Skip to main content
Erschienen in: Journal of Materials Science 12/2014

01.06.2014

Plastic deformation behavior of ultrafine-grained Al–Mg–Sc alloy

verfasst von: N. Kumar, M. Komarasamy, R. S. Mishra

Erschienen in: Journal of Materials Science | Ausgabe 12/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Ultrafine-grained (UFG) Al–Mg–Sc alloy was obtained by friction stir processing. The UFG alloy was subjected to uniaxial tensile testing to study the tensile deformation behavior of the alloy. An inhomogeneous yielding (Lüdering phenomenon) was observed in the stress–strain curves of UFG alloy. This deformation behavior was absent in the coarse-grained alloy. The Lüdering phenomenon in UFG alloy was attributed to the lack of dislocations in UFG microstructure. A strong dependence of uniform ductility on the average grain size was exhibited by the UFG alloy. Below a critical grain size (0.5 μm), ductility was very limited. Also, with the decrease in grain size, most of the plastic deformation was observed to be localized in necked region of the tensile samples. The negative strain rate sensitivity (SRS) observed for the UFG alloy was opposite of the SRS values reported for UFG alloys in the literature. Based on activation volume measurement, grain boundary mediated dislocation-based plasticity was concluded to be the micro-mechanism operative during plastic deformation of UFG Al–Mg–Sc alloy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Valiev RZ, Krasilnikov NA, Tsenev NK (1991) Plastic deformation of alloys with submicron-grained structure. Mater Sci Eng, A 137:35–40CrossRef Valiev RZ, Krasilnikov NA, Tsenev NK (1991) Plastic deformation of alloys with submicron-grained structure. Mater Sci Eng, A 137:35–40CrossRef
2.
Zurück zum Zitat Gleiter H (1992) Materials with ultrafine microstructures: retrospectives and perspectives. Nanostruct Mater 1:1–19CrossRef Gleiter H (1992) Materials with ultrafine microstructures: retrospectives and perspectives. Nanostruct Mater 1:1–19CrossRef
3.
Zurück zum Zitat Valiev RZ, Kozlov EV, Ivanov YF, Lian J, Nazarov AA, Baudelet B (1994) Deformation behaviour of ultra-fine-grained copper. Acta Metall Mater 42:2467–2474CrossRef Valiev RZ, Kozlov EV, Ivanov YF, Lian J, Nazarov AA, Baudelet B (1994) Deformation behaviour of ultra-fine-grained copper. Acta Metall Mater 42:2467–2474CrossRef
4.
Zurück zum Zitat Yu CY, Kao PW, Chang CP (2005) Transition of tensile deformation behaviors in ultrafine-grained aluminum. Acta Mater 53:4019–4028CrossRef Yu CY, Kao PW, Chang CP (2005) Transition of tensile deformation behaviors in ultrafine-grained aluminum. Acta Mater 53:4019–4028CrossRef
5.
Zurück zum Zitat Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Bulk nanostructured materials from severe plastic deformation. Prog Mater Sci 45:103–189CrossRef Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Bulk nanostructured materials from severe plastic deformation. Prog Mater Sci 45:103–189CrossRef
6.
Zurück zum Zitat Hall EO (1951) The deformation and ageing of mild steel: III discussion of results. Proc Phys Soc B 64:747–753CrossRef Hall EO (1951) The deformation and ageing of mild steel: III discussion of results. Proc Phys Soc B 64:747–753CrossRef
7.
Zurück zum Zitat Petch NJ (1953) The cleavage strength of polycrystals. Iron Steel Inst 174:25–28 Petch NJ (1953) The cleavage strength of polycrystals. Iron Steel Inst 174:25–28
8.
Zurück zum Zitat Kaufman JG (1999) Properties of aluminum alloys: tensile, creep, and fatigue data at high and low temperatures. ASM International, Materials Park Kaufman JG (1999) Properties of aluminum alloys: tensile, creep, and fatigue data at high and low temperatures. ASM International, Materials Park
9.
Zurück zum Zitat Tellkamp VL, Melmed A, Lavernia EJ (2001) Mechanical behavior and microstructure of a thermally stable bulk nanostructured Al alloy. Metall Mater Trans A 32:2335–2343CrossRef Tellkamp VL, Melmed A, Lavernia EJ (2001) Mechanical behavior and microstructure of a thermally stable bulk nanostructured Al alloy. Metall Mater Trans A 32:2335–2343CrossRef
10.
