Skip to main content

2015 | OriginalPaper | Buchkapitel

Physical Model Based Recovery of Displacement and Deformations from 3D Medical Images

verfasst von : P. Yang, C. Delorenzo, X. Papademetris, J. S. Duncan

Erschienen in: Handbook of Biomedical Imaging

Verlag: Springer US

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Estimating tissue displacement and deformation from time-varying medical images is a common problem in biomedical image analysis. For example, in order to better manage patients with ischemic heart disease, it would be useful to know their current extent of injury. This can be assessed by accurately tracking the motion of the left ventricle of the beating heart. Another example of this type of application is estimating the displacement of brain tissue during neurosurgery. The latter application is necessary because the presurgical planning for these delicate surgeries is based on images that may not accurately reflect the intraopertave brain (due to the action of gravity and other forces). In both examples, the tissue deformation cannot be measured directly. Instead, a sparse set of (potentially noisy) displacement estimates are extracted from acquired images. In this chapter, we explain how to use the physical properties of underlying organs or structures to guide such estimations of deformation, using neurosurgery and cardiac motion as example cases.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Note that although W is defined as function of the strain, e, as e is a function of the displacement, u, W can also be written as a function of the displacement field, u.
 
2
Within an element, the nodes are always numbered from 1 to 8. However this is a local index (short-hand) to the global node numbers. When the global matrix is assembled, the local indices (1 to 8) need to be converted back to the global indices (e.g. 1 to n). K e has dimensions 24 × 24 and K has dimensions 3n × 3n. \( K_{14}^e \), which is the stiffness between the x-directions of local nodes 1 and 2 would be part of K kl where k = 3(a − 1) + 1 and a is the global index of local node 1 and l = 3(b − 1) + 1, where b is the global index of local node 2. Since nodes appear in more than one element the final value of K kl is likely to be the sum of a number of local \( K_{ij}^e \)’s.
 
3
In the case of finite deformations, we end up with an expression of the form K(U) = A(U m U) which is solved iteratively.
 
Literatur
1.
Zurück zum Zitat A.A. Amini, Y. Chen, R.W. Curwen, V. Mani, and J. Sun. Coupled B-snake grids and constrained thin-plate splines for analysis of 2-D tissue deformations from tagged MRI. IEEE Trans. Med. Imag., 17(3):344–356, 1998.CrossRef A.A. Amini, Y. Chen, R.W. Curwen, V. Mani, and J. Sun. Coupled B-snake grids and constrained thin-plate splines for analysis of 2-D tissue deformations from tagged MRI. IEEE Trans. Med. Imag., 17(3):344–356, 1998.CrossRef
2.
Zurück zum Zitat Neculai Archip, Andriy Fedorov, Bryn Lloyd, Nikos Chrisochoides, Alexandra Golby, Peter M. Black, and Simon K. Warfield. Integration of patient specific modeling and advanced image processing techniques for image-guided neurosurgery. In Medical Imaging 2006: Visualization, Image-Guided Procedures, and Display, Proceedings of the SPIE, volume 6141, pages 422–429, San Diego, CA, February 12-14 2006. Neculai Archip, Andriy Fedorov, Bryn Lloyd, Nikos Chrisochoides, Alexandra Golby, Peter M. Black, and Simon K. Warfield. Integration of patient specific modeling and advanced image processing techniques for image-guided neurosurgery. In Medical Imaging 2006: Visualization, Image-Guided Procedures, and Display, Proceedings of the SPIE, volume 6141, pages 422–429, San Diego, CA, February 12-14 2006.
3.
Zurück zum Zitat Michel A. Audette, Kaleem Siddiqi, Frank P. Ferrie, and Terry M. Peters. An integrated range-sensing, segmentation and registration framework for the characterization of intra-surgical brain deformations in image-guided surgery. Computer Vision and Image Understanding, 89(2-3):226–251, February - March 2003. Michel A. Audette, Kaleem Siddiqi, Frank P. Ferrie, and Terry M. Peters. An integrated range-sensing, segmentation and registration framework for the characterization of intra-surgical brain deformations in image-guided surgery. Computer Vision and Image Understanding, 89(2-3):226–251, February - March 2003.
