Skip to main content

2012 | OriginalPaper | Buchkapitel

4. Piezotronic Transistors

verfasst von : Zhong Lin Wang

Erschienen in: Piezotronics and Piezo-Phototronics

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

By using the piezopotential as the “gating voltage” for tuning/controlling interface charge transport, this chapter presents the fundamental principle and fabrication of piezotronic transistors using horizontal and vertical oriented nanowires. The piezotronic transistor is a two-terminal transistor without a gate electrode. The replacement of an external voltage gating by an inner crystal potential gating makes it possible to fabricate arrays of devices using vertical nanowires that can be individually addressed/controlled. This is advantageous for fabricating a high density device matrix for electro-mechanical transduction, such as sensors and touch pad technology.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat T. Toriyama, D. Funai, S.J. Sugiyama, Piezoresistance measurement on single crystal silicon nanowires. J. Appl. Phys. 93(1), 561 (2003) CrossRef T. Toriyama, D. Funai, S.J. Sugiyama, Piezoresistance measurement on single crystal silicon nanowires. J. Appl. Phys. 93(1), 561 (2003) CrossRef
2.
Zurück zum Zitat T.W. Tombler, C.W. Zhou, L. Alexseyev, J. Kong, H.J. Dai, L. Liu, C.S. Jayanthi, M.J. Tang, S.Y. Wu, Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation. Nature 405, 769–772 (2000) CrossRef T.W. Tombler, C.W. Zhou, L. Alexseyev, J. Kong, H.J. Dai, L. Liu, C.S. Jayanthi, M.J. Tang, S.Y. Wu, Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation. Nature 405, 769–772 (2000) CrossRef
3.
Zurück zum Zitat C. Stampfer, T. Helbling, D. Obergfell, B. Schöberle, M.K. Tripp, A. Jungen, S. Roth, V.M. Bright, C. Hierold, Fabrication of single-walled carbon-nanotube-based pressure sensors. Nano Lett. 6(2), 233–237 (2006) CrossRef C. Stampfer, T. Helbling, D. Obergfell, B. Schöberle, M.K. Tripp, A. Jungen, S. Roth, V.M. Bright, C. Hierold, Fabrication of single-walled carbon-nanotube-based pressure sensors. Nano Lett. 6(2), 233–237 (2006) CrossRef
4.
Zurück zum Zitat R.J. Grow, Q. Wang, J. Cao, D.W. Wang, H.J. Dai, Piezoresistance of carbon nanotubes on deformable thin-film membranes. Appl. Phys. Lett. 86(9), 093104 (2005) CrossRef R.J. Grow, Q. Wang, J. Cao, D.W. Wang, H.J. Dai, Piezoresistance of carbon nanotubes on deformable thin-film membranes. Appl. Phys. Lett. 86(9), 093104 (2005) CrossRef
5.
Zurück zum Zitat J. Zhou, Y.D. Gu, P. Fei, W.J. Mai, Y.F. Gao, R.S. Yang, G. Bao, Z.L. Wang, Flexible piezotronic strain sensor. Nano Lett. 8(9), 3035–3040 (2008) CrossRef J. Zhou, Y.D. Gu, P. Fei, W.J. Mai, Y.F. Gao, R.S. Yang, G. Bao, Z.L. Wang, Flexible piezotronic strain sensor. Nano Lett. 8(9), 3035–3040 (2008) CrossRef
6.
Zurück zum Zitat Z.Y. Zhang, C.H. Jin, X.L. Liang, Q. Chen, L.M. Peng, Current–voltage characteristics and parameter retrieval of semiconducting nanowires. Appl. Phys. Lett. 88(7), 073102 (2006) CrossRef Z.Y. Zhang, C.H. Jin, X.L. Liang, Q. Chen, L.M. Peng, Current–voltage characteristics and parameter retrieval of semiconducting nanowires. Appl. Phys. Lett. 88(7), 073102 (2006) CrossRef
7.
Zurück zum Zitat Z.Y. Zhang, K. Yao, Y. Liu, C.H. Jin, X.L. Liang, Q. Chen, L.M. Peng, Quantitative analysis of current–voltage characteristics of semiconducting nanowires: decoupling of contact effects. Adv. Funct. Mater. 17(14), 2478–2489 (2007) CrossRef Z.Y. Zhang, K. Yao, Y. Liu, C.H. Jin, X.L. Liang, Q. Chen, L.M. Peng, Quantitative analysis of current–voltage characteristics of semiconducting nanowires: decoupling of contact effects. Adv. Funct. Mater. 17(14), 2478–2489 (2007) CrossRef
8.
Zurück zum Zitat S.M. Sze, Physics of Semiconductor Devices, vol. 281 (Wiley, New York, 1981) S.M. Sze, Physics of Semiconductor Devices, vol. 281 (Wiley, New York, 1981)
9.
Zurück zum Zitat Z.Y. Fan, J.G. Lu, Electrical properties of ZnO nanowire field effect transistors characterized with scanning probes. Appl. Phys. Lett. 86(3), 032111 (2005) CrossRef Z.Y. Fan, J.G. Lu, Electrical properties of ZnO nanowire field effect transistors characterized with scanning probes. Appl. Phys. Lett. 86(3), 032111 (2005) CrossRef