Zurück zum Zitat Hayes RW, Witkin D, Zhou F, Lavernia EJ (2004) Deformation and activation volumes of cryomilled ultrafine-grained aluminum. Acta Mater 52:4259–4271CrossRef Hayes RW, Witkin D, Zhou F, Lavernia EJ (2004) Deformation and activation volumes of cryomilled ultrafine-grained aluminum. Acta Mater 52:4259–4271CrossRef
11.
Zurück zum Zitat Higashi K, Patlan V, Kitagawa K, Kawazoe M (2001) Tensile and low-cycle fatigue properties of heat treated ultra-fine grain 5056 aluminum alloy. J Japan Inst Light Met 51:646–650CrossRef Higashi K, Patlan V, Kitagawa K, Kawazoe M (2001) Tensile and low-cycle fatigue properties of heat treated ultra-fine grain 5056 aluminum alloy. J Japan Inst Light Met 51:646–650CrossRef
12.
Zurück zum Zitat Stolyarov VV, Lapovok R (2004) Effect of backpressure on structure and properties of AA5083 alloy processed by ECAP. J Alloys Compd 378:233–236CrossRef Stolyarov VV, Lapovok R (2004) Effect of backpressure on structure and properties of AA5083 alloy processed by ECAP. J Alloys Compd 378:233–236CrossRef
13.
Zurück zum Zitat Chang SY, Lee JG, Park KT, Shin DH (2001) Microstructures and mechanical properties of equal channel angular pressed 5083 Al alloy. Mater Trans 42:1074–1080CrossRef Chang SY, Lee JG, Park KT, Shin DH (2001) Microstructures and mechanical properties of equal channel angular pressed 5083 Al alloy. Mater Trans 42:1074–1080CrossRef
14.
Zurück zum Zitat Valiev RZ, Langdon TG (2006) Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog Mater Sci 51:881–981CrossRef Valiev RZ, Langdon TG (2006) Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog Mater Sci 51:881–981CrossRef
15.
Zurück zum Zitat Zhilyaev AP, Langdon TG (2008) Using high-pressure torsion for metal processing: fundamentals and applications. Prog Mater Sci 53:893–979CrossRef Zhilyaev AP, Langdon TG (2008) Using high-pressure torsion for metal processing: fundamentals and applications. Prog Mater Sci 53:893–979CrossRef
16.
Zurück zum Zitat Saito Y, Utsunomiya H, Tsuji N, Sakai T (1999) Novel ultra-high straining process for bulk materials—development of the accumulative roll-bonding (ARB) process. Acta Mater 47:579–583CrossRef Saito Y, Utsunomiya H, Tsuji N, Sakai T (1999) Novel ultra-high straining process for bulk materials—development of the accumulative roll-bonding (ARB) process. Acta Mater 47:579–583CrossRef
17.
Zurück zum Zitat Tsuji N, Saito Y, Lee S-H, Minamino Y (2003) ARB (Accumulative Roll-Bonding) and other new techniques to produce bulk ultrafine grained materials. Adv Eng Mater 5:338–344CrossRef Tsuji N, Saito Y, Lee S-H, Minamino Y (2003) ARB (Accumulative Roll-Bonding) and other new techniques to produce bulk ultrafine grained materials. Adv Eng Mater 5:338–344CrossRef
18.
Zurück zum Zitat Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mater Sci Eng, R 50:1–78CrossRef Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mater Sci Eng, R 50:1–78CrossRef
19.
Zurück zum Zitat Witkin DB, Lavernia EJ (2006) Synthesis and mechanical behavior of nanostructured materials via cryomilling. Prog Mater Sci 51:1–60CrossRef Witkin DB, Lavernia EJ (2006) Synthesis and mechanical behavior of nanostructured materials via cryomilling. Prog Mater Sci 51:1–60CrossRef
20.
Zurück zum Zitat Kwon YJ, Saito N, Shigematsu I (2002) Friction stir process as a new manufacturing technique of ultrafine grained aluminum alloy. J Mater Sci Lett 21:1473–1476CrossRef Kwon YJ, Saito N, Shigematsu I (2002) Friction stir process as a new manufacturing technique of ultrafine grained aluminum alloy. J Mater Sci Lett 21:1473–1476CrossRef
21.
