Skip to main content
Erschienen in: Environmental Earth Sciences 9/2015

01.05.2015 | Thematic Issue

PHREEQC program-based simulation of magnesium phosphates crystallization for phosphorus recovery

verfasst von: Yonghui Song, Feng Qian, Ying Gao, Xiaohui Huang, Jieyun Wu, Huibin Yu

Erschienen in: Environmental Earth Sciences | Ausgabe 9/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To reveal the effects of solution conditions on the crystallization of magnesium phosphates during phosphorus recovery from wastewater, the geochemical aquatic modeling program PHREEQC (version 2.11) was applied to the calculations of ion speciation and saturation index (SI) of different magnesium phosphates in a chemically defined crystallization system. The results showed that the relationship between SI of magnesium ammonium phosphate (MgNH4PO4·6H2O, MAP), Mg3(PO4)2·8H2O (MP-8W) and Mg3(PO4)2·22H2O (MP-22W), and the respective composition ion concentration was of logarithmic function. There was polynomial function relationship between SI values of magnesium phosphates and solution pH value. The optimum pH for MAP crystallization was around 9.0, while it was 9.0–10.0 for MP-8W and MP-22W. The SI values decreased as the carbonate concentration increased. Meanwhile, the SI values, decreasing with the increase in solution ionic strength, were of logarithmic function to the solution ionic strength. Besides, the SI values were also of polynomial function to the solution temperature. Under different pH values, the SI values presented different variation trends as the temperature rose. For the case study of P removal from synthetic swine wastewater, the P removal trend at different pH, N:P and Mg:N was closer to the predictions of thermodynamic modeling.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
PHREEQC (version 2.11)—A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. http://​wwwbrr.​cr.​usgs.​gov/​projects/​GWC_​coupled/​phreeqc/​.
 
Literatur
Zurück zum Zitat Altinbas M, Yangin C, Ozturk I (2002) Struvite precipitation from anaerobically treated municipal and landfill wastewaters. Water Sci Technol 46:271–278 Altinbas M, Yangin C, Ozturk I (2002) Struvite precipitation from anaerobically treated municipal and landfill wastewaters. Water Sci Technol 46:271–278
Zurück zum Zitat Arakane M, Imai T, Murakami S, Takeuchi M, Ukita M, Sekine M, Higuchi T (2006) Resource recovery from excess sludge by subritical water combined with magnesium ammonium phosphate process. Water Sci Technol 54(9):81–86CrossRef Arakane M, Imai T, Murakami S, Takeuchi M, Ukita M, Sekine M, Higuchi T (2006) Resource recovery from excess sludge by subritical water combined with magnesium ammonium phosphate process. Water Sci Technol 54(9):81–86CrossRef
Zurück zum Zitat Battistoni P, Fava G, Pavan P, Musacco A, Cecchi F (1997) Phosphate removal in anaerobic liquors by struvite crystallization without addition of chemicals: preliminary results. Water Res 31(11):2925–2929CrossRef Battistoni P, Fava G, Pavan P, Musacco A, Cecchi F (1997) Phosphate removal in anaerobic liquors by struvite crystallization without addition of chemicals: preliminary results. Water Res 31(11):2925–2929CrossRef
Zurück zum Zitat Bhuiyan MIH, Mavinic DS, Beckie RD (2008) Nucleation and growth kinetics of struvite in a fluidized bed reactor. J Cryst Growth 310:1187–1194CrossRef Bhuiyan MIH, Mavinic DS, Beckie RD (2008) Nucleation and growth kinetics of struvite in a fluidized bed reactor. J Cryst Growth 310:1187–1194CrossRef
