Skip to main content
Erschienen in:
Buchtitelbild

2016 | OriginalPaper | Buchkapitel

Physical Limits of Solar Energy Conversion in the Earth System

verfasst von : Axel Kleidon, Lee Miller, Fabian Gans

Erschienen in: Solar Energy for Fuels

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Solar energy provides by far the greatest potential for energy generation among all forms of renewable energy. Yet, just as for any form of energy conversion, it is subject to physical limits. Here we review the physical limits that determine how much energy can potentially be generated out of sunlight using a combination of thermodynamics and observed climatic variables. We first explain how the first and second law of thermodynamics constrain energy conversions and thereby the generation of renewable energy, and how this applies to the conversions of solar radiation within the Earth system. These limits are applied to the conversion of direct and diffuse solar radiation – which relates to concentrated solar power (CSP) and photovoltaic (PV) technologies as well as biomass production or any other photochemical conversion – as well as solar radiative heating, which generates atmospheric motion and thus relates to wind power technologies. When these conversion limits are applied to observed data sets of solar radiation at the land surface, it is estimated that direct concentrated solar power has a potential on land of up to 11.6 PW (1 PW = 1015 W), whereas photovoltaic power has a potential of up to 16.3 PW. Both biomass and wind power operate at much lower efficiencies, so their potentials of about 0.3 and 0.1 PW are much lower. These estimates are considerably lower than the incoming flux of solar radiation of 175 PW. When compared to a 2012 primary energy demand of 17 TW, the most direct uses of solar radiation, e.g., by CSP or PV, have thus by far the greatest potential to yield renewable energy requiring the least space to satisfy the human energy demand. Further conversions into solar-based fuels would be reduced by further losses which would lower these potentials. The substantially greater potential of solar-based renewable energy compared to other forms of renewable energy simply reflects much fewer and lower unavoidable conversion losses when solar radiation is directly converted into renewable energy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Edenhofer O, Pichs-Madruga R, Sokona Y, Seyboth K, Matschoss P, Kadner S, Zwickel T, Eickemeier P, Hansen G, Schloemer S, von Stechnow C (eds) (2011) IPCC special report on renewable energy sources and climate change mitigation. Prepared by working group III of the intergovernmental panel on climate change. Cambridge University Press, Cambridge Edenhofer O, Pichs-Madruga R, Sokona Y, Seyboth K, Matschoss P, Kadner S, Zwickel T, Eickemeier P, Hansen G, Schloemer S, von Stechnow C (eds) (2011) IPCC special report on renewable energy sources and climate change mitigation. Prepared by working group III of the intergovernmental panel on climate change. Cambridge University Press, Cambridge
2.
Zurück zum Zitat Rogner HH, Barthel F, Cabrera M, Faaij A, Giroux M, Hall D, Kagramanian V, Knonov S, Lefevre T, Moreira R, Noetstaller R, Odell P, Taylor M (2000) Energy resources. In: World energy assessment. Energy and the challenge of sustainability. United Nations Development Programme, United Nations Department of Economic and Social Affairs, and World Energy Council, New York, pp 135–171 Rogner HH, Barthel F, Cabrera M, Faaij A, Giroux M, Hall D, Kagramanian V, Knonov S, Lefevre T, Moreira R, Noetstaller R, Odell P, Taylor M (2000) Energy resources. In: World energy assessment. Energy and the challenge of sustainability. United Nations Development Programme, United Nations Department of Economic and Social Affairs, and World Energy Council, New York, pp 135–171
3.
4.
Zurück zum Zitat Press WH (1976) Theoretical maximum for energy from direct and diffuse sunlight. Nature 264:734–735CrossRef Press WH (1976) Theoretical maximum for energy from direct and diffuse sunlight. Nature 264:734–735CrossRef
5.
