J Am Ceram Soc 91(11):3803–3805CrossRef Esfehanian M, Oberacker R, Fett T, Hoffmann MJ (2008) Development of dense filler-free polymer-derived SiOC ceramics by field-assisted sintering. J Am Ceram Soc 91(11):3803–3805CrossRef
4.
Zurück zum Zitat Clark MD, Walker LS, Hadjiev VG, Khabashesku V, Corral EL, Krishnamoorti R (2011) Fast sol–gel preparation of silicon carbide–silicon oxycarbide nanocomposites. J Am Ceram Soc 94(12):4444–4452CrossRef Clark MD, Walker LS, Hadjiev VG, Khabashesku V, Corral EL, Krishnamoorti R (2011) Fast sol–gel preparation of silicon carbide–silicon oxycarbide nanocomposites. J Am Ceram Soc 94(12):4444–4452CrossRef
5.
Zurück zum Zitat Du B, Hong CQ, Zhang XH, Wang JZ, Qu Q (2018) Preparation and mechanical behaviors of SiOC-modified carbon-bonded carbon fiber composite with in situ growth of three-dimensional SiC nanowires. J Eur Ceram Soc 38(5):2272–2278CrossRef Du B, Hong CQ, Zhang XH, Wang JZ, Qu Q (2018) Preparation and mechanical behaviors of SiOC-modified carbon-bonded carbon fiber composite with in situ growth of three-dimensional SiC nanowires. J Eur Ceram Soc 38(5):2272–2278CrossRef
6.
Zurück zum Zitat Lu K, Erb D, Liu MY (2016) Thermal stability and electrical conductivity of carbon-enriched silicon oxycarbide. J Mater Chem C 4(9):1829–1837CrossRef Lu K, Erb D, Liu MY (2016) Thermal stability and electrical conductivity of carbon-enriched silicon oxycarbide. J Mater Chem C 4(9):1829–1837CrossRef
7.
Zurück zum Zitat Colombo P, Mera G, Riedel R, Soraru GD (2010) Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics. J Am Ceram Soc 93(7):1805–1837 Colombo P, Mera G, Riedel R, Soraru GD (2010) Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics. J Am Ceram Soc 93(7):1805–1837
8.
Zurück zum Zitat Zhu SM, Ding SQ, Xi HA, Wang RD (2005) Low-temperature fabrication of porous SiC ceramics by preceramic polymer reaction bonding. Mater Lett 59(5):595–597CrossRef Zhu SM, Ding SQ, Xi HA, Wang RD (2005) Low-temperature fabrication of porous SiC ceramics by preceramic polymer reaction bonding. Mater Lett 59(5):595–597CrossRef
9.
Zurück zum Zitat Kawamura F, Yamane H, Yamada T, Yin S, Sato T (2008) Low-temperature fabrication of porous beta-SiC ceramics in sodium vapor. J Am Ceram Soc 91(1):51–55CrossRef Kawamura F, Yamane H, Yamada T, Yin S, Sato T (2008) Low-temperature fabrication of porous beta-SiC ceramics in sodium vapor. J Am Ceram Soc 91(1):51–55CrossRef
10.
Zurück zum Zitat Kim KJ, Lee S, Lee JH, Roh MH, Lim KY, Kim YW (2009) Structural and optical characteristics of crystalline silicon carbide nanoparticles synthesized by carbothermal reduction. J Am Ceram Soc 92(2):424–428CrossRef Kim KJ, Lee S, Lee JH, Roh MH, Lim KY, Kim YW (2009) Structural and optical characteristics of crystalline silicon carbide nanoparticles synthesized by carbothermal reduction. J Am Ceram Soc 92(2):424–428CrossRef
11.
Zurück zum Zitat Yang K, Yang Y, Lin ZM, Li JT, Du JS (2007) Mechanical-activation-assisted combustion synthesis of SiC powders with polytetrafluoroethylene as promoter. Mater Res Bull 42(9):1625–1632CrossRef Yang K, Yang Y, Lin ZM, Li JT, Du JS (2007) Mechanical-activation-assisted combustion synthesis of SiC powders with polytetrafluoroethylene as promoter. Mater Res Bull 42(9):1625–1632CrossRef
12.
