Skip to main content

2021 | OriginalPaper | Buchkapitel

Plant Microbial Fuel Cell as a Biomass Conversion Technology for Sustainable Development

verfasst von : D. A. Jadhav, D. Ghosal, A. D. Chendake, S. Pandit, T. K. Sajana

Erschienen in: Catalysis for Clean Energy and Environmental Sustainability

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Plant photosynthesis is one of nature’s best gifts to humankind for converting solar energy into chemical energy in the form of carbohydrates and energy. Plant microbial fuel cells (PMFCs) or photosynthetic MFCs integrate the principles of photosynthesis and fuel cell to convert such synthesized carbohydrates and organic matter into electricity by microbial oxidation in the rhizosphere of plants. Also, plants utilize nutrients from effluent streams for self-growth and metabolism, reducing the nutrient load and heavy metal concentration, and are capable to degrade contaminants. Performance of PMFC is governed by various parameters such as selection of plant species, rhizodeposits, design of MFC, electrode properties, inoculum characteristics, wastewater properties, etc. This chapter discussed the basics of PMFC to applications for real field. According to applications, PMFC designs can be varied as constructed MFC, microbial carbon capture cells, microbial solar cells, floating islands, hydroponics-MFC, and paddy field MFC. Thus, simultaneous organic matter degradation, biomass recovery, oxygen release for cathodic reduction, CO2 sequestrations, nutrient removal, and heavy metal removal along with electricity generation can be achieved in PMFC.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mohnish B, Suchithra TV (2018) Electricity generation from living plants using microbial fuel cells. Int J Eng Technol 7(4):534–537 Mohnish B, Suchithra TV (2018) Electricity generation from living plants using microbial fuel cells. Int J Eng Technol 7(4):534–537
3.
Zurück zum Zitat Liu S, Song H, Li X, Yang F (2013) Power generation enhancement by utilizing plant photosynthate in microbial fuel cell coupled constructed wetland system. Int J Photoenergy 2013:1 Liu S, Song H, Li X, Yang F (2013) Power generation enhancement by utilizing plant photosynthate in microbial fuel cell coupled constructed wetland system. Int J Photoenergy 2013:1
4.
Zurück zum Zitat Pamintuan KRS, Sanchez KM (2019) Power generation in a plant-microbial fuel cell assembly with graphite and stainless steel electrodes growing Vigna Radiata. In: IOP conference series: materials science and engineering, vol 703. IOP Publishing, Bristol, p 012037 Pamintuan KRS, Sanchez KM (2019) Power generation in a plant-microbial fuel cell assembly with graphite and stainless steel electrodes growing Vigna Radiata. In: IOP conference series: materials science and engineering, vol 703. IOP Publishing, Bristol, p 012037
5.
Zurück zum Zitat Deng H, Wu YC, Zhang F, Huang ZC, Chen Z, Xu HJ, Zhao F (2014) Factors affecting the performance of single-chamber soil microbial fuel cells for power generation. Pedosphere 24(3):330–338CrossRef Deng H, Wu YC, Zhang F, Huang ZC, Chen Z, Xu HJ, Zhao F (2014) Factors affecting the performance of single-chamber soil microbial fuel cells for power generation. Pedosphere 24(3):330–338CrossRef
6.
Zurück zum Zitat Helder M, Strik DPBTB, Hamelers HVM, Buisman CJN (2012) The flat-plate plantmicrobial fuel cell: the effect of a new design on internal resistances. Biotechnol Biofuels 5:70CrossRef Helder M, Strik DPBTB, Hamelers HVM, Buisman CJN (2012) The flat-plate plantmicrobial fuel cell: the effect of a new design on internal resistances. Biotechnol Biofuels 5:70CrossRef
7.