Zurück zum Zitat Su J-Q, Nelson TW, Sterling CJ (2003) A new route to bulk nanocrystalline materials. J Mater Res 18:1757–1760CrossRef Su J-Q, Nelson TW, Sterling CJ (2003) A new route to bulk nanocrystalline materials. J Mater Res 18:1757–1760CrossRef
22.
Zurück zum Zitat Charit I, Mishra RS (2005) Low temperature superplasticity in a friction-stir-processed ultrafine grained Al–Zn–Mg–Sc alloy. Acta Mater 53:4211–4223CrossRef Charit I, Mishra RS (2005) Low temperature superplasticity in a friction-stir-processed ultrafine grained Al–Zn–Mg–Sc alloy. Acta Mater 53:4211–4223CrossRef
23.
Zurück zum Zitat Ma ZY, Mishra RS (2005) Development of ultrafine-grained microstructure and low temperature (0.48 T m) superplasticity in friction stir processed Al–Mg–Zr. Scripta Mater 53:75–80CrossRef Ma ZY, Mishra RS (2005) Development of ultrafine-grained microstructure and low temperature (0.48 T m) superplasticity in friction stir processed Al–Mg–Zr. Scripta Mater 53:75–80CrossRef
25.
Zurück zum Zitat Su JQ, Nelson TW, Sterling CJ (2006) Grain refinement of aluminum alloys by friction stir processing. Philos Mag 86:1–24CrossRef Su JQ, Nelson TW, Sterling CJ (2006) Grain refinement of aluminum alloys by friction stir processing. Philos Mag 86:1–24CrossRef
26.
Zurück zum Zitat Ma ZY, Liu FC, Mishra RS (2010) Superplastic deformation mechanism of an ultrafine-grained aluminum alloy produced by friction stir processing. Acta Mater 58:4693–4704CrossRef Ma ZY, Liu FC, Mishra RS (2010) Superplastic deformation mechanism of an ultrafine-grained aluminum alloy produced by friction stir processing. Acta Mater 58:4693–4704CrossRef
27.
Zurück zum Zitat Kumar N, Mishra RS, Huskamp CS, Sankaran KK (2011) Critical grain size for change in deformation behavior in ultrafine grained Al–Mg–Sc alloy. Scripta Mater 64:576–579CrossRef Kumar N, Mishra RS, Huskamp CS, Sankaran KK (2011) Critical grain size for change in deformation behavior in ultrafine grained Al–Mg–Sc alloy. Scripta Mater 64:576–579CrossRef
28.
Zurück zum Zitat Kumar N, Mishra RS, Huskamp CS, Sankaran KK (2011) Microstructure and mechanical behavior of friction stir processed ultrafine grained Al–Mg–Sc alloy. Mater Sci Eng, A 528:5883–5887CrossRef Kumar N, Mishra RS, Huskamp CS, Sankaran KK (2011) Microstructure and mechanical behavior of friction stir processed ultrafine grained Al–Mg–Sc alloy. Mater Sci Eng, A 528:5883–5887CrossRef
29.
Zurück zum Zitat Kumar N, Mishra RS (2013) Ultrafine-grained Al–Mg–Sc alloy via friction-stir processing. Metall Mat Trans A 44:934–945CrossRef Kumar N, Mishra RS (2013) Ultrafine-grained Al–Mg–Sc alloy via friction-stir processing. Metall Mat Trans A 44:934–945CrossRef
30.
Zurück zum Zitat May J, Höppel HW, Göken M (2005) Strain rate sensitivity of ultrafine-grained aluminium processed by severe plastic deformation. Scripta Mater 53:189–194CrossRef May J, Höppel HW, Göken M (2005) Strain rate sensitivity of ultrafine-grained aluminium processed by severe plastic deformation. Scripta Mater 53:189–194CrossRef
31.
Zurück zum Zitat Wei Q, Cheng S, Ramesh KT, Ma E (2004) Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals. Mater Sci Eng, A 381:71–79CrossRef Wei Q, Cheng S, Ramesh KT, Ma E (2004) Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals. Mater Sci Eng, A 381:71–79CrossRef
32.