Zurück zum Zitat Brequel H, Parmentier J, Soraru GD, Schiffini L, Enzo S (1999) Study of the phase separation in amorphous silicon oxycarbide glasses under heat treatment. Nanostruct Mater 11(6):721–731CrossRef Brequel H, Parmentier J, Soraru GD, Schiffini L, Enzo S (1999) Study of the phase separation in amorphous silicon oxycarbide glasses under heat treatment. Nanostruct Mater 11(6):721–731CrossRef
13.
Zurück zum Zitat Saha A, Raj R (2007) Crystallization maps for SiCO amorphous ceramics. J Am Ceram Soc 90(2):578–583CrossRef Saha A, Raj R (2007) Crystallization maps for SiCO amorphous ceramics. J Am Ceram Soc 90(2):578–583CrossRef
14.
Zurück zum Zitat Saha A, Raj R, Williamson DL (2006) A model for the nanodomains in polymer-derived SiCO. J Am Ceram Soc 89(7):2188–2195 Saha A, Raj R, Williamson DL (2006) A model for the nanodomains in polymer-derived SiCO. J Am Ceram Soc 89(7):2188–2195
15.
Zurück zum Zitat Brequel H, Parmentier J, Walter S, Badheka R, Trimmel G, Masse S, Latournerie J, Dempsey P, Turquat C, Desmartin-Chomel A, Le Neindre-Prum L, Jayasooriya UA, Hourlier D, Kleebe HJ, Soraru GD, Enzo S, Babonneau F (2004) Systematic structural characterization of the high-temperature behavior of nearly stoichiometric silicon oxycarbide glasses. Chem Mater 16(13):2585–2598CrossRef Brequel H, Parmentier J, Walter S, Badheka R, Trimmel G, Masse S, Latournerie J, Dempsey P, Turquat C, Desmartin-Chomel A, Le Neindre-Prum L, Jayasooriya UA, Hourlier D, Kleebe HJ, Soraru GD, Enzo S, Babonneau F (2004) Systematic structural characterization of the high-temperature behavior of nearly stoichiometric silicon oxycarbide glasses. Chem Mater 16(13):2585–2598CrossRef
16.
Zurück zum Zitat Cologna M, Rashkova B, Raj R (2010) Flash sintering of nanograin zirconia in < 5 s at 850 °C. J Am Ceram Soc 93(11):3556–3559CrossRef Cologna M, Rashkova B, Raj R (2010) Flash sintering of nanograin zirconia in < 5 s at 850 °C. J Am Ceram Soc 93(11):3556–3559CrossRef
17.
Zurück zum Zitat Raj R (2012) Joule heating during flash-sintering. J Eur Ceram Soc 32(10):2293–2301CrossRef Raj R (2012) Joule heating during flash-sintering. J Eur Ceram Soc 32(10):2293–2301CrossRef
18.
Zurück zum Zitat Grasso S, Sakka Y, Rendtorff N, Hu CF, Maizza G, Borodianska H, Vasylkiv O (2011) Modeling of the temperature distribution of flash sintered zirconia. J Ceram Soc Jpn 119(1386):144–146CrossRef Grasso S, Sakka Y, Rendtorff N, Hu CF, Maizza G, Borodianska H, Vasylkiv O (2011) Modeling of the temperature distribution of flash sintered zirconia. J Ceram Soc Jpn 119(1386):144–146CrossRef
19.
Zurück zum Zitat Mazo MA, Palencia C, Nistal A, Rubio F, Rubio J, Oteo JL (2012) Dense bulk silicon oxycarbide glasses obtained by spark plasma sintering. J Eur Ceram Soc 32(12):3369–3378CrossRef Mazo MA, Palencia C, Nistal A, Rubio F, Rubio J, Oteo JL (2012) Dense bulk silicon oxycarbide glasses obtained by spark plasma sintering. J Eur Ceram Soc 32(12):3369–3378CrossRef
20.
Zurück zum Zitat Sujith R, Srinivasan N, Kumar R (2013) Small-scale deformation of pulsed electric current sintered silicon oxycarbide polymer derived ceramics. Adv Eng Mater 15(11):1040–1045CrossRef Sujith R, Srinivasan N, Kumar R (2013) Small-scale deformation of pulsed electric current sintered silicon oxycarbide polymer derived ceramics. Adv Eng Mater 15(11):1040–1045CrossRef
21.