Zurück zum Zitat Nguyen V, Nitisoravut R (2019) Bioelectricity generation in plant microbial fuel cell using forage grass under variations of circadian rhythm, ambient temperature, and soil water contents. In: 2019 IEEE Asia Power and Energy Engineering Conference (APEEC). IEEE, Piscataway, NJ, pp 240–244CrossRef Nguyen V, Nitisoravut R (2019) Bioelectricity generation in plant microbial fuel cell using forage grass under variations of circadian rhythm, ambient temperature, and soil water contents. In: 2019 IEEE Asia Power and Energy Engineering Conference (APEEC). IEEE, Piscataway, NJ, pp 240–244CrossRef
9.
Zurück zum Zitat Zeng L, Lesch SM, Grieve CM (2003) Rice growth and yield respond to changes in water depth and salinity stress. Agric Water Manag 59(1):67–75CrossRef Zeng L, Lesch SM, Grieve CM (2003) Rice growth and yield respond to changes in water depth and salinity stress. Agric Water Manag 59(1):67–75CrossRef
10.
Zurück zum Zitat Jadhav DA, Deshpande PA, Ghangrekar MM (2017a) Enhancing the performance of single-chambered microbial fuel cell using manganese/palladium and zirconium/palladium composite cathode catalysts. Bioresour Technol 238:568–574CrossRef Jadhav DA, Deshpande PA, Ghangrekar MM (2017a) Enhancing the performance of single-chambered microbial fuel cell using manganese/palladium and zirconium/palladium composite cathode catalysts. Bioresour Technol 238:568–574CrossRef
11.
Zurück zum Zitat Mathuriya AS, Jadhav DA, Ghangrekar MM (2018) Architectural adaptations of microbial fuel cells. Appl Microbiol Biotechnol 102(22):9419–9432CrossRef Mathuriya AS, Jadhav DA, Ghangrekar MM (2018) Architectural adaptations of microbial fuel cells. Appl Microbiol Biotechnol 102(22):9419–9432CrossRef
12.
Zurück zum Zitat Fang Z, Song H, Cang N, Li X (2013) Performance of microbial fuel cell coupled constructed wetland system for decolorization of azo dye and bioelectricity generation. Bioresour Technol 144:165–171CrossRef Fang Z, Song H, Cang N, Li X (2013) Performance of microbial fuel cell coupled constructed wetland system for decolorization of azo dye and bioelectricity generation. Bioresour Technol 144:165–171CrossRef
13.
Zurück zum Zitat Hu X, Liu B, Zhou J, Jin R, Qiao S, Liu G (2015) CO2 fixation, lipid production, and power generation by a novel air-lift-type microbial carbon capture cell system. Environ Sci Technol 49(17):10710–10717CrossRef Hu X, Liu B, Zhou J, Jin R, Qiao S, Liu G (2015) CO2 fixation, lipid production, and power generation by a novel air-lift-type microbial carbon capture cell system. Environ Sci Technol 49(17):10710–10717CrossRef
14.
Zurück zum Zitat Zou Y, Pisciotta J, Billmyre RB, Baskakov IV (2009) Photosynthetic microbial fuel cells with positive light response. Biotechnol Bioeng 104(5):939–946CrossRef Zou Y, Pisciotta J, Billmyre RB, Baskakov IV (2009) Photosynthetic microbial fuel cells with positive light response. Biotechnol Bioeng 104(5):939–946CrossRef
15.
Zurück zum Zitat An J, Kim D, Chun Y, Lee SJ, Ng HY, Chang IS (2009) Floating-type microbial fuel cell (FT-MFC) for treating organic-contaminated water. Environ Sci Technol 43(5):1642–1647CrossRef An J, Kim D, Chun Y, Lee SJ, Ng HY, Chang IS (2009) Floating-type microbial fuel cell (FT-MFC) for treating organic-contaminated water. Environ Sci Technol 43(5):1642–1647CrossRef
16.
Zurück zum Zitat Khuman CN, Bhowmick GD, Ghangrekar MM, Mitra A (2020) Effect of using a ceramic separator on the performance of hydroponic constructed wetland-microbial fuel cell. J Hazard Toxic Radioactive Waste 24(3):04020005CrossRef Khuman CN, Bhowmick GD, Ghangrekar MM, Mitra A (2020) Effect of using a ceramic separator on the performance of hydroponic constructed wetland-microbial fuel cell. J Hazard Toxic Radioactive Waste 24(3):04020005CrossRef
17.
