Skip to main content
Erschienen in: Glass and Ceramics 1-2/2023

30.06.2023

Phase Transformations Under the Action of Femtosecond Pulses in ZnO–MgO–Al2O3–SiO2 Sitalls

verfasst von: V. N. Sigaeva, A. S. Naumov, A. S. Lipat’ev, G. Yu. Shakhgil’dyan, S. V. Lotarev, S. S. Fedotov, I. A. Karateev

Erschienen in: Glass and Ceramics | Ausgabe 1-2/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The influence of femtosecond laser micromachining in thermal and athermal regimes on the structure of a transparent glass-ceramic based on the ZnO–MgO–Al2O3–SiO2 system, which is characterized by heightened mechanical strength and hardness, was studied. Amorphization of nanosized granite ZnAl2O4 crystals, which occurs under the action of laser pulses, is confirmed by means of electron microscopy and electron diffraction. Quantitative phase microscopy was used to assess the change in the refractive index in the tracks written by a laser beam. In an athermal regime, at pulse repetition frequency 10 kHz, the full amorphization of the crystalline phase in the laser processing region in the bulk of the sitall effects an increase in the refractive index by ∆n = 0.0007. The results obtained expand the potential areas of application of transparent sitalls with heightened strength and open up the possibility of forming channel waveguides in their bulk by means of direct laser writing.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat D. Tan, B. Zhang, and J. Qiu, “Ultrafast laser direct writing in glass: thermal accumulation engineering and applications,” Laser Photonics Rev., 15(9), 2000455 (2021).CrossRef D. Tan, B. Zhang, and J. Qiu, “Ultrafast laser direct writing in glass: thermal accumulation engineering and applications,” Laser Photonics Rev., 15(9), 2000455 (2021).CrossRef
2.
Zurück zum Zitat R. Stoian and JP Colombier, “Advances in ultrafast laser structuring of materials at the nanoscale,” Nanophotonics, 9(16), 4665 – 4688 (2020).CrossRef R. Stoian and JP Colombier, “Advances in ultrafast laser structuring of materials at the nanoscale,” Nanophotonics, 9(16), 4665 – 4688 (2020).CrossRef
3.
Zurück zum Zitat B. Zhang, L. Wang, and F. Chen, “Recent advances in femtosecond laser processing of LiNbO3 crystals for photonic applications,” Laser Photonics Rev., 14(8), 1900407 (2020).CrossRef B. Zhang, L. Wang, and F. Chen, “Recent advances in femtosecond laser processing of LiNbO3 crystals for photonic applications,” Laser Photonics Rev., 14(8), 1900407 (2020).CrossRef
4.
Zurück zum Zitat K. L. Wlodarczyk, D. P. Hand, and M. M. Maroto-Valer, “Maskless, rapid manufacturing of glass microfluidic devices using a picosecond pulsed laser,” Sci. Rep., 9(1), 1 – 13 (2019).CrossRef K. L. Wlodarczyk, D. P. Hand, and M. M. Maroto-Valer, “Maskless, rapid manufacturing of glass microfluidic devices using a picosecond pulsed laser,” Sci. Rep., 9(1), 1 – 13 (2019).CrossRef
5.
Zurück zum Zitat A. Wolf, A. Dostovalov, K. Bronnikov, et al., “Arrays of fiber Bragg gratings selectively inscribed in different cores of 7-core spun optical fiber by IR femtosecond laser pulses,” Opt. Express, 27(10), 13978 – 13990 (2019).CrossRef A. Wolf, A. Dostovalov, K. Bronnikov, et al., “Arrays of fiber Bragg gratings selectively inscribed in different cores of 7-core spun optical fiber by IR femtosecond laser pulses,” Opt. Express, 27(10), 13978 – 13990 (2019).CrossRef
6.
Zurück zum Zitat A. Lipatiev, S. Fedotov, S., Lotarev, et al., “Direct laser writing of depressed-cladding waveguides in extremely low expansion lithium aluminosilicate glass-ceramics,” Opt. Laser Technol., 138, 106846 (2021). A. Lipatiev, S. Fedotov, S., Lotarev, et al., “Direct laser writing of depressed-cladding waveguides in extremely low expansion lithium aluminosilicate glass-ceramics,” Opt. Laser Technol., 138, 106846 (2021).
7.