Zurück zum Zitat Wang B, Wolfe DE, Terrones M, Haque MA, Ganguly S, Roy AK (2017) Electro-graphitization and exfoliation of graphene on carbon nanofibers. Carbon 117:201–207CrossRef Wang B, Wolfe DE, Terrones M, Haque MA, Ganguly S, Roy AK (2017) Electro-graphitization and exfoliation of graphene on carbon nanofibers. Carbon 117:201–207CrossRef
22.
Zurück zum Zitat Cologna M, Francis JSC, Raj R (2011) Field assisted and flash sintering of alumina and its relationship to conductivity and MgO-doping. J Eur Ceram Soc 31(15):2827–2837CrossRef Cologna M, Francis JSC, Raj R (2011) Field assisted and flash sintering of alumina and its relationship to conductivity and MgO-doping. J Eur Ceram Soc 31(15):2827–2837CrossRef
23.
Zurück zum Zitat Francis JSC, Raj R (2012) Flash-sinterforging of nanograin zirconia: field assisted sintering and superplasticity. J Am Ceram Soc 95(1):138–146CrossRef Francis JSC, Raj R (2012) Flash-sinterforging of nanograin zirconia: field assisted sintering and superplasticity. J Am Ceram Soc 95(1):138–146CrossRef
24.
Zurück zum Zitat Yoshida H, Sakka Y, Yamamoto T, Lebrun JM, Raj R (2014) Densification behaviour and microstructural development in undoped yttria prepared by flash-sintering. J Eur Ceram Soc 34(4):991–1000CrossRef Yoshida H, Sakka Y, Yamamoto T, Lebrun JM, Raj R (2014) Densification behaviour and microstructural development in undoped yttria prepared by flash-sintering. J Eur Ceram Soc 34(4):991–1000CrossRef
25.
Zurück zum Zitat Torabi M, Sadrnezhaad SK (2011) Electrochemical evaluation of nanocrystalline Zn-doped tin oxides as anodes for lithium ion microbatteries. J Power Sources 196(1):399–404CrossRef Torabi M, Sadrnezhaad SK (2011) Electrochemical evaluation of nanocrystalline Zn-doped tin oxides as anodes for lithium ion microbatteries. J Power Sources 196(1):399–404CrossRef
26.
Zurück zum Zitat Erb D, Lu K (2017) Additive and pyrolysis atmosphere effects on polysiloxane-derived Porous SiOC ceramics. J Eur Ceram Soc 37(15):4547–4557CrossRef Erb D, Lu K (2017) Additive and pyrolysis atmosphere effects on polysiloxane-derived Porous SiOC ceramics. J Eur Ceram Soc 37(15):4547–4557CrossRef
27.
Zurück zum Zitat Lu K (2015) Porous and high surface area silicon oxycarbide-based materials—a review. Mater Sci Eng R 97:23–49CrossRef Lu K (2015) Porous and high surface area silicon oxycarbide-based materials—a review. Mater Sci Eng R 97:23–49CrossRef
29.
Zurück zum Zitat Brewer CM, Bujalski DR, Parent VE, Su K, Zank GA (1999) Insights into the oxidation chemistry of SiOC ceramics derived from silsesquioxanes. J Sol Gel Sci Technol 14(1):49–68CrossRef Brewer CM, Bujalski DR, Parent VE, Su K, Zank GA (1999) Insights into the oxidation chemistry of SiOC ceramics derived from silsesquioxanes. J Sol Gel Sci Technol 14(1):49–68CrossRef
30.
Zurück zum Zitat Naik KS, Sglavo VM, Raj R (2014) Flash sintering as a nucleation phenomenon and a model thereof. J Eur Ceram Soc 34(15):4063–4067CrossRef Naik KS, Sglavo VM, Raj R (2014) Flash sintering as a nucleation phenomenon and a model thereof. J Eur Ceram Soc 34(15):4063–4067CrossRef
31.
Zurück zum Zitat Kleykamp H (1998) Gibbs energy of formation of SiC: a contribution to the thermodynamic stability of the modifications. Ber Bunsen Phys Chem 102(9):1231–1234CrossRef Kleykamp H (1998) Gibbs energy of formation of SiC: a contribution to the thermodynamic stability of the modifications. Ber Bunsen Phys Chem 102(9):1231–1234CrossRef
32.