Zurück zum Zitat Lu Y, Liu L, Wu S, Zhong W, Xu Y, Deng H (2019) Electricity generation from paddy soil for powering an electronic timer and an analysis of active exoelectrogenic bacteria. AMB Express 9(1):1–7CrossRef Lu Y, Liu L, Wu S, Zhong W, Xu Y, Deng H (2019) Electricity generation from paddy soil for powering an electronic timer and an analysis of active exoelectrogenic bacteria. AMB Express 9(1):1–7CrossRef
18.
Zurück zum Zitat Tou I, Azri YM, Sadi M, Lounici H, Kebbouche-Gana S (2019) Chlorophytum microbial fuel cell characterization. Int J Green Energy 16(12):947–959CrossRef Tou I, Azri YM, Sadi M, Lounici H, Kebbouche-Gana S (2019) Chlorophytum microbial fuel cell characterization. Int J Green Energy 16(12):947–959CrossRef
19.
Zurück zum Zitat Liu B, Ji M, Zhai H (2018) Anodic potentials, electricity generation and bacterial community as affected by plant roots in sediment microbial fuel cell: effects of anode locations. Chemosphere 209:739–747CrossRef Liu B, Ji M, Zhai H (2018) Anodic potentials, electricity generation and bacterial community as affected by plant roots in sediment microbial fuel cell: effects of anode locations. Chemosphere 209:739–747CrossRef
20.
Zurück zum Zitat Guadarrama-Pérez O, Gutiérrez-Macías T, García-Sánchez L, Guadarrama-Pérez VH, Estrada-Arriaga EB (2019) Recent advances in constructed wetland-microbial fuel cells for simultaneous bioelectricity production and wastewater treatment: a review. Int J Energy Res 43(10):5106–5127CrossRef Guadarrama-Pérez O, Gutiérrez-Macías T, García-Sánchez L, Guadarrama-Pérez VH, Estrada-Arriaga EB (2019) Recent advances in constructed wetland-microbial fuel cells for simultaneous bioelectricity production and wastewater treatment: a review. Int J Energy Res 43(10):5106–5127CrossRef
21.
Zurück zum Zitat Araneda I, Tapia NF, Lizama Allende K, Vargas IT (2018) Constructed wetland-microbial fuel cells for sustainable greywater treatment. Water 10(7):940CrossRef Araneda I, Tapia NF, Lizama Allende K, Vargas IT (2018) Constructed wetland-microbial fuel cells for sustainable greywater treatment. Water 10(7):940CrossRef
22.
Zurück zum Zitat Yan D, Song X, Weng B, Yu Z, Bi W, Wang J (2018) Bioelectricity generation from air-cathode microbial fuel cell connected to constructed wetland. Water Sci Technol 78(9):1990–1996CrossRef Yan D, Song X, Weng B, Yu Z, Bi W, Wang J (2018) Bioelectricity generation from air-cathode microbial fuel cell connected to constructed wetland. Water Sci Technol 78(9):1990–1996CrossRef
23.
Zurück zum Zitat Wang G, Guo Y, Cai J, Wen H, Mao Z, Zhang H, Wang X, Ma L, Zhu M (2019) Electricity production and the analysis of the anode microbial community in a constructed wetland-microbial fuel cell. RSC Adv 9(37):21460–21472CrossRef Wang G, Guo Y, Cai J, Wen H, Mao Z, Zhang H, Wang X, Ma L, Zhu M (2019) Electricity production and the analysis of the anode microbial community in a constructed wetland-microbial fuel cell. RSC Adv 9(37):21460–21472CrossRef
24.
Zurück zum Zitat Wang X, Feng Y, Liu J, Lee H, Li C, Li N, Ren N (2010) Sequestration of CO2 discharged from anode by algal cathode in microbial carbon capture cells (MCCs). Biosens Bioelectron 25(12):2639–2643CrossRef Wang X, Feng Y, Liu J, Lee H, Li C, Li N, Ren N (2010) Sequestration of CO2 discharged from anode by algal cathode in microbial carbon capture cells (MCCs). Biosens Bioelectron 25(12):2639–2643CrossRef
25.