Zurück zum Zitat J. Guan, “Femtosecond-laser-written integrated photonics in bulk glass-ceramics Zerodur,” Ceram., 47(7), 10189 – 10192 (2021). J. Guan, “Femtosecond-laser-written integrated photonics in bulk glass-ceramics Zerodur,” Ceram., 47(7), 10189 – 10192 (2021).
8.
Zurück zum Zitat P. H. D. Ferreira, D. C. N. Fabris, M. V. Boas, et al., “Transparent glass-ceramic waveguides made by femtosecond laser writing,” Opt. Laser Technol., 136, 106742 (2021).CrossRef P. H. D. Ferreira, D. C. N. Fabris, M. V. Boas, et al., “Transparent glass-ceramic waveguides made by femtosecond laser writing,” Opt. Laser Technol., 136, 106742 (2021).CrossRef
9.
Zurück zum Zitat V. R. Bhardwaj, E. Simova, P. B. Corkum, et al., “Femtosecond laser-induced refractive index modification in multicomponent glasses,” J. Appl. Phys., 97(8), 083102 (2005).CrossRef V. R. Bhardwaj, E. Simova, P. B. Corkum, et al., “Femtosecond laser-induced refractive index modification in multicomponent glasses,” J. Appl. Phys., 97(8), 083102 (2005).CrossRef
10.
Zurück zum Zitat W. Holland and G. H. Beall, Glass-Ceramic Technology, John Wiley & Sons, New Jersey (2019).CrossRef W. Holland and G. H. Beall, Glass-Ceramic Technology, John Wiley & Sons, New Jersey (2019).CrossRef
11.
Zurück zum Zitat E. Zanotto, “A bright future for glass-ceramics,” Am. Ceram. Soc. Bull., 89, 19 – 27 (2010.). E. Zanotto, “A bright future for glass-ceramics,” Am. Ceram. Soc. Bull., 89, 19 – 27 (2010.).
12.
Zurück zum Zitat B. Mirhadi, B. Mehdikhani, and N. Askari, “Effect of zinc oxide on microhardness and sintering behavior of MgO–Al2O3–SiO2 glass-ceramic system,” Solid State Sci., 14(4), 430 – 434 (2012).CrossRef B. Mirhadi, B. Mehdikhani, and N. Askari, “Effect of zinc oxide on microhardness and sintering behavior of MgO–Al2O3–SiO2 glass-ceramic system,” Solid State Sci., 14(4), 430 – 434 (2012).CrossRef
13.
Zurück zum Zitat O. Dymshits, M. Shepilov, and A. Zhilin, “Transparent glass-ceramics for optical applications,” MRS Bull., 42, 200 – 205 (2017).CrossRef O. Dymshits, M. Shepilov, and A. Zhilin, “Transparent glass-ceramics for optical applications,” MRS Bull., 42, 200 – 205 (2017).CrossRef
14.
Zurück zum Zitat G. H. Chen and X. Y. Liu, “Sintering, crystallization and properties of MgO–Al2O3–SiO2 system glass-ceramics containing ZnO,” J. Alloys Compd., 431(1 – 2), 282–286 (2007).CrossRef G. H. Chen and X. Y. Liu, “Sintering, crystallization and properties of MgO–Al2O3–SiO2 system glass-ceramics containing ZnO,” J. Alloys Compd., 431(1 – 2), 282–286 (2007).CrossRef
15.
Zurück zum Zitat S. Seidel, M. Dittmer,W. Höland, et al., “High-strength, translucent glass-ceramics in the system MgO–ZnO–Al2O3–SiO2–ZrO2,” J. Eur. Ceram. Soc., 37(7), 2685 – 2694 (2017).CrossRef S. Seidel, M. Dittmer,W. Höland, et al., “High-strength, translucent glass-ceramics in the system MgO–ZnO–Al2O3–SiO2–ZrO2,” J. Eur. Ceram. Soc., 37(7), 2685 – 2694 (2017).CrossRef
16.
Zurück zum Zitat S. V. Lotarev, A. S. Lipatiev, T. O. Lipateva, et al., “Ultrafast-laser vitrification of laser-written crystalline tracks in oxide glasses,” J. Non-Cryst. Solids, 516. 1 – 8 (2019).CrossRef S. V. Lotarev, A. S. Lipatiev, T. O. Lipateva, et al., “Ultrafast-laser vitrification of laser-written crystalline tracks in oxide glasses,” J. Non-Cryst. Solids, 516. 1 – 8 (2019).CrossRef
17.
