Skip to main content
Erschienen in: Experiments in Fluids 3/2013

01.03.2013 | Research Article

Phase-locked 3D3C-MRV measurements in a bi-stable fluidic oscillator

verfasst von: Florian Wassermann, Daniel Hecker, Bernd Jung, Michael Markl, Avi Seifert, Sven Grundmann

Erschienen in: Experiments in Fluids | Ausgabe 3/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, the phase-resolved internal flow of a bi-stable fluidic oscillator was measured using phase-locked three-dimensional three-components magnetic resonance velocimetry (3D3C-MRV), also termed as 4D-MRV. A bi-stable fluidic oscillator converts a continuous inlet-mass flow into a jet alternating between two outlet channels and, as a consequence provides an unsteady, periodic flow. This actuator can therefore be used as flow-control actuator. Since data acquisition in a 3D volume takes up to several minutes, only a small portion of the data is acquired in each flow cycle for every time point of the flow cycle. The acquisition of the entire data set is segmented over many cycles of the periodic flow. This procedure allows to measure phase-averaged 3D3C velocity fields with a certain temporal resolution. However, the procedure requires triggering to the periodic nature of the flow. Triggering the MR scanner precisely on each flow cycle is one of the key issues discussed in this manuscript. The 4D-MRV data are compared to data measured using phase-locked laser Doppler anemometry and good agreement between the results is found. The validated 4D-MRV data is analyzed and the fluid-mechanic features and processes inside the fluidic oscillator are investigated and described, providing a detailed description of the internal jet-switching mechanism.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Arwatz G, Fono I, Seifert A (2008) Suction and oscillatory blowing actuator modeling and validation. AIAA J 46(5):1107–1117CrossRef Arwatz G, Fono I, Seifert A (2008) Suction and oscillatory blowing actuator modeling and validation. AIAA J 46(5):1107–1117CrossRef
Zurück zum Zitat Canstein C, Cachot P, Faust A, Stalder AF, Bock J, Frydrychowicz A, Küffer J, Hennig J, Markl M (2008) 3D MR flow analysis in realistic rapid-prototyping model systems of the thoracic aorta: comparison with in vivo data and computational fluid dynamics in identical vessel geometries. Magn Reson Med 59(3):535–546CrossRef Canstein C, Cachot P, Faust A, Stalder AF, Bock J, Frydrychowicz A, Küffer J, Hennig J, Markl M (2008) 3D MR flow analysis in realistic rapid-prototyping model systems of the thoracic aorta: comparison with in vivo data and computational fluid dynamics in identical vessel geometries. Magn Reson Med 59(3):535–546CrossRef
Zurück zum Zitat Cattafesta LN, Sheplak M (2011) Actuators for active flow control. Annu Rev Fluid Mech 43(1):247–272CrossRef Cattafesta LN, Sheplak M (2011) Actuators for active flow control. Annu Rev Fluid Mech 43(1):247–272CrossRef
Zurück zum Zitat Coanda H (1936) Device for deflecting a stream of elastic fluid projected into an elastic fluid. Pat. No. 2052869 Coanda H (1936) Device for deflecting a stream of elastic fluid projected into an elastic fluid. Pat. No. 2052869
Zurück zum Zitat Elkins C, Markl M, Pelc N (2003) 4D magnetic resonance velocimetry for mean velocity measurements in complex turbulent Flows. Exp Fluids 34:494–503 Elkins C, Markl M, Pelc N (2003) 4D magnetic resonance velocimetry for mean velocity measurements in complex turbulent Flows. Exp Fluids 34:494–503