Zurück zum Zitat Landsberg PT, Tonge G (1979) Thermodynamics of the conversion of diluted radiation. J Phys A 12:551–562CrossRef Landsberg PT, Tonge G (1979) Thermodynamics of the conversion of diluted radiation. J Phys A 12:551–562CrossRef
6.
Zurück zum Zitat Atkins P, de Paula J (2010) Physical chemistry, 9th edn. Oxford University Press, New York Atkins P, de Paula J (2010) Physical chemistry, 9th edn. Oxford University Press, New York
7.
Zurück zum Zitat Eddington AS (1928) The nature of the physical world. Macmillan, New York Eddington AS (1928) The nature of the physical world. Macmillan, New York
8.
Zurück zum Zitat Planck M (1906) Theorie der Wärmestrahlung. Barth, Leipzig Planck M (1906) Theorie der Wärmestrahlung. Barth, Leipzig
9.
Zurück zum Zitat Kleidon A (2010) Life, hierarchy, and the thermodynamic machinery of planet Earth. Phys Life Rev 7:424–460CrossRef Kleidon A (2010) Life, hierarchy, and the thermodynamic machinery of planet Earth. Phys Life Rev 7:424–460CrossRef
10.
Zurück zum Zitat Kleidon A (2012) How does the Earth system generate and maintain thermodynamic disequilibrium and what does it imply for the future of the planet? Phil Trans R Soc A 370:1012–1040CrossRef Kleidon A (2012) How does the Earth system generate and maintain thermodynamic disequilibrium and what does it imply for the future of the planet? Phil Trans R Soc A 370:1012–1040CrossRef
11.
Zurück zum Zitat Wu W, Liu Y (2010) Radiation entropy flux and entropy production of the Earth system. Rev Geophys 48:RG2003CrossRef Wu W, Liu Y (2010) Radiation entropy flux and entropy production of the Earth system. Rev Geophys 48:RG2003CrossRef
12.
Zurück zum Zitat Kleidon A, Renner M (2013) Thermodynamic limits of hydrologic cycling within the Earth system: concepts, estimates and implications. Hydrol Earth Syst Sci 17:2873–2892CrossRef Kleidon A, Renner M (2013) Thermodynamic limits of hydrologic cycling within the Earth system: concepts, estimates and implications. Hydrol Earth Syst Sci 17:2873–2892CrossRef
14.
Zurück zum Zitat Kleidon A, Renner M, Porada P (2014) Estimates of the climatological land surface energy and water balance derived from maximum convective power. Hydrol Earth Syst Sci 18:2201–2218CrossRef Kleidon A, Renner M, Porada P (2014) Estimates of the climatological land surface energy and water balance derived from maximum convective power. Hydrol Earth Syst Sci 18:2201–2218CrossRef
15.
Zurück zum Zitat Kleidon A, Kravitz B, Renner M (2015) The hydrologic sensitivity to global warming and solar geoengineering derived from thermodynamic constraints. Geophys Res Lett 42:138–144CrossRef Kleidon A, Kravitz B, Renner M (2015) The hydrologic sensitivity to global warming and solar geoengineering derived from thermodynamic constraints. Geophys Res Lett 42:138–144CrossRef
16.
Zurück zum Zitat Stephens GL, Li J, Wild M, Clayson CA, Loeb N, Kato S, L’Ecuyer T, Stackhouse PW, Lebsock M, Andrews T (2012) An update on Earth’s energy balance in light of the latest global observations. Nat Geosci 5:691–696CrossRef Stephens GL, Li J, Wild M, Clayson CA, Loeb N, Kato S, L’Ecuyer T, Stackhouse PW, Lebsock M, Andrews T (2012) An update on Earth’s energy balance in light of the latest global observations. Nat Geosci 5:691–696CrossRef
17.