Zurück zum Zitat Jadhav DA, Jain SC, Ghangrekar MM (2017b) Simultaneous wastewater treatment, biomass production and electricity generation in clayware microbial carbon capture cells. Appl Biochem Biotechnol 183(3):1076–1092CrossRef Jadhav DA, Jain SC, Ghangrekar MM (2017b) Simultaneous wastewater treatment, biomass production and electricity generation in clayware microbial carbon capture cells. Appl Biochem Biotechnol 183(3):1076–1092CrossRef
26.
Zurück zum Zitat Jadhav DA, Neethu B, Ghangrekar MM (2019) Microbial carbon capture cell: advanced bioelectrochemical system for wastewater treatment, electricity generation and algal biomass production, application of microalgae in wastewater treatment: domestic and industrial wastewater treatment: biorefinery approaches of wastewater treatment, 2. Springer International Publishing AG, Cham. ISBN: 978-3-030-13908-7 Jadhav DA, Neethu B, Ghangrekar MM (2019) Microbial carbon capture cell: advanced bioelectrochemical system for wastewater treatment, electricity generation and algal biomass production, application of microalgae in wastewater treatment: domestic and industrial wastewater treatment: biorefinery approaches of wastewater treatment, 2. Springer International Publishing AG, Cham. ISBN: 978-3-030-13908-7
27.
Zurück zum Zitat He Z, Kan J, Mansfeld F, Angenent LT, Nealson KH (2009). Self-sustained phototrophic microbial fuel cells based on the synergistic cooperation between photosynthetic microorganisms and heterotrophic bacteria. Environ Sci Technol 43(5):1648–1654 He Z, Kan J, Mansfeld F, Angenent LT, Nealson KH (2009). Self-sustained phototrophic microbial fuel cells based on the synergistic cooperation between photosynthetic microorganisms and heterotrophic bacteria. Environ Sci Technol 43(5):1648–1654
28.
Zurück zum Zitat Strik DP, Hamelers HV, Buisman CJ (2010) Solar energy powered microbial fuel cell with a reversible bioelectrode. Environ Sci Technol 44(1):532–537CrossRef Strik DP, Hamelers HV, Buisman CJ (2010) Solar energy powered microbial fuel cell with a reversible bioelectrode. Environ Sci Technol 44(1):532–537CrossRef
29.
Zurück zum Zitat Yoon S, Lee H, Fraiwan A, Dai C, Choi S (2014) A microsized microbial solar cell: a demonstration of photosynthetic bacterial electrogenic capabilities. IEEE Nanotechnol Mag 8(1):24–29CrossRef Yoon S, Lee H, Fraiwan A, Dai C, Choi S (2014) A microsized microbial solar cell: a demonstration of photosynthetic bacterial electrogenic capabilities. IEEE Nanotechnol Mag 8(1):24–29CrossRef
30.
Zurück zum Zitat Fischer F (2018) Photoelectrode, photovoltaic and photosynthetic microbial fuel cells. Renew Sustain Energy Rev 90:16–27CrossRef Fischer F (2018) Photoelectrode, photovoltaic and photosynthetic microbial fuel cells. Renew Sustain Energy Rev 90:16–27CrossRef
31.
Zurück zum Zitat Khudzari JM, Gariépy Y, Kurian J, Tartakovsky B, Raghavan GV (2019) Effects of biochar anodes in rice plant microbial fuel cells on the production of bioelectricity, biomass, and methane. Biochem Eng J 141:190–199CrossRef Khudzari JM, Gariépy Y, Kurian J, Tartakovsky B, Raghavan GV (2019) Effects of biochar anodes in rice plant microbial fuel cells on the production of bioelectricity, biomass, and methane. Biochem Eng J 141:190–199CrossRef
32.
