Skip to main content

2012 | OriginalPaper | Buchkapitel

2. Piezopotential in Wurtzite Semiconductors

verfasst von : Zhong Lin Wang

Erschienen in: Piezotronics and Piezo-Phototronics

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The most fundamental physics for piezotronics and piezo-phototronics is in the presence of a piezoelectric potential (piezopotential) in semiconductor structured materials, such as the wurtzite structure. This chapter introduces the fundamental theory for calculating the piezopotential distribution in nanostructures with and without considering the presence of doping. The finite conductivity possessed by the material can partially screen the regional piezopotential having an opposite polarity to the type of doping, but cannot completely cancel the polarization charge due to the dielectric property of the material and the moderate doping level. The effect of piezopotential on the local contact in electrical measurements is also discussed, and a through-end model is proposed for understanding the transport properties of nanowire-based devices. This model will be adopted in future chapters for understanding the IV characteristics of the devices.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat H.J. Xiang, J.L. Yang, J.G. Hou, Q.S. Zhu, Piezoelectricity in ZnO nanowires: a first-principles study. Appl. Phys. Lett. 89(22), 223111 (2006) CrossRef H.J. Xiang, J.L. Yang, J.G. Hou, Q.S. Zhu, Piezoelectricity in ZnO nanowires: a first-principles study. Appl. Phys. Lett. 89(22), 223111 (2006) CrossRef
2.
Zurück zum Zitat Z.C. Tu, X. Hu, Elasticity and piezoelectricity of zinc oxide crystals, single layers, and possible single-walled nanotubes. Phys. Rev. B 74(3), 035434 (2006) CrossRef Z.C. Tu, X. Hu, Elasticity and piezoelectricity of zinc oxide crystals, single layers, and possible single-walled nanotubes. Phys. Rev. B 74(3), 035434 (2006) CrossRef
3.
Zurück zum Zitat A.J. Kulkarni, M. Zhou, F.J. Ke, Orientation and size dependence of the elastic properties of zinc oxide nanobelts. Nanotechnology 16(12), 2749–2756 (2005) CrossRef A.J. Kulkarni, M. Zhou, F.J. Ke, Orientation and size dependence of the elastic properties of zinc oxide nanobelts. Nanotechnology 16(12), 2749–2756 (2005) CrossRef
4.
Zurück zum Zitat P.J. Michalski, N. Sai, E.J. Mele, Continuum theory for nanotube piezoelectricity. Phys. Rev. Lett. 95(11), 116803 (2005) CrossRef P.J. Michalski, N. Sai, E.J. Mele, Continuum theory for nanotube piezoelectricity. Phys. Rev. Lett. 95(11), 116803 (2005) CrossRef
5.
Zurück zum Zitat Z.L. Wang, X.Y. Kong, Y. Ding, P.X. Gao, W.L. Hughes, R.S. Yang, Y.S. Zhang, Semiconducting and piezoelectric oxide nanostructures induced by polar surfaces. Adv. Funct. Mater. 14(10), 943–956 (2004) CrossRef Z.L. Wang, X.Y. Kong, Y. Ding, P.X. Gao, W.L. Hughes, R.S. Yang, Y.S. Zhang, Semiconducting and piezoelectric oxide nanostructures induced by polar surfaces. Adv. Funct. Mater. 14(10), 943–956 (2004) CrossRef
6.
Zurück zum Zitat J.F. Nye, Physical Properties of Crystals (Oxford University Press, Oxford, 1957) J.F. Nye, Physical Properties of Crystals (Oxford University Press, Oxford, 1957)
7.
Zurück zum Zitat Q.H. Qin, Fracture Mechanics of Piezoelectric Materials (WIT Press, Southampton, 2001) Q.H. Qin, Fracture Mechanics of Piezoelectric Materials (WIT Press, Southampton, 2001)
8.
Zurück zum Zitat Y.F. Gao, Z.L. Wang, Electrostatic potential in a bent Piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics. Nano Lett. 7(8), 2499–2505 (2007) CrossRef Y.F. Gao, Z.L. Wang, Electrostatic potential in a bent Piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics. Nano Lett. 7(8), 2499–2505 (2007) CrossRef
9.
Zurück zum Zitat R.W. Soutas-Little, Elasticity (Dover, Mineola, 1999) R.W. Soutas-Little, Elasticity (Dover, Mineola, 1999)
10.
Zurück zum Zitat J. Zhou, P. Fei, Y.F. Gao, Y.D. Gu, J. Liu, G. Bao, Z.L. Wang, Mechanical–electrical triggers and sensors using piezoelectric micowires/nanowires. Nano Lett. 8(9), 2725–2730 (2008) CrossRef J. Zhou, P. Fei, Y.F. Gao, Y.D. Gu, J. Liu, G. Bao, Z.L. Wang, Mechanical–electrical triggers and sensors using piezoelectric micowires/nanowires. Nano Lett. 8(9), 2725–2730 (2008) CrossRef
11.
Zurück zum Zitat Z.Y. Gao, J. Zhou, Y.D. Gu, P. Fei, Y. Hao, G. Bao, Z.L. Wang, Effects of piezoelectric potential on the transport characteristics of metal–ZnO nanowire–metal field effect transistor. J. Appl. Phys. 105(11), 113707 (2009) CrossRef Z.Y. Gao, J. Zhou, Y.D. Gu, P. Fei, Y. Hao, G. Bao, Z.L. Wang, Effects of piezoelectric potential on the transport characteristics of metal–ZnO nanowire–metal field effect transistor. J. Appl. Phys. 105(11), 113707 (2009) CrossRef