Zurück zum Zitat Pauluis O (2005) Water vapor and entropy production in the Earth’s atmosphere. In: Kleidon A, Lorenz RD (eds) Non-equilibrium thermodynamics and the production of entropy: life, Earth, and beyond. Springer, Heidelberg, pp 173–190 Pauluis O (2005) Water vapor and entropy production in the Earth’s atmosphere. In: Kleidon A, Lorenz RD (eds) Non-equilibrium thermodynamics and the production of entropy: life, Earth, and beyond. Springer, Heidelberg, pp 173–190
18.
Zurück zum Zitat Miller LM, Gans F, Kleidon A (2011) Estimating maximum global land surface wind power extractability and associated climatic consequences. Earth Syst Dyn 2:1–12CrossRef Miller LM, Gans F, Kleidon A (2011) Estimating maximum global land surface wind power extractability and associated climatic consequences. Earth Syst Dyn 2:1–12CrossRef
19.
Zurück zum Zitat Gans F, Miller LM, Kleidon A (2012) The problem of the second wind turbine – a note on a common but flawed wind power estimation method. Earth Syst Dyn 3:79–86CrossRef Gans F, Miller LM, Kleidon A (2012) The problem of the second wind turbine – a note on a common but flawed wind power estimation method. Earth Syst Dyn 3:79–86CrossRef
20.
Zurück zum Zitat Ferrari R, Wunsch C (2009) Ocean circulation kinetic energy: reservoirs, sources, and sinks. Annu Rev Fluid Mech 41:253–282CrossRef Ferrari R, Wunsch C (2009) Ocean circulation kinetic energy: reservoirs, sources, and sinks. Annu Rev Fluid Mech 41:253–282CrossRef
21.
Zurück zum Zitat Blackman FF (1905) Optima and limiting factors. Ann Bot 19:281–295 Blackman FF (1905) Optima and limiting factors. Ann Bot 19:281–295
22.
Zurück zum Zitat Monteith JL (1972) Solar radiation and productivity in tropical ecosystems. J Appl Ecol 9(3):747–766CrossRef Monteith JL (1972) Solar radiation and productivity in tropical ecosystems. J Appl Ecol 9(3):747–766CrossRef
23.
Zurück zum Zitat Sharkey TD (1985) Photosynthesis in intact leaves of c3 plants: physics, physiology and rate limitations. Bot Rev 51:53–105CrossRef Sharkey TD (1985) Photosynthesis in intact leaves of c3 plants: physics, physiology and rate limitations. Bot Rev 51:53–105CrossRef
24.
Zurück zum Zitat Hill R, Rich PR (1983) A physical interpretation for the natural photosynthetic process. Proc Natl Acad Sci U S A 80:978–982CrossRef Hill R, Rich PR (1983) A physical interpretation for the natural photosynthetic process. Proc Natl Acad Sci U S A 80:978–982CrossRef
25.
Zurück zum Zitat Duysens LNM (1958) The path of light energy in photosynthesis. In: Brookhaven Symposia in Biology 1: the photochemical apparatus, its structure and function. Brookhaven Natl. Lab., Upton, pp 10–25 Duysens LNM (1958) The path of light energy in photosynthesis. In: Brookhaven Symposia in Biology 1: the photochemical apparatus, its structure and function. Brookhaven Natl. Lab., Upton, pp 10–25
26.
Zurück zum Zitat Radmer R, Kok B (1977) Photosynthesis: limited yields, unlimited dreams. Bioscience 27:599–605CrossRef Radmer R, Kok B (1977) Photosynthesis: limited yields, unlimited dreams. Bioscience 27:599–605CrossRef
27.
Zurück zum Zitat Landsberg PT, Tonge G (1980) Thermodynamic energy conversion efficiencies. J Appl Phys 51:R1CrossRef Landsberg PT, Tonge G (1980) Thermodynamic energy conversion efficiencies. J Appl Phys 51:R1CrossRef
28.
Zurück zum Zitat Zhu XG, Long SP, Ort DR (2008) What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr Opin Biotechnol 19:153–159CrossRef Zhu XG, Long SP, Ort DR (2008) What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr Opin Biotechnol 19:153–159CrossRef
29.