Zurück zum Zitat Çelen I, Buchanan JR, Burns RT, Robinson RB, Raman DR (2007) Using a chemical equilibrium model to predict amendments required to crystal phosphorus as struvite in liquid swine manure. Water Res 41(8):1689–1696CrossRef Çelen I, Buchanan JR, Burns RT, Robinson RB, Raman DR (2007) Using a chemical equilibrium model to predict amendments required to crystal phosphorus as struvite in liquid swine manure. Water Res 41(8):1689–1696CrossRef
Zurück zum Zitat Chen N, Hu WW, Feng CP, Zhang ZY (2014) Removal of phosphorus from water using scallop shell synthesized ceramic biomaterials. Environ Earth Sci 71:2133–2142CrossRef Chen N, Hu WW, Feng CP, Zhang ZY (2014) Removal of phosphorus from water using scallop shell synthesized ceramic biomaterials. Environ Earth Sci 71:2133–2142CrossRef
Zurück zum Zitat de-Bashan LE, Bashan Y (2004) Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997–2003). Water Res 38(19):4222–4246 de-Bashan LE, Bashan Y (2004) Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997–2003). Water Res 38(19):4222–4246
Zurück zum Zitat Diwani GE, Rafie ShE, Ibiari NNE, El-Aila HI (2007) Recovery of ammonia nitrogen from industrial wastewater treatment as struvite slow releasing fertilizer. Desalination 214:200–214CrossRef Diwani GE, Rafie ShE, Ibiari NNE, El-Aila HI (2007) Recovery of ammonia nitrogen from industrial wastewater treatment as struvite slow releasing fertilizer. Desalination 214:200–214CrossRef
Zurück zum Zitat Donnert D (1988) Investigations on phosphorus removal from wastewater. Progress Report KFK 4459. Kernforschungszentrum Karlsruhe, Karlsruhe Donnert D (1988) Investigations on phosphorus removal from wastewater. Progress Report KFK 4459. Kernforschungszentrum Karlsruhe, Karlsruhe
Zurück zum Zitat Doyle JD, Parsons SA (2002) Struvite formation, control and recovery. Water Res 36(16):3925–3940CrossRef Doyle JD, Parsons SA (2002) Struvite formation, control and recovery. Water Res 36(16):3925–3940CrossRef
Zurück zum Zitat Eljamal O, Okawauchi J, Hiramatsu K, Harada M (2013) Phosphorus sorption from aqueous solution using naturalmaterials. Environ Earth Sci 65:859–863CrossRef Eljamal O, Okawauchi J, Hiramatsu K, Harada M (2013) Phosphorus sorption from aqueous solution using naturalmaterials. Environ Earth Sci 65:859–863CrossRef
Zurück zum Zitat Escudero A, Blanco F, Lacalle A, Pinto M (2015) Struvite precipitation for ammonium removal from anaerobically treated effluents. J Environ Chem Eng 3:413–419CrossRef Escudero A, Blanco F, Lacalle A, Pinto M (2015) Struvite precipitation for ammonium removal from anaerobically treated effluents. J Environ Chem Eng 3:413–419CrossRef
Zurück zum Zitat Etter B, Tilley E, Khadka R, Udert KM (2011) Low-cost struvite production using source-separated urine in Nepal. Water Res 45:852–862CrossRef Etter B, Tilley E, Khadka R, Udert KM (2011) Low-cost struvite production using source-separated urine in Nepal. Water Res 45:852–862CrossRef
Zurück zum Zitat Gunay A, Karadag D, Tosun I, Ozturk M (2008) Use of magnesit as a magnesium source for ammonium removal from leachate. J Hazard Mater 156(1–3):619–623CrossRef Gunay A, Karadag D, Tosun I, Ozturk M (2008) Use of magnesit as a magnesium source for ammonium removal from leachate. J Hazard Mater 156(1–3):619–623CrossRef