Zurück zum Zitat Gokoglu S, Kuczmarski M, Culley D, Raghu S (2009) Numerical studies of a fluidic diverter for flow control. In: AIAA proceedings, December. American Institute of Aeronautics and Astronautics, 1801 Alexander Bell Dr, Suite 500 Reston VA 20191-4344 USA Gokoglu S, Kuczmarski M, Culley D, Raghu S (2009) Numerical studies of a fluidic diverter for flow control. In: AIAA proceedings, December. American Institute of Aeronautics and Astronautics, 1801 Alexander Bell Dr, Suite 500 Reston VA 20191-4344 USA
Zurück zum Zitat Gregory JW, Sullivan JP, Raghu S (2005) Visualization of jet mixing in a fluidic oscillator. J Vis 8(2):169–176CrossRef Gregory JW, Sullivan JP, Raghu S (2005) Visualization of jet mixing in a fluidic oscillator. J Vis 8(2):169–176CrossRef
Zurück zum Zitat Grundmann S, Wassermann F, Lorentz R, Jung B, Tropea C (2012) Experimental investigation of helical structures in swirling flow. Int J Heat Fluid Flow 37:51–63CrossRef Grundmann S, Wassermann F, Lorentz R, Jung B, Tropea C (2012) Experimental investigation of helical structures in swirling flow. Int J Heat Fluid Flow 37:51–63CrossRef
Zurück zum Zitat Guyot D, Paschereit C, Raghu S. (2009) Active combustion control using a fluidic oscillator for asymmetric fuel flow modulation. Int J Flow Control 1(2):155–166CrossRef Guyot D, Paschereit C, Raghu S. (2009) Active combustion control using a fluidic oscillator for asymmetric fuel flow modulation. Int J Flow Control 1(2):155–166CrossRef
Zurück zum Zitat Haacke M, Brown R, Thompson M, Venkatesan R (1999) Magnetic resonance imaging: physical principles and sequence design. Wiley, New York Haacke M, Brown R, Thompson M, Venkatesan R (1999) Magnetic resonance imaging: physical principles and sequence design. Wiley, New York
Zurück zum Zitat Huang F, Akao J, Vijayakumar S, Duensing GR, Limkeman M (2005) k-t GRAPPA: a k-space implementation for dynamic MRI with high reduction factor. Magn Reson Med 54(5):1172–1184CrossRef Huang F, Akao J, Vijayakumar S, Duensing GR, Limkeman M (2005) k-t GRAPPA: a k-space implementation for dynamic MRI with high reduction factor. Magn Reson Med 54(5):1172–1184CrossRef
Zurück zum Zitat Koso T, Kawaguchi S, Hojo M, Hayami H (2002) Flow mechanism of a self-induced oscillating jet issued from a flip-flop jet nozzle. In: JSME-KSME fluids engineering conference, vol 5, pp 1–6 Koso T, Kawaguchi S, Hojo M, Hayami H (2002) Flow mechanism of a self-induced oscillating jet issued from a flip-flop jet nozzle. In: JSME-KSME fluids engineering conference, vol 5, pp 1–6
Zurück zum Zitat Markl M, Chan FP, Alley MT, Wedding KL, Draney MT, Elkins CJ, Parker DW, Wicker R, Taylor Ca, Herfkens RJ, Pelc NJ (2003) Time-resolved three-dimensional phase-contrast MRI. J Magn Reson Imaging 17(4):499–506CrossRef Markl M, Chan FP, Alley MT, Wedding KL, Draney MT, Elkins CJ, Parker DW, Wicker R, Taylor Ca, Herfkens RJ, Pelc NJ (2003) Time-resolved three-dimensional phase-contrast MRI. J Magn Reson Imaging 17(4):499–506CrossRef
Zurück zum Zitat Nishri B, Wygnanski I. (1998) Effects of periodic excitation on turbulent flow separation from a flap. AIAA J 36(6):547–556CrossRef Nishri B, Wygnanski I. (1998) Effects of periodic excitation on turbulent flow separation from a flap. AIAA J 36(6):547–556CrossRef
Zurück zum Zitat Nitsche W, Mirow P, Szodruch J (1989) Piezo-electric foils as a means of sensing unsteady surface forces. Exp Fluids 7(2):111–118CrossRef Nitsche W, Mirow P, Szodruch J (1989) Piezo-electric foils as a means of sensing unsteady surface forces. Exp Fluids 7(2):111–118CrossRef
