Skip to main content
Erschienen in: Technical Physics 8/2023

10.10.2023

Physics-Informed Radial Basis-Function Networks

verfasst von: V. I. Gorbachenko, D. A. Stenkin

Erschienen in: Technical Physics | Ausgabe 8/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Analysis of the possibilities of physics-informed neural networks intended for solution of boundary-value problems for partial differential equations is carried out. The possibilities of using radial basis-function networks as physics-informed neural networks are shown. Networks of radial basis functions for solving forward and inverse problems describing processes in piecewise homogeneous media have been proposed and investigated on model problems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
2.
Zurück zum Zitat N. Yadav, A. Yadav, and M. Kumar, An Introduction to Neural Network Methods for Differential Equations (Springer, Dordrecht, 2015).CrossRef N. Yadav, A. Yadav, and M. Kumar, An Introduction to Neural Network Methods for Differential Equations (Springer, Dordrecht, 2015).CrossRef
5.
Zurück zum Zitat B. Hanin, Universal function approximation by deep neural nets with bounded width and ReLU activations (2017). https://arxiv.org/abs/1708.02691v2 B. Hanin, Universal function approximation by deep neural nets with bounded width and ReLU activations (2017). https://​arxiv.​org/​abs/​1708.​02691v2
6.
Zurück zum Zitat M. Raissi, P. Perdikaris, and G. E. Karniadakis, Physics informed deep learning (Part I): Data-driven solutions of nonlinear partial differential equations (2017). https://arxiv.org/abs/1711.10561 M. Raissi, P. Perdikaris, and G. E. Karniadakis, Physics informed deep learning (Part I): Data-driven solutions of nonlinear partial differential equations (2017). https://​arxiv.​org/​abs/​1711.​10561
7.
Zurück zum Zitat M. Raissi, P. Perdikaris, and G. E. Karniadakis, Physics informed deep learning (Part II): Data-driven discovery of nonlinear partial differential equations (2017). https://arxiv.org/abs/1711.10566 M. Raissi, P. Perdikaris, and G. E. Karniadakis, Physics informed deep learning (Part II): Data-driven discovery of nonlinear partial differential equations (2017). https://​arxiv.​org/​abs/​1711.​10566
9.
Zurück zum Zitat G. E. Karniadakis, I. G. Kevrekidis, L. Lu, and L. Yang, Nat. Rev. Phys. 3, 422 (2021).CrossRef G. E. Karniadakis, I. G. Kevrekidis, L. Lu, and L. Yang, Nat. Rev. Phys. 3, 422 (2021).CrossRef
10.
Zurück zum Zitat A. G. Bavdin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind, J. Mach. Learn. Res. 18 (1), 1 (2018). A. G. Bavdin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind, J. Mach. Learn. Res. 18 (1), 1 (2018).
11.
Zurück zum Zitat S. Cuomo, V. S. D. Cola, F. Giampaolo, G. Rozza, M. Raissi, and F. Piccialli, J. Sci. Comput. 92, 88 (2022).CrossRef S. Cuomo, V. S. D. Cola, F. Giampaolo, G. Rozza, M. Raissi, and F. Piccialli, J. Sci. Comput. 92, 88 (2022).CrossRef
12.
Zurück zum Zitat M. J. Kochenderfer and T. A. Wheeler, Algorithms for Optimization (MIT Press, Cambridge, 2019). M. J. Kochenderfer and T. A. Wheeler, Algorithms for Optimization (MIT Press, Cambridge, 2019).
13.
Zurück zum Zitat V. Lakshmanan, S. Robinson, and M. Munn, Machine Learning Design Patterns: Solutions to Common Challenges in Data Preparation, Model Building, and MLOps (O’Reilly Media, 2020). V. Lakshmanan, S. Robinson, and M. Munn, Machine Learning Design Patterns: Solutions to Common Challenges in Data Preparation, Model Building, and MLOps (O’Reilly Media, 2020).
14.
Zurück zum Zitat D. Tarkhov and A. Vasilyev, Semi-Empirical Neural Network Modeling and Digital Twins Development (Academic, Cambridge, 2019). D. Tarkhov and A. Vasilyev, Semi-Empirical Neural Network Modeling and Digital Twins Development (Academic, Cambridge, 2019).
15.
Zurück zum Zitat A. A. Ramabathiran and P. Ramachandran, J. Comput. Phys. 445, 110600 (2021). A. A. Ramabathiran and P. Ramachandran, J. Comput. Phys. 445, 110600 (2021).
16.