4.
Zurück zum Zitat Michel A. Audette, Kaleem Siddiqi, and Terry M. Peters. Level-set surface segmentation and fast cortical range image tracking for computing intrasurgical deformations. In Medical Image Computing and Computer-Assisted Intervention (MIC-CAI), volume 1679, pages 788–797, Cambridge, UK, September 19-22 1999. Michel A. Audette, Kaleem Siddiqi, and Terry M. Peters. Level-set surface segmentation and fast cortical range image tracking for computing intrasurgical deformations. In Medical Image Computing and Computer-Assisted Intervention (MIC-CAI), volume 1679, pages 788–797, Cambridge, UK, September 19-22 1999.
5.
Zurück zum Zitat H. Azhari, J. Weiss, W. Rogers, C. Siu, and E. Shapiro. A noninvasive comparative study of myocardial strains in ischemic canine hearts using tagged MRI in 3D. American Journal of Physiology, 268, 1995. H. Azhari, J. Weiss, W. Rogers, C. Siu, and E. Shapiro. A noninvasive comparative study of myocardial strains in ischemic canine hearts using tagged MRI in 3D. American Journal of Physiology, 268, 1995.
6.
Zurück zum Zitat Tamer Ba¸sar and Geert Jan Olsder. Dynamic Noncooperative Game Theory, 2nd Ed. Academic Press, New York, 1995. Tamer Ba¸sar and Geert Jan Olsder. Dynamic Noncooperative Game Theory, 2nd Ed. Academic Press, New York, 1995.
7.
Zurück zum Zitat K. Bathe. Finite Element Procedures in Engineering Analysis. Prentice-Hall, New Jersey, 1982. K. Bathe. Finite Element Procedures in Engineering Analysis. Prentice-Hall, New Jersey, 1982.
8.
Zurück zum Zitat C.A. Brebbia and J. Dominguez. Boundary Elements An Introductory Course. Computational Mechanics Publications, 1998. C.A. Brebbia and J. Dominguez. Boundary Elements An Introductory Course. Computational Mechanics Publications, 1998.
9.
Zurück zum Zitat Alize Cao, Prashanth Dumpuri, and Michael I. Miga. Tracking cortical surface deformations based on vessel structure using a laser range scanner. In International Symposium on Biomedical Imaging (ISBI), pages 522–525, Washington, DC, USA, April 6-9 2006. Alize Cao, Prashanth Dumpuri, and Michael I. Miga. Tracking cortical surface deformations based on vessel structure using a laser range scanner. In International Symposium on Biomedical Imaging (ISBI), pages 522–525, Washington, DC, USA, April 6-9 2006.
10.
Zurück zum Zitat Alexandra Chabrerie, Fatma Ozlen, Shin Nakajima, Michael Leventon, Hideki Atsumi1, Eric Grimson, Erwin Keeve, Sandra Helmers, James Riviello Jr., Gregory Holmes, Frank Duffy, Ferenc Jolesz, Ron Kikinis, and Peter Black. Three-dimensional reconstruction and surgical navigation in pediatric epilepsy surgery. In Medical Image Computing and Computer-Assisted Intervention (MICCAI), volume 1496, pages 74–83, Cambridge, MA, October 11-13 1998. Alexandra Chabrerie, Fatma Ozlen, Shin Nakajima, Michael Leventon, Hideki Atsumi1, Eric Grimson, Erwin Keeve, Sandra Helmers, James Riviello Jr., Gregory Holmes, Frank Duffy, Ferenc Jolesz, Ron Kikinis, and Peter Black. Three-dimensional reconstruction and surgical navigation in pediatric epilepsy surgery. In Medical Image Computing and Computer-Assisted Intervention (MICCAI), volume 1496, pages 74–83, Cambridge, MA, October 11-13 1998.