10.
Zurück zum Zitat Y. Liu, Z. Kauser, P.P. Ruden, Z. Hassan, Y.C. Lee, S.S. Ng, F.K. Yam, Effect of hydrostatic pressure on the barrier height of Ni Schottky contacts on n-AlGaN. Appl. Phys. Lett. 88(2), 022109 (2006) CrossRef Y. Liu, Z. Kauser, P.P. Ruden, Z. Hassan, Y.C. Lee, S.S. Ng, F.K. Yam, Effect of hydrostatic pressure on the barrier height of Ni Schottky contacts on n-AlGaN. Appl. Phys. Lett. 88(2), 022109 (2006) CrossRef
11.
Zurück zum Zitat W. Shan, M.F. Li, Y.P. Yu, W.L. Hansen, W. Walukiewicz, Pressure dependence of Schottky barrier height at the Pt/GaAs interface. Appl. Phys. Lett. 53(11), 974–976 (1988) CrossRef W. Shan, M.F. Li, Y.P. Yu, W.L. Hansen, W. Walukiewicz, Pressure dependence of Schottky barrier height at the Pt/GaAs interface. Appl. Phys. Lett. 53(11), 974–976 (1988) CrossRef
12.
Zurück zum Zitat Y. Liu, M.Z. Kauser, M.I. Nathan, P.P. Ruden, S. Dogan, H. Morkoc, S.S. Park, K.Y. Lee, Effects of hydrostatic and uniaxial stress on the Schottky barrier heights of Ga-polarity and N-polarity n-GaN. Appl. Phys. Lett. 84(12), 2112–2114 (2004) CrossRef Y. Liu, M.Z. Kauser, M.I. Nathan, P.P. Ruden, S. Dogan, H. Morkoc, S.S. Park, K.Y. Lee, Effects of hydrostatic and uniaxial stress on the Schottky barrier heights of Ga-polarity and N-polarity n-GaN. Appl. Phys. Lett. 84(12), 2112–2114 (2004) CrossRef
13.
Zurück zum Zitat Z. Dridi, B. Bouhafs, P. Ruterana, Pressure dependence of energy band gaps for Al x Ga1−x N, In x Ga1−x N and In x Al1−x N. New J. Phys. 4, 94.1–94.15 (2002) CrossRef Z. Dridi, B. Bouhafs, P. Ruterana, Pressure dependence of energy band gaps for Al x Ga1−x N, In x Ga1−x N and In x Al1−x N. New J. Phys. 4, 94.1–94.15 (2002) CrossRef
14.
Zurück zum Zitat K.W. Chung, Z. Wang, J.C. Costa, P. Williamson, P.P. Ruden, M.I. Nathan, Barrier height change in GaAs Schottky diodes induced by piezoelectric effect. Appl. Phys. Lett. 59(10), 1191–1193 (1991) CrossRef K.W. Chung, Z. Wang, J.C. Costa, P. Williamson, P.P. Ruden, M.I. Nathan, Barrier height change in GaAs Schottky diodes induced by piezoelectric effect. Appl. Phys. Lett. 59(10), 1191–1193 (1991) CrossRef
15.
Zurück zum Zitat Y. Liu, M.Z. Kauser, D.D. Schroepfer, P.P. Ruden, J. Xie, Y.T. Moon, N. Onojima, H. Morkoc, K.A. Son, M.I. Nathan, Effect of hydrostatic pressure on the current–voltage characteristics of GaN/AlGaN/GaN heterostructure devices. J. Appl. Phys. 99(11), 113706 (2006) CrossRef Y. Liu, M.Z. Kauser, D.D. Schroepfer, P.P. Ruden, J. Xie, Y.T. Moon, N. Onojima, H. Morkoc, K.A. Son, M.I. Nathan, Effect of hydrostatic pressure on the current–voltage characteristics of GaN/AlGaN/GaN heterostructure devices. J. Appl. Phys. 99(11), 113706 (2006) CrossRef
16.
Zurück zum Zitat J. Zhou, P. Fei, Y.D. Gu, W.J. Mai, Y.F. Gao, R.S. Yang, G. Bao, Z.L. Wang, Piezoelectric-potential-controlled polarity-reversible Schottky diodes and switches of ZnO wires. Nano Lett. 8(11), 3973–3977 (2008) CrossRef J. Zhou, P. Fei, Y.D. Gu, W.J. Mai, Y.F. Gao, R.S. Yang, G. Bao, Z.L. Wang, Piezoelectric-potential-controlled polarity-reversible Schottky diodes and switches of ZnO wires. Nano Lett. 8(11), 3973–3977 (2008) CrossRef
17.
Zurück zum Zitat J.H. He, C.H. Hsin, L.J. Chen, Z.L. Wang, Piezoelectric gated diode of a single ZnO nanowire. Adv. Mater. 19(6), 781–784 (2007) CrossRef J.H. He, C.H. Hsin, L.J. Chen, Z.L. Wang, Piezoelectric gated diode of a single ZnO nanowire. Adv. Mater. 19(6), 781–784 (2007) CrossRef
18.
Zurück zum Zitat J.F. Nye, Physical Properties of Crystal (Oxford University Press, London, 1955) J.F. Nye, Physical Properties of Crystal (Oxford University Press, London, 1955)
19.
Zurück zum Zitat W.H. Han, Y.S. Zhou, Y. Zhang, C.Y. Chen, L. Lin, X. Wang, S.H. Wang, Z.L. Wang, Strain-gated piezotronic transistors based on vertical zinc oxide nanowires. ACS Nano 6(5), 3760–3766 (2012) CrossRef W.H. Han, Y.S. Zhou, Y. Zhang, C.Y. Chen, L. Lin, X. Wang, S.H. Wang, Z.L. Wang, Strain-gated piezotronic transistors based on vertical zinc oxide nanowires. ACS Nano 6(5), 3760–3766 (2012) CrossRef
Metadaten
Titel
Piezotronic Transistors
verfasst von
Zhong Lin Wang
Copyright-Jahr
2012
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-34237-0_4

Neuer Inhalt