Zurück zum Zitat Kouzuma A, Kaku N, Watanabe K (2014) Microbial electricity generation in rice paddy fields: recent advances and perspectives in rhizosphere microbial fuel cells. Appl Microbiol Biotechnol 98(23):9521–9526CrossRef Kouzuma A, Kaku N, Watanabe K (2014) Microbial electricity generation in rice paddy fields: recent advances and perspectives in rhizosphere microbial fuel cells. Appl Microbiol Biotechnol 98(23):9521–9526CrossRef
33.
Zurück zum Zitat Arends JB, Speeckaert J, Blondeel E, De Vrieze J, Boeckx P, Verstraete W, Rabaey K, Boon N (2014) Greenhouse gas emissions from rice microcosms amended with a plant microbial fuel cell. Appl Microbiol Biotechnol 98:3205–3217CrossRef Arends JB, Speeckaert J, Blondeel E, De Vrieze J, Boeckx P, Verstraete W, Rabaey K, Boon N (2014) Greenhouse gas emissions from rice microcosms amended with a plant microbial fuel cell. Appl Microbiol Biotechnol 98:3205–3217CrossRef
34.
Zurück zum Zitat Yadav RK, Chiranjeevi P, Patil SA (2020) Integrated drip hydroponics-microbial fuel cell system for wastewater treatment and resource recovery. Bioresour Technol Rep 9:100392CrossRef Yadav RK, Chiranjeevi P, Patil SA (2020) Integrated drip hydroponics-microbial fuel cell system for wastewater treatment and resource recovery. Bioresour Technol Rep 9:100392CrossRef
35.
Zurück zum Zitat Rosenbaum M, He Z, Angenent LT (2010) Light energy to bioelectricity: photosynthetic microbial fuel cells. Curr Opin Biotechnol 21(3):259–264CrossRef Rosenbaum M, He Z, Angenent LT (2010) Light energy to bioelectricity: photosynthetic microbial fuel cells. Curr Opin Biotechnol 21(3):259–264CrossRef
36.
Zurück zum Zitat Helder M, Strik DP, Timmers RA, Raes SM, Hamelers HV, Buisman CJ (2013) Resilience of roof-top plant-microbial fuel cells during Dutch winter. Biomass Bioenergy 51:1–7CrossRef Helder M, Strik DP, Timmers RA, Raes SM, Hamelers HV, Buisman CJ (2013) Resilience of roof-top plant-microbial fuel cells during Dutch winter. Biomass Bioenergy 51:1–7CrossRef
37.
Zurück zum Zitat Tapia NF, Rojas C, Bonilla CA, Vargas IT (2017) Evaluation of Sedum as driver for plant microbial fuel cells in a semi-arid green roof ecosystem. Ecol Eng 108:203–210 Tapia NF, Rojas C, Bonilla CA, Vargas IT (2017) Evaluation of Sedum as driver for plant microbial fuel cells in a semi-arid green roof ecosystem. Ecol Eng 108:203–210
38.
Zurück zum Zitat Kabutey FT, Zhao Q, Wei L, Ding J, Antwi P, Quashie FK, Wang W (2019) An overview of plant microbial fuel cells (PMFCs): configurations and applications. Renew Sustain Energy Rev 110:402–414CrossRef Kabutey FT, Zhao Q, Wei L, Ding J, Antwi P, Quashie FK, Wang W (2019) An overview of plant microbial fuel cells (PMFCs): configurations and applications. Renew Sustain Energy Rev 110:402–414CrossRef
40.
Zurück zum Zitat Jadhav DA, Das I, Ghangrekar MM, Pant D (2020) Moving towards practical applications of microbial fuel cells for sanitation and resource recovery. J Water Proc Eng 38:101566 Jadhav DA, Das I, Ghangrekar MM, Pant D (2020) Moving towards practical applications of microbial fuel cells for sanitation and resource recovery. J Water Proc Eng 38:101566
Metadaten
Titel
Plant Microbial Fuel Cell as a Biomass Conversion Technology for Sustainable Development
verfasst von
D. A. Jadhav
D. Ghosal
A. D. Chendake
S. Pandit
T. K. Sajana
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-65017-9_5