Zurück zum Zitat Harris WG, Wilkie AC, Cao X (2008) Bench-scale recovery of phosphorus from flushed dairy manure wastewater. Bioresour Technol 99(8):3036–3043CrossRef Harris WG, Wilkie AC, Cao X (2008) Bench-scale recovery of phosphorus from flushed dairy manure wastewater. Bioresour Technol 99(8):3036–3043CrossRef
Zurück zum Zitat He S, Zhang Y, Yang M, Du W, Harada H (2007) Repeated use of MAP decomposition residues for the removal of high ammonium concentration from landfill leachate. Chemosphere 66:2233–2238CrossRef He S, Zhang Y, Yang M, Du W, Harada H (2007) Repeated use of MAP decomposition residues for the removal of high ammonium concentration from landfill leachate. Chemosphere 66:2233–2238CrossRef
Zurück zum Zitat Hirasawa I, Kaneko S, Kanai Y, Hosoya S, Okuyama K, Kamahara T (2002) Crystallization phenomena of magnesium ammonium phosphate (MAP) in a fluidized-bed-type crystallizer. J Cryst Growth 237–239:2183–2187CrossRef Hirasawa I, Kaneko S, Kanai Y, Hosoya S, Okuyama K, Kamahara T (2002) Crystallization phenomena of magnesium ammonium phosphate (MAP) in a fluidized-bed-type crystallizer. J Cryst Growth 237–239:2183–2187CrossRef
Zurück zum Zitat Huang HM, Yang J, Li D (2014) Recovery and removal of ammonia-nitrogen and phosphate from swine wastewater by internal recycling of struvite chlorination product. Bioresour Technol 172:253–259CrossRef Huang HM, Yang J, Li D (2014) Recovery and removal of ammonia-nitrogen and phosphate from swine wastewater by internal recycling of struvite chlorination product. Bioresour Technol 172:253–259CrossRef
Zurück zum Zitat Hutnik N, Kozik A, Mazienczuk A, Piotrowski K, Wierzbowska B, Matynia A (2013) Phosphates (V) recovery from phosphorus mineral fertilizers industry wastewater by continuous struvite reaction crystallization process. Water Res 47:3635–3643CrossRef Hutnik N, Kozik A, Mazienczuk A, Piotrowski K, Wierzbowska B, Matynia A (2013) Phosphates (V) recovery from phosphorus mineral fertilizers industry wastewater by continuous struvite reaction crystallization process. Water Res 47:3635–3643CrossRef
Zurück zum Zitat Liang Z, Peng XJ, Luan ZK, Li WJ, Zhao Y (2012) Reduction of phosphorus release from high phosphorus soil by red mud. Environ Earth Sci 65:581–588CrossRef Liang Z, Peng XJ, Luan ZK, Li WJ, Zhao Y (2012) Reduction of phosphorus release from high phosphorus soil by red mud. Environ Earth Sci 65:581–588CrossRef
Zurück zum Zitat Mamais D, Pitt PA, Cheng YW, Loiacono J, Jenkins D (1994) Determination of ferric chloride dose to control struvite precipitation in anaerobic sludge digester. Water Environ Res 66(7):912–918CrossRef Mamais D, Pitt PA, Cheng YW, Loiacono J, Jenkins D (1994) Determination of ferric chloride dose to control struvite precipitation in anaerobic sludge digester. Water Environ Res 66(7):912–918CrossRef
Zurück zum Zitat Marti N, Bouzas A, Seco A, Ferrer J (2008) Struvite precipitation assessment in anaerobic digestion processes. Chem Eng J 141(1–3):67–74CrossRef Marti N, Bouzas A, Seco A, Ferrer J (2008) Struvite precipitation assessment in anaerobic digestion processes. Chem Eng J 141(1–3):67–74CrossRef
Zurück zum Zitat Massey MS, Ippolito JA, Davis JG, Sheffield RE (2010) Macroscopic and microscopic variation in recovered magnesium phosphate materials: implications for phosphorus removal processes and product re-use. Bioresour Technol 101(3):877–885CrossRef Massey MS, Ippolito JA, Davis JG, Sheffield RE (2010) Macroscopic and microscopic variation in recovered magnesium phosphate materials: implications for phosphorus removal processes and product re-use. Bioresour Technol 101(3):877–885CrossRef