11.
Zurück zum Zitat Amit Chakraborty and James S. Duncan. Game-Theoretic integration for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(1):12–30, January 1999.CrossRef Amit Chakraborty and James S. Duncan. Game-Theoretic integration for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(1):12–30, January 1999.CrossRef
12.
Zurück zum Zitat G. E. Christensen, R. D. Rabbitt, and M. I. Miller. 3D brain mapping using deformable neuroanatomy. Physics in Medicine and Biology, 39:609–618, 1994.CrossRef G. E. Christensen, R. D. Rabbitt, and M. I. Miller. 3D brain mapping using deformable neuroanatomy. Physics in Medicine and Biology, 39:609–618, 1994.CrossRef
13.
Zurück zum Zitat H. Chui and A. Rangarajan. A new algorithm for non-rigid point matching. In IEEE Conf. Computer Vision and Pattern Recognition, volume 2, pages 44–51, 2000. H. Chui and A. Rangarajan. A new algorithm for non-rigid point matching. In IEEE Conf. Computer Vision and Pattern Recognition, volume 2, pages 44–51, 2000.
14.
Zurück zum Zitat Olivier Clatz, Herv´e Delingette, Ion-Florin Talos, Alexandra J. Golby, Ron Kikinis, Ferenc A. Jolesz, Nicholas Ayache, and Simon K. Warfield. Robust nonrigid registration to capture brain shift from intraoperative MRI. IEEE Transactions on Medical Imaging, 24(11):1417–1427, November 2005.CrossRef Olivier Clatz, Herv´e Delingette, Ion-Florin Talos, Alexandra J. Golby, Ron Kikinis, Ferenc A. Jolesz, Nicholas Ayache, and Simon K. Warfield. Robust nonrigid registration to capture brain shift from intraoperative MRI. IEEE Transactions on Medical Imaging, 24(11):1417–1427, November 2005.CrossRef
15.
Zurück zum Zitat L. Cohen, N. Ayache, and P. Sulger. Tracking points on deformable objects using curvature information. Lecture Notes in Computer Science (ECCV92), pages 458–466, 1992. L. Cohen, N. Ayache, and P. Sulger. Tracking points on deformable objects using curvature information. Lecture Notes in Computer Science (ECCV92), pages 458–466, 1992.
16.
Zurück zum Zitat Herv´e Delingette, Xavier Pennec, Luc Soler, Jacques Marescaux, and Nicholas Ayache. Computational models for image-guided robot-assisted and simulated medical interventions. Proceedings of the IEEE, 94(9):1678–1688, September 2006. Herv´e Delingette, Xavier Pennec, Luc Soler, Jacques Marescaux, and Nicholas Ayache. Computational models for image-guided robot-assisted and simulated medical interventions. Proceedings of the IEEE, 94(9):1678–1688, September 2006.
17.
Zurück zum Zitat T.S. Denney Jr and J.L. Prince. Reconstruction of 3d left ventricular motion from planar tagged cardiac mr images: An estimation theoretic approach. IEEE Transactions on Medical Imaging, 14(4):625–635, 1995.CrossRef T.S. Denney Jr and J.L. Prince. Reconstruction of 3d left ventricular motion from planar tagged cardiac mr images: An estimation theoretic approach. IEEE Transactions on Medical Imaging, 14(4):625–635, 1995.CrossRef
18.