Zurück zum Zitat Tavakoli AH, Armentrout MM, Narisawa M, Sen S, Navrotsky A (2015) White Si–O–C ceramic: structure and thermodynamic stability. J Am Ceram Soc 98(1):242–246CrossRef Tavakoli AH, Armentrout MM, Narisawa M, Sen S, Navrotsky A (2015) White Si–O–C ceramic: structure and thermodynamic stability. J Am Ceram Soc 98(1):242–246CrossRef
33.
Zurück zum Zitat Pradere C, Batsale JC, Goyhénèche JM, Pailler R, Dilhaire S (2009) Thermal properties of carbon fibers at very high temperature. Carbon 47(3):737–743CrossRef Pradere C, Batsale JC, Goyhénèche JM, Pailler R, Dilhaire S (2009) Thermal properties of carbon fibers at very high temperature. Carbon 47(3):737–743CrossRef
34.
Zurück zum Zitat Sazali NES, Deraman M, Omar R, Othman MAR, Suleman M, Shamsudin SA, Tajuddin NSM, Hanappi MFYM, Hamdan E, Nor NSM, Basri NH (2016) Preparation and structural characterization of turbostratic-carbon/graphene derived from amylose film. AIP Conf Proc 1784(1):040009CrossRef Sazali NES, Deraman M, Omar R, Othman MAR, Suleman M, Shamsudin SA, Tajuddin NSM, Hanappi MFYM, Hamdan E, Nor NSM, Basri NH (2016) Preparation and structural characterization of turbostratic-carbon/graphene derived from amylose film. AIP Conf Proc 1784(1):040009CrossRef
35.
Zurück zum Zitat Kay DAR, Taylor J (1960) Activities of silica in the lime + alumina + silica system. Trans Faraday Soc 56(9):1372–1386CrossRef Kay DAR, Taylor J (1960) Activities of silica in the lime + alumina + silica system. Trans Faraday Soc 56(9):1372–1386CrossRef
36.
Zurück zum Zitat Minnear WP (1982) Interfacial energies in the Si/SiC system and the Si + C reaction. J Am Ceram Soc 65(1):C10–C11CrossRef Minnear WP (1982) Interfacial energies in the Si/SiC system and the Si + C reaction. J Am Ceram Soc 65(1):C10–C11CrossRef
37.
Zurück zum Zitat Kim T, Lee J, Lee K-H (2016) Full graphitization of amorphous carbon by microwave heating. RSC Adv 6(29):24667–24674CrossRef Kim T, Lee J, Lee K-H (2016) Full graphitization of amorphous carbon by microwave heating. RSC Adv 6(29):24667–24674CrossRef
38.
Zurück zum Zitat Fisher JC, Hollomon JH, Turnbull D (1948) Nucleation. J Appl Phys 19(8):775–784CrossRef Fisher JC, Hollomon JH, Turnbull D (1948) Nucleation. J Appl Phys 19(8):775–784CrossRef
39.
Zurück zum Zitat Pan JM, Pan JF, Cheng XN, Yan XH, Lu QB, Zhang CH (2014) Synthesis of hierarchical porous silicon oxycarbide ceramics from preceramic polymer and wood biomass composites. J Eur Ceram Soc 34(2):249–256CrossRef Pan JM, Pan JF, Cheng XN, Yan XH, Lu QB, Zhang CH (2014) Synthesis of hierarchical porous silicon oxycarbide ceramics from preceramic polymer and wood biomass composites. J Eur Ceram Soc 34(2):249–256CrossRef
40.
Zurück zum Zitat Roth F, Waleska P, Hess C, Ionescu E, Nicoloso N (2016) UV Raman spectroscopy of segregated carbon in silicon oxycarbides. J Ceram Soc Jpn 124(10):1042–1045CrossRef Roth F, Waleska P, Hess C, Ionescu E, Nicoloso N (2016) UV Raman spectroscopy of segregated carbon in silicon oxycarbides. J Ceram Soc Jpn 124(10):1042–1045CrossRef
41.
Zurück zum Zitat Larouche N, Stansfield BL (2010) Classifying nanostructured carbons using graphitic indices derived from Raman spectra. Carbon 48(3):620–629CrossRef Larouche N, Stansfield BL (2010) Classifying nanostructured carbons using graphitic indices derived from Raman spectra. Carbon 48(3):620–629CrossRef
42.
Zurück zum Zitat Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61(20):14095–14107CrossRef Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61(20):14095–14107CrossRef
43.