Zurück zum Zitat Musvoto EV, Wentzel MC, Ekama GA (2000) Integrated chemical-physical processes modelling—II. Simulating aeration treatment of anaerobic digester supernatants. Water Res 34:1868–1880CrossRef Musvoto EV, Wentzel MC, Ekama GA (2000) Integrated chemical-physical processes modelling—II. Simulating aeration treatment of anaerobic digester supernatants. Water Res 34:1868–1880CrossRef
Zurück zum Zitat Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (Version 2)-A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Water-Resources Investigations Report 99-4259. US Department of the Interior, US Geological Survey, Denver, Colorado Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (Version 2)-A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Water-Resources Investigations Report 99-4259. US Department of the Interior, US Geological Survey, Denver, Colorado
Zurück zum Zitat Pastor L, Mangin D, Barat R, Seco A (2008) A pilot-scale study of struvite precipitation in a stirred tank reactor: conditions influencing the process. Bioresour Technol 99(14):6285–6291CrossRef Pastor L, Mangin D, Barat R, Seco A (2008) A pilot-scale study of struvite precipitation in a stirred tank reactor: conditions influencing the process. Bioresour Technol 99(14):6285–6291CrossRef
Zurück zum Zitat Ronteltap M, Maurer M, Gujer W (2007) Struvite precipitation thermodynamics in source-separated urine. Water Res 41:984–997 Ronteltap M, Maurer M, Gujer W (2007) Struvite precipitation thermodynamics in source-separated urine. Water Res 41:984–997
Zurück zum Zitat Saidou H, Korchef A, Moussa SB, Amor MB (2009) Struvite precipitation by the dissolved CO2 degasification technique: impact of the airflow rate and pH. Chemosphere 74(2):338–343CrossRef Saidou H, Korchef A, Moussa SB, Amor MB (2009) Struvite precipitation by the dissolved CO2 degasification technique: impact of the airflow rate and pH. Chemosphere 74(2):338–343CrossRef
Zurück zum Zitat Shu L, Schneider P, Jegatheesan V, Johnson J (2006) An economic evaluation of phosphorus recovery as struvite from digester supernatant. Bioresour Technol 97(17):2211–2216CrossRef Shu L, Schneider P, Jegatheesan V, Johnson J (2006) An economic evaluation of phosphorus recovery as struvite from digester supernatant. Bioresour Technol 97(17):2211–2216CrossRef
Zurück zum Zitat Song Y, Hahn HH, Hoffmann E (2002) Effects of solution conditions on the precipitation of phosphate for recovery: a thermodynamic evaluation. Chemosphere 48:1029–1034CrossRef Song Y, Hahn HH, Hoffmann E (2002) Effects of solution conditions on the precipitation of phosphate for recovery: a thermodynamic evaluation. Chemosphere 48:1029–1034CrossRef
Zurück zum Zitat Song Y, Yuan P, Zhen B, Peng J, Yuan F, Gao Y (2007) Nutrients removal and recovery by crystallization of magnesium ammonium phosphate from synthetic swine wastewater. Chemosphere 69(2):319–324CrossRef Song Y, Yuan P, Zhen B, Peng J, Yuan F, Gao Y (2007) Nutrients removal and recovery by crystallization of magnesium ammonium phosphate from synthetic swine wastewater. Chemosphere 69(2):319–324CrossRef