Zurück zum Zitat Valerie Duay, Tuhin K. Sinha, Pierre-Fran¸cois D’Haese, Michael I. Miga, and Benoit M. Dawant. Non-rigid registration of serial intra-operative images for automatic brain shift estimation. In Workshop on Biomedical Image Registration (WBIR), volume 2717, pages 61–70, Philadelphia, PA, June 23-24 2003. Valerie Duay, Tuhin K. Sinha, Pierre-Fran¸cois D’Haese, Michael I. Miga, and Benoit M. Dawant. Non-rigid registration of serial intra-operative images for automatic brain shift estimation. In Workshop on Biomedical Image Registration (WBIR), volume 2717, pages 61–70, Philadelphia, PA, June 23-24 2003.
19.
Zurück zum Zitat Prashanth Dumpuri, Reid C. Thompson, Tuhin K. Sinha, and Michael I. Miga. Automated brain shift correction using a pre-computed deformation atlas. In Medical Imaging 2006: Visualization, Image-Guided Procedures, and Display, Proceedings of the SPIE, volume 6141, pages 430–437, San Diego, CA, February 12-14 2006. Prashanth Dumpuri, Reid C. Thompson, Tuhin K. Sinha, and Michael I. Miga. Automated brain shift correction using a pre-computed deformation atlas. In Medical Imaging 2006: Visualization, Image-Guided Procedures, and Display, Proceedings of the SPIE, volume 6141, pages 430–437, San Diego, CA, February 12-14 2006.
20.
Zurück zum Zitat Matthieu Ferrant, Arya Nabavi, Benoît Macq, P. M. Black, Ferenc A. Jolesz, Ron Kikinis, and Simon K. Warfield. Serial registration of intraoperative MR images of the brain. Medical Image Analysis, 6(4):337–359, December 2002.CrossRef Matthieu Ferrant, Arya Nabavi, Benoît Macq, P. M. Black, Ferenc A. Jolesz, Ron Kikinis, and Simon K. Warfield. Serial registration of intraoperative MR images of the brain. Medical Image Analysis, 6(4):337–359, December 2002.CrossRef
21.
Zurück zum Zitat J. C. Gee, D. R. Haynor, L. Le Briquer, and R. K. Bajcsy. Advances in elastic matching theory and its implementation. In CVRMed-MRCAS, Grenoble, France, March 1997.CrossRef J. C. Gee, D. R. Haynor, L. Le Briquer, and R. K. Bajcsy. Advances in elastic matching theory and its implementation. In CVRMed-MRCAS, Grenoble, France, March 1997.CrossRef
22.
Zurück zum Zitat David T. Gering, Arya Nabavi, Ron Kikinis, W. Eric L. Grimson, Nobuhiko Hata, Peter Everett, Ferenc A. Jolesz, and William M. Wells III. An integrated visualization system for surgical planning and guidance using image fusion and interventional imaging. In Medical Image Computing and Computer-Assisted Intervention (MICCAI), volume 1679, pages 809–819, Cambridge, UK, September 19-22 1999. David T. Gering, Arya Nabavi, Ron Kikinis, W. Eric L. Grimson, Nobuhiko Hata, Peter Everett, Ferenc A. Jolesz, and William M. Wells III. An integrated visualization system for surgical planning and guidance using image fusion and interventional imaging. In Medical Image Computing and Computer-Assisted Intervention (MICCAI), volume 1679, pages 809–819, Cambridge, UK, September 19-22 1999.
23.
Zurück zum Zitat David G. Gobbi, Roch M. Comeau, and Terry M. Peters. Ultrasound/MRI overlay with image warping for neurosurgery. In Medical Image Computing and Computer-Assisted Intervention (MICCAI), volume 1935, pages 106–114, Pittsburgh, PA, October 11-14 2000. David G. Gobbi, Roch M. Comeau, and Terry M. Peters. Ultrasound/MRI overlay with image warping for neurosurgery. In Medical Image Computing and Computer-Assisted Intervention (MICCAI), volume 1935, pages 106–114, Pittsburgh, PA, October 11-14 2000.
24.