Zurück zum Zitat G. Yu. Shakhgildyan, V. I. Savinkov, and A. Yu. Shakhgildyan, “Effect of sitallization conditions on the hardness of transparent sitalls in the system ZnO–MgO–Al2O3–SiO2,” Glass Ceram., 77(11), 426 – 428 (2021).CrossRef G. Yu. Shakhgildyan, V. I. Savinkov, and A. Yu. Shakhgildyan, “Effect of sitallization conditions on the hardness of transparent sitalls in the system ZnO–MgO–Al2O3–SiO2,” Glass Ceram., 77(11), 426 – 428 (2021).CrossRef
18.
Zurück zum Zitat V. N. Sigaev, A. S. Lipat’ev, and S. S. Fedotov, “Femtosecond laser modification of antimony-containing lithium-aluminum- silicate glass and transparent sitall obtained from it,” Glass Ceram., 76(9), 370 – 373 (2020). V. N. Sigaev, A. S. Lipat’ev, and S. S. Fedotov, “Femtosecond laser modification of antimony-containing lithium-aluminum- silicate glass and transparent sitall obtained from it,” Glass Ceram., 76(9), 370 – 373 (2020).
19.
Zurück zum Zitat V. V. Golubkov, O. S. Dymshits, V. I. Petrov, et al., “Small-angle x-ray scattering and low-frequency Raman scattering study of liquid phase separation and crystallization in titania-containing glasses of the ZnO–Al2O3–SiO2 System,” J. Non-Cryst. Solids, 351(8 – 9), 711 – 721 (2005).CrossRef V. V. Golubkov, O. S. Dymshits, V. I. Petrov, et al., “Small-angle x-ray scattering and low-frequency Raman scattering study of liquid phase separation and crystallization in titania-containing glasses of the ZnO–Al2O3–SiO2 System,” J. Non-Cryst. Solids, 351(8 – 9), 711 – 721 (2005).CrossRef
20.
Zurück zum Zitat V. N. Sigaev, A. A. Loshmanov, R. Ya. Khodakovskaya, et al., “Structure of titanosilicate glasses according to neutron diffraction,” Fiz. Khim. Stekla, 1(5), 403 – 406 (1975). V. N. Sigaev, A. A. Loshmanov, R. Ya. Khodakovskaya, et al., “Structure of titanosilicate glasses according to neutron diffraction,” Fiz. Khim. Stekla, 1(5), 403 – 406 (1975).
21.
Zurück zum Zitat S. Richter, F. Zimmermann, S. Döring, et al., “Ultrashort high repetition rate exposure of dielectric materials: laser bonding of glasses analyzed by micro-Raman spectroscopy,” Appl. Phys., 110(1), 9 – 15 (2013).CrossRef S. Richter, F. Zimmermann, S. Döring, et al., “Ultrashort high repetition rate exposure of dielectric materials: laser bonding of glasses analyzed by micro-Raman spectroscopy,” Appl. Phys., 110(1), 9 – 15 (2013).CrossRef
22.
Zurück zum Zitat S. Kanehira, K. Miura, and K. Hirao, “Ion-exchange in glass using femtosecond laser irradiation,” Appl. Phys. Lett., 93(2), 023112 (2008).CrossRef S. Kanehira, K. Miura, and K. Hirao, “Ion-exchange in glass using femtosecond laser irradiation,” Appl. Phys. Lett., 93(2), 023112 (2008).CrossRef
23.
Zurück zum Zitat Y. Liu, M. Shimizu, B. Zhu, et al., “Micromodification of element distribution in glass using femtosecond laser irradiation,” Opt. Lett., 34(2), 136 – 138 (2009).CrossRef Y. Liu, M. Shimizu, B. Zhu, et al., “Micromodification of element distribution in glass using femtosecond laser irradiation,” Opt. Lett., 34(2), 136 – 138 (2009).CrossRef
24.
Zurück zum Zitat V. R. Bhardwaj, E. Simova, P. B. Corkum, et al., “Femtosecond laser-induced refractive index modification in multicomponent glasses,” J. Appl. Phys., 97(8), 083102 (2005).CrossRef V. R. Bhardwaj, E. Simova, P. B. Corkum, et al., “Femtosecond laser-induced refractive index modification in multicomponent glasses,” J. Appl. Phys., 97(8), 083102 (2005).CrossRef
25.