Zurück zum Zitat Song YH, Dai YR, Hu Q, Yu XH, Qian F (2014) Effects of three kinds of organic acids on phosphorus recovery by magnesium ammonium phosphate (MAP) crystallization from synthetic swine wastewater. Chemosphere 101:41–48CrossRef Song YH, Dai YR, Hu Q, Yu XH, Qian F (2014) Effects of three kinds of organic acids on phosphorus recovery by magnesium ammonium phosphate (MAP) crystallization from synthetic swine wastewater. Chemosphere 101:41–48CrossRef
Zurück zum Zitat State Environmental Protection Administration of China (2002) Monitoring and Analytical Methods of Water and Wastewater, 4th edn. China Environmental Science Press, Beijing State Environmental Protection Administration of China (2002) Monitoring and Analytical Methods of Water and Wastewater, 4th edn. China Environmental Science Press, Beijing
Zurück zum Zitat Stratful I, Scrimshaw MD, Lester JN (2001) Conditions influencing the precipitation of magnesium ammonium phosphate. Water Res 35(17):4191–4199CrossRef Stratful I, Scrimshaw MD, Lester JN (2001) Conditions influencing the precipitation of magnesium ammonium phosphate. Water Res 35(17):4191–4199CrossRef
Zurück zum Zitat Strickland J (1999) Perspectives for phosphorus recovery offered by enhanced biological P removal. Environ Technol 20:721–725CrossRef Strickland J (1999) Perspectives for phosphorus recovery offered by enhanced biological P removal. Environ Technol 20:721–725CrossRef
Zurück zum Zitat Suzuki K, Tanaka Y, Kuroda K, Hanajima D, Fukumoto Y, Yasuda T, Waki M (2007) Removal and recovery of phosphorous from swine wastewater by demonstration crystallization reactor and struvite accumulation device. Bioresour Technol 98:1573–1578CrossRef Suzuki K, Tanaka Y, Kuroda K, Hanajima D, Fukumoto Y, Yasuda T, Waki M (2007) Removal and recovery of phosphorous from swine wastewater by demonstration crystallization reactor and struvite accumulation device. Bioresour Technol 98:1573–1578CrossRef
Zurück zum Zitat Wang JS, Song YH, Yuan P, Peng JF, Fan MH (2006) Modeling the crystallization of magnesium ammonium phosphate for phosphorus recovery. Chemosphere 65(7):1182–1187CrossRef Wang JS, Song YH, Yuan P, Peng JF, Fan MH (2006) Modeling the crystallization of magnesium ammonium phosphate for phosphorus recovery. Chemosphere 65(7):1182–1187CrossRef
Zurück zum Zitat Yetilmezsoy K, Sapci-Zengin Z (2009) Recovery of ammonium nitrogen from the effluent of UASB treating poultry manure wastewater by MAP precipitation as a slow release fertilizer. J Hazard Mater 166(1):260–269CrossRef Yetilmezsoy K, Sapci-Zengin Z (2009) Recovery of ammonium nitrogen from the effluent of UASB treating poultry manure wastewater by MAP precipitation as a slow release fertilizer. J Hazard Mater 166(1):260–269CrossRef
Zurück zum Zitat Zhang T, Ding L, Ren H, Guo Z, Tan J (2010) Thermodynamic modeling of ferric phosphate precipitation for phosphorus removal and recovery from wastewater. J Hazard Mater 176:444–450CrossRef Zhang T, Ding L, Ren H, Guo Z, Tan J (2010) Thermodynamic modeling of ferric phosphate precipitation for phosphorus removal and recovery from wastewater. J Hazard Mater 176:444–450CrossRef
Metadaten
Titel
PHREEQC program-based simulation of magnesium phosphates crystallization for phosphorus recovery
verfasst von
Yonghui Song
Feng Qian
Ying Gao
Xiaohui Huang
Jieyun Wu
Huibin Yu
Publikationsdatum
01.05.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Environmental Earth Sciences / Ausgabe 9/2015
Print ISSN: 1866-6280
Elektronische ISSN: 1866-6299
DOI
https://doi.org/10.1007/s12665-015-4340-8

Weitere Artikel der Ausgabe 9/2015

Environmental Earth Sciences 9/2015 Zur Ausgabe