Zurück zum Zitat W. E. L. Grimson, G. J. Ettinger, S. J. White, T. Lozano-P´erez, W. M. Wells, and R. Kikinis. An automatic registration method for frameless stereotaxy, image guided surgery, and enhanced reality visualization. IEEE Transactions on Medical Imaging, 15(2):129–140, April 1996.CrossRef W. E. L. Grimson, G. J. Ettinger, S. J. White, T. Lozano-P´erez, W. M. Wells, and R. Kikinis. An automatic registration method for frameless stereotaxy, image guided surgery, and enhanced reality visualization. IEEE Transactions on Medical Imaging, 15(2):129–140, April 1996.CrossRef
25.
Zurück zum Zitat J. M. Guccione and A. D. McCulloch. Finite element modeling of ventricular mechanics. In P. J. Hunter, A. McCulloch, and P. Nielsen, editors, Theory of Heart, pages 122–144. Springer-Verlag, Berlin, 1991. J. M. Guccione and A. D. McCulloch. Finite element modeling of ventricular mechanics. In P. J. Hunter, A. McCulloch, and P. Nielsen, editors, Theory of Heart, pages 122–144. Springer-Verlag, Berlin, 1991.
26.
Zurück zum Zitat E. Haber, D.N. Metaxas, and L. Axel. Motion analysis of the right ventricle from mri images. Medical Image Computing and Computer Aided Intervention, pages 177–188, 1998. E. Haber, D.N. Metaxas, and L. Axel. Motion analysis of the right ventricle from mri images. Medical Image Computing and Computer Aided Intervention, pages 177–188, 1998.
27.
Zurück zum Zitat Peter Hastreiter, Christof Rezk-Salama, Grzegorz Soza, Michael Bauer, Günther Greiner, Rudolf Fahlbusch, Oliver Ganslandt, and Christopher Nimsky. Strategies for brain shift evaluation. Medical Image Analysis, 8(4):447–464, December 2004.CrossRef Peter Hastreiter, Christof Rezk-Salama, Grzegorz Soza, Michael Bauer, Günther Greiner, Rudolf Fahlbusch, Oliver Ganslandt, and Christopher Nimsky. Strategies for brain shift evaluation. Medical Image Analysis, 8(4):447–464, December 2004.CrossRef
28.
Zurück zum Zitat W. Hsu, J. Huahes, and H. Kaufman. Direct manipulation of free-form deformations. Computer Graphics, 26(2):177–184, 1992.CrossRef W. Hsu, J. Huahes, and H. Kaufman. Direct manipulation of free-form deformations. Computer Graphics, 26(2):177–184, 1992.CrossRef
29.
Zurück zum Zitat K. H. Huebner, E. A. Thornton, and T. G. Byrom. The Finite Element Method For Engineers. John Wiley & Sons, New York, 1995. K. H. Huebner, E. A. Thornton, and T. G. Byrom. The Finite Element Method For Engineers. John Wiley & Sons, New York, 1995.
31.
Zurück zum Zitat C. Kramer, W. Rogers, T. Theobald, T. Power, S. Petruolo, and N. Reichek. Remote noninfarcted regional dysfunction soon after first anterior myocardial infarction: A magnetic resonance tagging study. Circulation, 94(10):660–666, 1996.CrossRef C. Kramer, W. Rogers, T. Theobald, T. Power, S. Petruolo, and N. Reichek. Remote noninfarcted regional dysfunction soon after first anterior myocardial infarction: A magnetic resonance tagging study. Circulation, 94(10):660–666, 1996.CrossRef
32.
Zurück zum Zitat N. Lin and J.S. Duncan. Generalized robust point matching using an extended free-form deformation model: Application to cardiac images. In International Symposium on Biomedical Imaging, 2004. N. Lin and J.S. Duncan. Generalized robust point matching using an extended free-form deformation model: Application to cardiac images. In International Symposium on Biomedical Imaging, 2004.
33.