Zurück zum Zitat M. M. Alqezweeni, R. A. Glumskov, V. I. Gorbachenko, and D. A. Stenkin, Solving partial differential equations on radial basis functions networks and on fully connected deep neural networks, in Proc. in Adaptation, Learning and Optimization: Proc. Int. Conf. on Intelligent Vision and Computing (ICIVC 2021) (Springer, Cham, 2022), Vol. 15, p. 240. https://doi.org/10.1007/978-3-030-97196-0_20 M. M. Alqezweeni, R. A. Glumskov, V. I. Gorbachenko, and D. A. Stenkin, Solving partial differential equations on radial basis functions networks and on fully connected deep neural networks, in Proc. in Adaptation, Learning and Optimization: Proc. Int. Conf. on Intelligent Vision and Computing (ICIVC 2021) (Springer, Cham, 2022), Vol. 15, p. 240. https://​doi.​org/​10.​1007/​978-3-030-97196-0_​20
18.
20.
Zurück zum Zitat M. M. Alqezweeni and V. I. Gorbachenko, Modeli, Sist., Seti Ekon., Tekh., Prirode O-ve, No. 3 (23), 123 (2017). https://mss.pnzgu.ru/mss11317 M. M. Alqezweeni and V. I. Gorbachenko, Modeli, Sist., Seti Ekon., Tekh., Prirode O-ve, No. 3 (23), 123 (2017). https://​mss.​pnzgu.​ru/​mss11317
21.
22.
Zurück zum Zitat H. S. Carslaw, Introduction to the Mathematical Theory of the Conduction of Heat in Solids (Franklin Classic, Blackweel, 2018). H. S. Carslaw, Introduction to the Mathematical Theory of the Conduction of Heat in Solids (Franklin Classic, Blackweel, 2018).
23.
Zurück zum Zitat J. H. Abou-Kassem, M. Rafiqul Islam, and S. M. Farouq-Ali, Petroleum Reservoir Simulation: The Engineering Approach (Gulf Professional, Houston, 2020). J. H. Abou-Kassem, M. Rafiqul Islam, and S. M. Farouq-Ali, Petroleum Reservoir Simulation: The Engineering Approach (Gulf Professional, Houston, 2020).
24.
Zurück zum Zitat M. P. Anderson, W. W. Woessner, and R. J. Hunt, Applied Groundwater Modeling: Simulation of Flow and Advective Transport (Academic, Cambridge, 2015). M. P. Anderson, W. W. Woessner, and R. J. Hunt, Applied Groundwater Modeling: Simulation of Flow and Advective Transport (Academic, Cambridge, 2015).
25.
Zurück zum Zitat D. A. Stenkin and V. I. Gorbachenko, Solving equations describing processes in a piecewise homogeneous medium on radial basis functions networks, in Advances in Neural Computation, Machine Learning, and Cognitive Research IV. NEUROINFORMATICS 2020. Studies in Computational Intelligence (Springer, Cham, 2021), Vol. 925, p. 412. https://doi.org/10.1007/978-3-030-60577-3_49CrossRef D. A. Stenkin and V. I. Gorbachenko, Solving equations describing processes in a piecewise homogeneous medium on radial basis functions networks, in Advances in Neural Computation, Machine Learning, and Cognitive Research IV. NEUROINFORMATICS 2020. Studies in Computational Intelligence (Springer, Cham, 2021), Vol. 925, p. 412. https://​doi.​org/​10.​1007/​978-3-030-60577-3_​49CrossRef
26.
Zurück zum Zitat V. I. Gorbachenko and D. A. Stenkin, Solving of inverse coefficient problems on networks of radial basis functions, in Advances in Neural Computation, Machine Learning, and Cognitive Research V. NEUROINFORMATICS 2021. Studies in Computational Intelligence (Springer, Cham, 2022), Vol. 1008, p. 230. https://doi.org/10.1007/978-3-030-91581-0_31CrossRef V. I. Gorbachenko and D. A. Stenkin, Solving of inverse coefficient problems on networks of radial basis functions, in Advances in Neural Computation, Machine Learning, and Cognitive Research V. NEUROINFORMATICS 2021. Studies in Computational Intelligence (Springer, Cham, 2022), Vol. 1008, p. 230. https://​doi.​org/​10.​1007/​978-3-030-91581-0_​31CrossRef
27.
Zurück zum Zitat A. A. Samarskii and P. N. Vabishchevich, Numerical Methods for Solving Inverse Problems of Mathematical Physics (Walter de Gruyter, Berlin, 2007).CrossRef A. A. Samarskii and P. N. Vabishchevich, Numerical Methods for Solving Inverse Problems of Mathematical Physics (Walter de Gruyter, Berlin, 2007).CrossRef
Metadaten
Titel
Physics-Informed Radial Basis-Function Networks
verfasst von
V. I. Gorbachenko
D. A. Stenkin
Publikationsdatum
10.10.2023
Verlag
Pleiades Publishing
Erschienen in
Technical Physics / Ausgabe 8/2023
Print ISSN: 1063-7842
Elektronische ISSN: 1090-6525
DOI
https://doi.org/10.1134/S1063784223050018

Weitere Artikel der Ausgabe 8/2023

Technical Physics 8/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.