Zurück zum Zitat Raman G, Packiarajan S, Papadopoulos G, Weissman C, Raghu S (2005) Jet thrust vectoring using a miniature fluidic oscillator. Aeronaut J 109(1093):129–138 Raman G, Packiarajan S, Papadopoulos G, Weissman C, Raghu S (2005) Jet thrust vectoring using a miniature fluidic oscillator. Aeronaut J 109(1093):129–138
Zurück zum Zitat Raman G, Rice E, Cornelius D (1994) Evaluation of flip-flop jet nozzles for use as practical excitation devices. J Fluids Eng 116(3):508–515CrossRef Raman G, Rice E, Cornelius D (1994) Evaluation of flip-flop jet nozzles for use as practical excitation devices. J Fluids Eng 116(3):508–515CrossRef
Zurück zum Zitat Seele R, Tewes P, Woszidlo R, McVeigh Ma, Lucas NJ, Wygnanski IJ (2009) Discrete sweeping jets as tools for improving the performance of the V-22. J Aircr 46(6):2098–2106CrossRef Seele R, Tewes P, Woszidlo R, McVeigh Ma, Lucas NJ, Wygnanski IJ (2009) Discrete sweeping jets as tools for improving the performance of the V-22. J Aircr 46(6):2098–2106CrossRef
Zurück zum Zitat Seifert A, Bachar T, Koss D, Shepshelovich M, Wygnanski I (1993) Oscillatory blowing: a tool to delay boundary-layer separation. AIAA J 31:2052–2060CrossRef Seifert A, Bachar T, Koss D, Shepshelovich M, Wygnanski I (1993) Oscillatory blowing: a tool to delay boundary-layer separation. AIAA J 31:2052–2060CrossRef
Zurück zum Zitat Seifert A, Stalnov O, Sperber D, Arwatz G (2009) Large trucks drag reduction using active flow control. Lecture notes in Applied and Computational Mechanics. Springer, Berlin, pp 115–131 Seifert A, Stalnov O, Sperber D, Arwatz G (2009) Large trucks drag reduction using active flow control. Lecture notes in Applied and Computational Mechanics. Springer, Berlin, pp 115–131
Zurück zum Zitat Spyropoulos CE (1964) A sonic oscillator. In: Proceedings of the fluid amplification symposium, vol. III. Harry Diamond Laboratories, Washington, DC, pp 27–51 Spyropoulos CE (1964) A sonic oscillator. In: Proceedings of the fluid amplification symposium, vol. III. Harry Diamond Laboratories, Washington, DC, pp 27–51
Zurück zum Zitat Tesar V, Bandalusena HCH (2010) Bistable diverter valve in microfluidics. Exp Fluids 50(5):1225–1233CrossRef Tesar V, Bandalusena HCH (2010) Bistable diverter valve in microfluidics. Exp Fluids 50(5):1225–1233CrossRef
Zurück zum Zitat Tesar V, Hung C, Zimmerman W (2006) No-moving-part hybrid-synthetic jet actuator. Sens Actuators A Phys 125(2):159–169CrossRef Tesar V, Hung C, Zimmerman W (2006) No-moving-part hybrid-synthetic jet actuator. Sens Actuators A Phys 125(2):159–169CrossRef
Zurück zum Zitat Yang JT, Chen CK, Tsai KJ, Lin WZ, Sheen HJ (2007) A novel fluidic oscillator incorporating step-shaped attachment walls. Sens Actuators A Phys 135(2):476–483CrossRef Yang JT, Chen CK, Tsai KJ, Lin WZ, Sheen HJ (2007) A novel fluidic oscillator incorporating step-shaped attachment walls. Sens Actuators A Phys 135(2):476–483CrossRef
Metadaten
Titel
Phase-locked 3D3C-MRV measurements in a bi-stable fluidic oscillator
verfasst von
Florian Wassermann
Daniel Hecker
Bernd Jung
Michael Markl
Avi Seifert
Sven Grundmann
Publikationsdatum
01.03.2013
Verlag
Springer-Verlag
Erschienen in
Experiments in Fluids / Ausgabe 3/2013
Print ISSN: 0723-4864
Elektronische ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-013-1487-5

Weitere Artikel der Ausgabe 3/2013

Experiments in Fluids 3/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.