Zurück zum Zitat Karen E. Lunn, Keith D. Paulsen, Daniel R. Lynch, David W. Roberts, Francis E. Kennedy, and Alex Hartov. Assimilating intraoperative data with brain shift modeling using the adjoint equations. Medical Image Analysis, 9(3):281–293, June 2005.CrossRef Karen E. Lunn, Keith D. Paulsen, Daniel R. Lynch, David W. Roberts, Francis E. Kennedy, and Alex Hartov. Assimilating intraoperative data with brain shift modeling using the adjoint equations. Medical Image Analysis, 9(3):281–293, June 2005.CrossRef
34.
Zurück zum Zitat M. Machacek, M. Sauter, and T. R¨osgen. Two-step calibration of a stereo camera system for measurements in large volumes. Measurements in Science and Technology, 14:1631–1639, 2003. M. Machacek, M. Sauter, and T. R¨osgen. Two-step calibration of a stereo camera system for measurements in large volumes. Measurements in Science and Technology, 14:1631–1639, 2003.
35.
Zurück zum Zitat J. Marcus, M. Gotte, A. V. Rossum, J. Kuijer, R. Heethaar, L. Axel, and C. Visser. Myocardial function in infarcted and remote regions early after infarction in man: Assessment by magnetic resonance tagging and strain analysis. Magnetic Resonance in Medicine, 38:803–810, 1997.CrossRef J. Marcus, M. Gotte, A. V. Rossum, J. Kuijer, R. Heethaar, L. Axel, and C. Visser. Myocardial function in infarcted and remote regions early after infarction in man: Assessment by magnetic resonance tagging and strain analysis. Magnetic Resonance in Medicine, 38:803–810, 1997.CrossRef
36.
Zurück zum Zitat Elliott Mendelson. Introducing Game Theory and Its Applications. Chapman & Hall/CRC, Boca Raton, 2004.MATH Elliott Mendelson. Introducing Game Theory and Its Applications. Chapman & Hall/CRC, Boca Raton, 2004.MATH
37.
Zurück zum Zitat J. Meunier. Tissue motion assessment from 3d echographic speckle tracking. PHYSICS IN MEDICINE AND BIOLOGY, 43(5):1241–1254, 1998.CrossRef J. Meunier. Tissue motion assessment from 3d echographic speckle tracking. PHYSICS IN MEDICINE AND BIOLOGY, 43(5):1241–1254, 1998.CrossRef
38.
Zurück zum Zitat F.G. Meyer, R.T. Constable, A.G. Sinusas, and J.S. Duncan. Tracking myocardial deformation using spatially constrained velocities. Information Processing in Medical Imaging, pages 26–30, 1995. F.G. Meyer, R.T. Constable, A.G. Sinusas, and J.S. Duncan. Tracking myocardial deformation using spatially constrained velocities. Information Processing in Medical Imaging, pages 26–30, 1995.
39.
Zurück zum Zitat Michael I. Miga, Tuhin K. Sinha, David M. Cash, Robert L. Galloway, and Robert J. Weil. Cortical surface registration for image-guided neurosurgery using laser-range scanning. IEEE Transactions on Medical Imaging, 22(8):973–985, August 2003.CrossRef Michael I. Miga, Tuhin K. Sinha, David M. Cash, Robert L. Galloway, and Robert J. Weil. Cortical surface registration for image-guided neurosurgery using laser-range scanning. IEEE Transactions on Medical Imaging, 22(8):973–985, August 2003.CrossRef
40.
Zurück zum Zitat X Papademetris. Estimation of 3D Left Ventricular Deformation from Medical Images Using Biomechanical Models. PhD thesis, Department of Electrical Engineering, Yale University, 2000. X Papademetris. Estimation of 3D Left Ventricular Deformation from Medical Images Using Biomechanical Models. PhD thesis, Department of Electrical Engineering, Yale University, 2000.
41.