12.
Zurück zum Zitat C.S. Lao, J. Liu, P.X. Gao, L.Y. Zhang, D. Davidovic, R. Tummala, Z.L. Wang, ZnO nanobelt/nanowire Schottky diodes formed by dielectrophoresis alignment across Au electrodes. Nano Lett. 6(2), 263–266 (2006) CrossRef C.S. Lao, J. Liu, P.X. Gao, L.Y. Zhang, D. Davidovic, R. Tummala, Z.L. Wang, ZnO nanobelt/nanowire Schottky diodes formed by dielectrophoresis alignment across Au electrodes. Nano Lett. 6(2), 263–266 (2006) CrossRef
13.
Zurück zum Zitat Y.F. Gao, Z.L. Wang, Equilibrium potential of free charge carriers in a bent piezoelectric semiconductive nanowire. Nano Lett. 9(3), 1103–1110 (2009) CrossRef Y.F. Gao, Z.L. Wang, Equilibrium potential of free charge carriers in a bent piezoelectric semiconductive nanowire. Nano Lett. 9(3), 1103–1110 (2009) CrossRef
14.
Zurück zum Zitat F. Sacconi, A. Di Carlo, P. Lugli, H. Morkoc, Spontaneous and piezoelectric polarization effects on the output characteristics of AlGaN/GaN heterojunction modulation doped FETs. IEEE Trans. Electron Devices 48(3), 450–457 (2001) CrossRef F. Sacconi, A. Di Carlo, P. Lugli, H. Morkoc, Spontaneous and piezoelectric polarization effects on the output characteristics of AlGaN/GaN heterojunction modulation doped FETs. IEEE Trans. Electron Devices 48(3), 450–457 (2001) CrossRef
15.
Zurück zum Zitat W. Shan, W. Walukiewicz, J.W. Ager, K.M. Yu, Y. Zhang, S.S. Mao, R. Kling, C. Kirchner, A. Waag, Pressure-dependent photoluminescence study of ZnO nanowires. Appl. Phys. Lett. 86(15), 153117 (2005) CrossRef W. Shan, W. Walukiewicz, J.W. Ager, K.M. Yu, Y. Zhang, S.S. Mao, R. Kling, C. Kirchner, A. Waag, Pressure-dependent photoluminescence study of ZnO nanowires. Appl. Phys. Lett. 86(15), 153117 (2005) CrossRef
16.
Zurück zum Zitat G. Mantini, Y.F. Gao, A. D’Amico, C. Falconi, Z.L. Wang, Equilibrium piezoelectric potential distribution in a deformed ZnO nanowire. Nano Res. 2, 624–629 (2009) CrossRef G. Mantini, Y.F. Gao, A. D’Amico, C. Falconi, Z.L. Wang, Equilibrium piezoelectric potential distribution in a deformed ZnO nanowire. Nano Res. 2, 624–629 (2009) CrossRef
17.
Zurück zum Zitat M.P. Lu, J.H. Song, M.Y. Lu, M.T. Chen, Y.F. Gao, L.F. Chen, Z.L. Wang, Piezoelectric nanogenerator using p-type ZnO nanowire arrays. Nano Lett. 9(3), 1223–1227 (2009) CrossRef M.P. Lu, J.H. Song, M.Y. Lu, M.T. Chen, Y.F. Gao, L.F. Chen, Z.L. Wang, Piezoelectric nanogenerator using p-type ZnO nanowire arrays. Nano Lett. 9(3), 1223–1227 (2009) CrossRef
18.
Zurück zum Zitat Y. Zhang, Y.F. Hu, S. Xiang, Z.L. Wang, Effects of piezopotential spatial distribution on local contact dictated transport property of ZnO micro/nanowires. Appl. Phys. Lett. 97(3), 033509 (2010) CrossRef Y. Zhang, Y.F. Hu, S. Xiang, Z.L. Wang, Effects of piezopotential spatial distribution on local contact dictated transport property of ZnO micro/nanowires. Appl. Phys. Lett. 97(3), 033509 (2010) CrossRef
19.
Zurück zum Zitat G.A. Maugin, Continuum Mechanics of Electromagnetic Solids (North-Holland, Amsterdam, 1988) G.A. Maugin, Continuum Mechanics of Electromagnetic Solids (North-Holland, Amsterdam, 1988)
20.
Zurück zum Zitat R.W. Soutas-Little, Elasticity, vol. XVI (Dover, Mineola, 1999), p. 431 R.W. Soutas-Little, Elasticity, vol. XVI (Dover, Mineola, 1999), p. 431
21.
Zurück zum Zitat K.W. Chung, Z. Wang, J.C. Costa, F. Williamsion, P.P. Ruden, M.I. Nathan, Barrier height change in GaAs Schottky diodes induced by piezoelectric effect. Appl. Phys. Lett. 59(10), 1191 (1991) CrossRef K.W. Chung, Z. Wang, J.C. Costa, F. Williamsion, P.P. Ruden, M.I. Nathan, Barrier height change in GaAs Schottky diodes induced by piezoelectric effect. Appl. Phys. Lett. 59(10), 1191 (1991) CrossRef
22.
Zurück zum Zitat S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981) S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981)
23.
Zurück zum Zitat J.H. Song, Y. Zhang, C. Xu, W.Z. Wu, Z.L. Wang, Polar charges induced electric hysteresis of ZnO nano/microwire for fast data storage. Nano Lett. 11(7), 2829–2834 (2011) CrossRef J.H. Song, Y. Zhang, C. Xu, W.Z. Wu, Z.L. Wang, Polar charges induced electric hysteresis of ZnO nano/microwire for fast data storage. Nano Lett. 11(7), 2829–2834 (2011) CrossRef
Metadaten
Titel
Piezopotential in Wurtzite Semiconductors
verfasst von
Zhong Lin Wang
Copyright-Jahr
2012
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-34237-0_2

Neuer Inhalt