Zurück zum Zitat Cuesta A, Dhamelincourt P, Laureyns J, Martinez-Alonso A, Tascon JMD (1998) Comparative performance of X-ray diffraction and raman microprobe techniques for the study of carbon materials. J Mater Chem 8(12):2875–2879CrossRef Cuesta A, Dhamelincourt P, Laureyns J, Martinez-Alonso A, Tascon JMD (1998) Comparative performance of X-ray diffraction and raman microprobe techniques for the study of carbon materials. J Mater Chem 8(12):2875–2879CrossRef
44.
Zurück zum Zitat Tuinstra F, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53(3):1126–1130CrossRef Tuinstra F, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53(3):1126–1130CrossRef
45.
Zurück zum Zitat Zhang XF, Yan QG, Leng WQ, Li JH, Zhang JL, Cai ZY, Hassan E (2017) Carbon nanostructure of kraft lignin thermally treated at 500 to 1000 °C. Materials 10(8):975CrossRef Zhang XF, Yan QG, Leng WQ, Li JH, Zhang JL, Cai ZY, Hassan E (2017) Carbon nanostructure of kraft lignin thermally treated at 500 to 1000 °C. Materials 10(8):975CrossRef
46.
Zurück zum Zitat Jia X, Hofmann M, Meunier V, Sumpter BG, Campos-Delgado J, Romo-Herrera JM, Son H, Hsieh Y-P, Reina A, Kong J, Terrones M, Dresselhaus MS (2009) Controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons. Science 323(5922):1701–1705CrossRef Jia X, Hofmann M, Meunier V, Sumpter BG, Campos-Delgado J, Romo-Herrera JM, Son H, Hsieh Y-P, Reina A, Kong J, Terrones M, Dresselhaus MS (2009) Controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons. Science 323(5922):1701–1705CrossRef
47.
Zurück zum Zitat Wang BM, Haque MA, Mag-isa AE, Kim JH, Lee HJ (2015) High temperature and current density induced degradation of multi-layer graphene. Appl Phys Lett 107(16):163103CrossRef Wang BM, Haque MA, Mag-isa AE, Kim JH, Lee HJ (2015) High temperature and current density induced degradation of multi-layer graphene. Appl Phys Lett 107(16):163103CrossRef
48.
Zurück zum Zitat Huang YF, Deng ZX, Wang WL, Liang CL, She JC, Deng SZ, Xu NS (2015) Field-induced crystalline-to-amorphous phase transformation on the Si nano-apex and the achieving of highly reliable si nano-cathodes. Sci Rep UK 5:10631CrossRef Huang YF, Deng ZX, Wang WL, Liang CL, She JC, Deng SZ, Xu NS (2015) Field-induced crystalline-to-amorphous phase transformation on the Si nano-apex and the achieving of highly reliable si nano-cathodes. Sci Rep UK 5:10631CrossRef
49.
Zurück zum Zitat de Orio RL, Ceric H, Selberherr S (2010) Physically based models of electromigration: from black’s equation to modern TCAD models. Microelectron Reliab 50(6):775–789CrossRef de Orio RL, Ceric H, Selberherr S (2010) Physically based models of electromigration: from black’s equation to modern TCAD models. Microelectron Reliab 50(6):775–789CrossRef
50.
Zurück zum Zitat Wadey JD, Markevich A, Robertson A, Warner J, Kirkland A, Besley E (2016) Mechanisms of monovacancy diffusion in graphene. Chem Phys Lett 648:161–165CrossRef Wadey JD, Markevich A, Robertson A, Warner J, Kirkland A, Besley E (2016) Mechanisms of monovacancy diffusion in graphene. Chem Phys Lett 648:161–165CrossRef
51.
Zurück zum Zitat Tian WC, Li WH, Yu WB, Liu XH (2017) A review on lattice defects in graphene: types, generation, effects and regulation. Micromachines Basel 8(5):1–15 Tian WC, Li WH, Yu WB, Liu XH (2017) A review on lattice defects in graphene: types, generation, effects and regulation. Micromachines Basel 8(5):1–15
Metadaten
Titel
Phase development of silicon oxycarbide nanocomposites during flash pyrolysis
verfasst von
Lixia Wang
Kathy Lu
Publikationsdatum
07.01.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 8/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03315-z

Weitere Artikel der Ausgabe 8/2019

Journal of Materials Science 8/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.