Zurück zum Zitat X. Papademetris, A. J. Sinusas, D. P. Dione, R. T. Constable, and J. S. Duncan. Estimation of 3D left ventricular deformation from medical images using biomechanical models. IEEE Trans. Med. Imag., 21(7), July 2002. X. Papademetris, A. J. Sinusas, D. P. Dione, R. T. Constable, and J. S. Duncan. Estimation of 3D left ventricular deformation from medical images using biomechanical models. IEEE Trans. Med. Imag., 21(7), July 2002.
42.
Zurück zum Zitat X. Papademetris, A.J. Sinusas, D.P. Dione, R.T. Constable, and J.S. Duncan. Estimation of 3-D left ventricular deformation from medical images using biomechanical models. IEEE TMI, 21(7):786–800, 2002. X. Papademetris, A.J. Sinusas, D.P. Dione, R.T. Constable, and J.S. Duncan. Estimation of 3-D left ventricular deformation from medical images using biomechanical models. IEEE TMI, 21(7):786–800, 2002.
43.
Zurück zum Zitat Terry Peters, Bruce Davey, Patrice Munger, Roch Comeau, Alan Evans, and Andr´e Olivier. Three-Dimensional multimodal image-guidance for neurosurgery. IEEE Transactions on Biomedical Engineering, 15(2):121–128, April 1996. Terry Peters, Bruce Davey, Patrice Munger, Roch Comeau, Alan Evans, and Andr´e Olivier. Three-Dimensional multimodal image-guidance for neurosurgery. IEEE Transactions on Biomedical Engineering, 15(2):121–128, April 1996.
44.
Zurück zum Zitat Ingerid Reinertsen, Maxime Descoteaux, Simon Drouin, Kaleem Siddiqi, and D. Louis Collins. Vessel driven correction of brain shift. In Medical Image Computing and Computer-Assisted Intervention (MICCAI), volume 3217, pages 208–216, Saint-Malo, France, September 26-29 2004. Ingerid Reinertsen, Maxime Descoteaux, Simon Drouin, Kaleem Siddiqi, and D. Louis Collins. Vessel driven correction of brain shift. In Medical Image Computing and Computer-Assisted Intervention (MICCAI), volume 3217, pages 208–216, Saint-Malo, France, September 26-29 2004.
45.
Zurück zum Zitat David W. Roberts, Alexander Hartov, Francis E. Kennedy, Michael I. Miga, and Keith D. Paulsen. Intraoperative brain shift and deformation: A quantitative analysis of cortical displacement in 28 cases. Neurosurgery, 43(4):749–758, October 1998.CrossRef David W. Roberts, Alexander Hartov, Francis E. Kennedy, Michael I. Miga, and Keith D. Paulsen. Intraoperative brain shift and deformation: A quantitative analysis of cortical displacement in 28 cases. Neurosurgery, 43(4):749–758, October 1998.CrossRef
46.
Zurück zum Zitat Tuhin K. Sinha, Benoit D. Dawant, Valerie Duay, David M. Cash, Robert J. Weil, Reid C. Thompson, Kyle D. Weaver, and Michael I. Miga. A method to track Medical Imaging, 24(6):767–781, June 2005. Tuhin K. Sinha, Benoit D. Dawant, Valerie Duay, David M. Cash, Robert J. Weil, Reid C. Thompson, Kyle D. Weaver, and Michael I. Miga. A method to track Medical Imaging, 24(6):767–781, June 2005.
47.
Zurück zum Zitat Oskar Škrinjar, Arya Nabavi, and James S. Duncan. Model-driven brain shift compensation. Medical Image Analysis, 6(4):361–373, December 2002.CrossRef Oskar Škrinjar, Arya Nabavi, and James S. Duncan. Model-driven brain shift compensation. Medical Image Analysis, 6(4):361–373, December 2002.CrossRef
48.
Zurück zum Zitat S. Song and R. Leahy. Computation of 3D velocity fields from 3D cine CT images. IEEE TMI, 10:295–306, 1991. S. Song and R. Leahy. Computation of 3D velocity fields from 3D cine CT images. IEEE TMI, 10:295–306, 1991.