Zurück zum Zitat Guanter L, Zhang Y, Jung M, Joiner J, Voigt M, Berry JA, Frankenberg C, Huete AR, Zarco-Tejada P, Lee JE, Moran MS, Ponce-Campos G, Beer C, Camps-Valls G, Buchmann N, Gianelle D, Klumpp K, Cescatti A, Baker JM, Griffis TJ (2014) Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence. Proc Natl Acad Sci U S A 111:E1327–E1333CrossRef Guanter L, Zhang Y, Jung M, Joiner J, Voigt M, Berry JA, Frankenberg C, Huete AR, Zarco-Tejada P, Lee JE, Moran MS, Ponce-Campos G, Beer C, Camps-Valls G, Buchmann N, Gianelle D, Klumpp K, Cescatti A, Baker JM, Griffis TJ (2014) Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence. Proc Natl Acad Sci U S A 111:E1327–E1333CrossRef
30.
Zurück zum Zitat Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, Heimann M, Jones C, Qúeŕe CL, Myneni RB, Piao S, Thornton P (2013) Carbon and other biogeochemical cycles. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, Heimann M, Jones C, Qúeŕe CL, Myneni RB, Piao S, Thornton P (2013) Carbon and other biogeochemical cycles. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge
31.
Zurück zum Zitat Trieb F, Schillings C, O’Sullivan M, Pregger T, Hoyer-Klick C (2009) Global potential of concentrating solar power. In: Proceedings of the SolarPACES Conference, Berlin Trieb F, Schillings C, O’Sullivan M, Pregger T, Hoyer-Klick C (2009) Global potential of concentrating solar power. In: Proceedings of the SolarPACES Conference, Berlin
32.
Zurück zum Zitat Lewis N (2007) Toward cost-effective solar energy use. Science 315(5813):798–801CrossRef Lewis N (2007) Toward cost-effective solar energy use. Science 315(5813):798–801CrossRef
34.
Zurück zum Zitat Kagan BA, Sündermann J (1996) Dissipation of tidal energy, paleotides, and evolution of the Earth-Moon system. Adv Geophys 38:179–266CrossRef Kagan BA, Sündermann J (1996) Dissipation of tidal energy, paleotides, and evolution of the Earth-Moon system. Adv Geophys 38:179–266CrossRef
35.
Zurück zum Zitat EIA (2009) International energy outlook. Tech. rep., Energy Information Administration, US Dept. of Energy, Energy Information Administration EIA (2009) International energy outlook. Tech. rep., Energy Information Administration, US Dept. of Energy, Energy Information Administration
36.
Zurück zum Zitat Vitousek PM, Ehrlich PR, Ehrlich AH, Matson PA (1986) Human appropriation of the products of photosynthesis. Bioscience 36:368–373CrossRef Vitousek PM, Ehrlich PR, Ehrlich AH, Matson PA (1986) Human appropriation of the products of photosynthesis. Bioscience 36:368–373CrossRef
37.
Zurück zum Zitat Haberl H, Erb KH, Krausmann F, Gaube V, Bondeau A, Pluttzar C, Gingrich S, Lucht W, Fischer-Kowalski M (2007) Quantifying and mapping the human appropriation of net primary productivity in Earth’s terrestrial ecosystems. Proc Natl Acad Sci U S A 104:12942–12947CrossRef Haberl H, Erb KH, Krausmann F, Gaube V, Bondeau A, Pluttzar C, Gingrich S, Lucht W, Fischer-Kowalski M (2007) Quantifying and mapping the human appropriation of net primary productivity in Earth’s terrestrial ecosystems. Proc Natl Acad Sci U S A 104:12942–12947CrossRef
Metadaten
Titel
Physical Limits of Solar Energy Conversion in the Earth System
verfasst von
Axel Kleidon
Lee Miller
Fabian Gans
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/128_2015_637

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.