Zurück zum Zitat A. Fuerbach, S. Gross, D. Little, et al., “Refractive index change mechanisms in different glasses induced by femtosecond laser irradiation,” Proc. SPIE, 9983, 14 – 20 (2016). A. Fuerbach, S. Gross, D. Little, et al., “Refractive index change mechanisms in different glasses induced by femtosecond laser irradiation,” Proc. SPIE, 9983, 14 – 20 (2016).
26.
Zurück zum Zitat A. A. Loshmanov, V. N. Sigaev, R. Ya. Khodakovskaya, et al., “Small-angle neutron scattering on silica glasses containing titania,” J. Appl. Crystallogr., 7(2), 207 – 210 (1974).CrossRef A. A. Loshmanov, V. N. Sigaev, R. Ya. Khodakovskaya, et al., “Small-angle neutron scattering on silica glasses containing titania,” J. Appl. Crystallogr., 7(2), 207 – 210 (1974).CrossRef
27.
Zurück zum Zitat S. M. Eaton, H. Zhang, P. R. Herman, et al., “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express, 13, 4708 – 4716 (2018).CrossRef S. M. Eaton, H. Zhang, P. R. Herman, et al., “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express, 13, 4708 – 4716 (2018).CrossRef
28.
Zurück zum Zitat M. M. Smedskjaer, R. E. Youngman, and J. C. Mauro, “Impact of ZnO on the structure and properties of sodium aluminosilicate glasses: Comparison with alkaline earth oxides,” J. Non-Cryst. Solids, 381, 58 – 64 (2013).CrossRef M. M. Smedskjaer, R. E. Youngman, and J. C. Mauro, “Impact of ZnO on the structure and properties of sodium aluminosilicate glasses: Comparison with alkaline earth oxides,” J. Non-Cryst. Solids, 381, 58 – 64 (2013).CrossRef
29.
Zurück zum Zitat D. Choudhury, J. R. Macdonald, and A. K. Kar “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev., 8(6), 827 – 846 (2014).CrossRef D. Choudhury, J. R. Macdonald, and A. K. Kar “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev., 8(6), 827 – 846 (2014).CrossRef
30.
Zurück zum Zitat F. Sima, K. Sugioka, R. M. Vazquez, et al., “Three-dimensional femtosecond laser processing for lab-on-a-chip applications,” Nanophotonics, 7(3), 613 – 634 (2018).CrossRef F. Sima, K. Sugioka, R. M. Vazquez, et al., “Three-dimensional femtosecond laser processing for lab-on-a-chip applications,” Nanophotonics, 7(3), 613 – 634 (2018).CrossRef
31.
Zurück zum Zitat S. Gross, M. Dubov, and MJWithford, “On the use of the Type I and II scheme for classifying ultrafast laser direct-write photonics,” Opt. Express, 23(6), 7767 – 7770 (2015). S. Gross, M. Dubov, and MJWithford, “On the use of the Type I and II scheme for classifying ultrafast laser direct-write photonics,” Opt. Express, 23(6), 7767 – 7770 (2015).
32.
Zurück zum Zitat T. Calmano and S. Müller, “Crystalline waveguide lasers in the visible and near-infrared spectral range,” IEEE J. Selected Topics Quantum Electr., 21(1), 401 – 413 (2014).CrossRef T. Calmano and S. Müller, “Crystalline waveguide lasers in the visible and near-infrared spectral range,” IEEE J. Selected Topics Quantum Electr., 21(1), 401 – 413 (2014).CrossRef
Metadaten
Titel
Phase Transformations Under the Action of Femtosecond Pulses in ZnO–MgO–Al2O3–SiO2 Sitalls
verfasst von
V. N. Sigaeva
A. S. Naumov
A. S. Lipat’ev
G. Yu. Shakhgil’dyan
S. V. Lotarev
S. S. Fedotov
I. A. Karateev
Publikationsdatum
30.06.2023
Verlag
Springer US
Erschienen in
Glass and Ceramics / Ausgabe 1-2/2023
Print ISSN: 0361-7610
Elektronische ISSN: 1573-8515
DOI
https://doi.org/10.1007/s10717-023-00546-0

Weitere Artikel der Ausgabe 1-2/2023

Glass and Ceramics 1-2/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.