49.
Zurück zum Zitat Grzegorz Soza, Roberto Grosso, Christopher Nimsky, Guenther Greiner, and Peter Hastreiter. Estimating mechanical brain tissue properties with simulation and registration. In Medical Image Computing and Computer-Assisted Intervention (MIC-CAI), volume 3217, pages 276–283, Saint-Malo, France, September 26-29 2004. Grzegorz Soza, Roberto Grosso, Christopher Nimsky, Guenther Greiner, and Peter Hastreiter. Estimating mechanical brain tissue properties with simulation and registration. In Medical Image Computing and Computer-Assisted Intervention (MIC-CAI), volume 3217, pages 276–283, Saint-Malo, France, September 26-29 2004.
50.
Zurück zum Zitat Rik Stokking. Integrated Visualizaton of Functional and Anatomical Brain Images. PhD thesis, University Utrecht, February 1998. Rik Stokking. Integrated Visualizaton of Functional and Anatomical Brain Images. PhD thesis, University Utrecht, February 1998.
51.
Zurück zum Zitat Hai Sun, Karen E. Lunn, Hany Farid, Ziji Wu, David W. Roberts, Alex Hartov, and Keith D. Paulsen. Stereopsis-guided brain shift compensation. IEEE Transactions on Medical Imaging, 24(8):1039–1052, 2005.CrossRef Hai Sun, Karen E. Lunn, Hany Farid, Ziji Wu, David W. Roberts, Alex Hartov, and Keith D. Paulsen. Stereopsis-guided brain shift compensation. IEEE Transactions on Medical Imaging, 24(8):1039–1052, 2005.CrossRef
52.
Zurück zum Zitat Emanuele Trucco and Alessandro Verri. Introductory Techniques for 3-D Computer Vision. Prentice-Hall, Inc., Upper Saddle River, New Jersey, 1998. Emanuele Trucco and Alessandro Verri. Introductory Techniques for 3-D Computer Vision. Prentice-Hall, Inc., Upper Saddle River, New Jersey, 1998.
53.
Zurück zum Zitat P. Yan, A.J. Sinusas, and J.S. Duncan. Boundary element method-based regularization for recovering of lv deformation. Medical Image Analysis, 11(6):540–554, 2007.CrossRef P. Yan, A.J. Sinusas, and J.S. Duncan. Boundary element method-based regularization for recovering of lv deformation. Medical Image Analysis, 11(6):540–554, 2007.CrossRef
54.
Zurück zum Zitat A. A. Young, D. L. Kraitchman, L. Dougherty, and L. Axel. Tracking and finite element analysis of stripe deformation in magnetic resonance tagging. IEEE Transactions on Medical Imaging, 14(3):413–421, 1995.CrossRef A. A. Young, D. L. Kraitchman, L. Dougherty, and L. Axel. Tracking and finite element analysis of stripe deformation in magnetic resonance tagging. IEEE Transactions on Medical Imaging, 14(3):413–421, 1995.CrossRef
55.
Zurück zum Zitat Y. Zhu, M. Drangova, and N.J. Pelc. Estimation of deformation gradient and strain from cine-pc velocity data. IEEE Transactions on Medical Imaging, 16(6):840–851, 1997.CrossRef Y. Zhu, M. Drangova, and N.J. Pelc. Estimation of deformation gradient and strain from cine-pc velocity data. IEEE Transactions on Medical Imaging, 16(6):840–851, 1997.CrossRef
Metadaten
Titel
Physical Model Based Recovery of Displacement and Deformations from 3D Medical Images
verfasst von
P. Yang
C. Delorenzo
X. Papademetris
J. S. Duncan
Copyright-Jahr
2015
Verlag
Springer US
DOI
https://doi.org/10.1007/978-0-387-09749-7_17

Premium Partner