Zurück zum Zitat Ding Y, Jiang J, Shan A (2009) Plastic instability and strain rate sensitivity of ultrafine-grained iron. J Alloys Compd 487:517–521CrossRef Ding Y, Jiang J, Shan A (2009) Plastic instability and strain rate sensitivity of ultrafine-grained iron. J Alloys Compd 487:517–521CrossRef
33.
Zurück zum Zitat Conrad H, Jung K (2005) On the strain rate sensitivity of the flow stress of ultrafine-grained Cu processed by equal channel angular extrusion (ECAE). Scripta Mater 53:581–584CrossRef Conrad H, Jung K (2005) On the strain rate sensitivity of the flow stress of ultrafine-grained Cu processed by equal channel angular extrusion (ECAE). Scripta Mater 53:581–584CrossRef
34.
Zurück zum Zitat Carreker RP Jr, Hibbard WR Jr (1953) Tensile deformation of high-purity copper as a function of temperature, strain rate, and grain size. Acta Metall 1:654–663CrossRef Carreker RP Jr, Hibbard WR Jr (1953) Tensile deformation of high-purity copper as a function of temperature, strain rate, and grain size. Acta Metall 1:654–663CrossRef
35.
Zurück zum Zitat Valiev RZ, Enikeev NA, Murashkin MY, Kazykhanov VU, Sauvage X (2010) On the origin of the extremely high strength of ultrafine-grained Al alloys produced by severe plastic deformation. Scripta Mater 63:949–952CrossRef Valiev RZ, Enikeev NA, Murashkin MY, Kazykhanov VU, Sauvage X (2010) On the origin of the extremely high strength of ultrafine-grained Al alloys produced by severe plastic deformation. Scripta Mater 63:949–952CrossRef
36.
Zurück zum Zitat Yapici GG, Beyerlein IJ, Karaman I, Tomé CN (2007) Tension–compression asymmetry in severely deformed pure copper. Acta Mater 55:4603–4613CrossRef Yapici GG, Beyerlein IJ, Karaman I, Tomé CN (2007) Tension–compression asymmetry in severely deformed pure copper. Acta Mater 55:4603–4613CrossRef
37.
Zurück zum Zitat Tsuji N, Ito Y, Saito Y, Minamino Y (2002) Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing. Scripta Mater 47:893–899CrossRef Tsuji N, Ito Y, Saito Y, Minamino Y (2002) Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing. Scripta Mater 47:893–899CrossRef
38.
Zurück zum Zitat Koch CC (2003) Ductility in nanostructured and ultra fine-grained materials: recent evidence for optimism. J Meta Nanocryst Mater 18:9–20CrossRef Koch CC (2003) Ductility in nanostructured and ultra fine-grained materials: recent evidence for optimism. J Meta Nanocryst Mater 18:9–20CrossRef
39.
Zurück zum Zitat Mukai T, Kawazoe M, Higashi K (1998) Dynamic mechanical properties of a near-nano aluminum alloy processed by equal-channel-angular-extrusion. Nanostruct Mater 10:755–765CrossRef Mukai T, Kawazoe M, Higashi K (1998) Dynamic mechanical properties of a near-nano aluminum alloy processed by equal-channel-angular-extrusion. Nanostruct Mater 10:755–765CrossRef
40.
Zurück zum Zitat Kapoor R, De PS, Mishra RS (2010) An analysis of strength and ductility of ultrafine grained Al alloys, Mate. Sci Forum 633–634:165–167 Kapoor R, De PS, Mishra RS (2010) An analysis of strength and ductility of ultrafine grained Al alloys, Mate. Sci Forum 633–634:165–167
41.
Zurück zum Zitat Filatov YA, Yelagin VI, Zakharov VV (2000) New Al–Mg–Sc alloys. Mater Sci Eng, A 280:97–101CrossRef Filatov YA, Yelagin VI, Zakharov VV (2000) New Al–Mg–Sc alloys. Mater Sci Eng, A 280:97–101CrossRef
42.
Zurück zum Zitat Ahmad Z (2003) The properties and application of scandium-reinforced aluminum. JOM 55(3):35–39CrossRef Ahmad Z (2003) The properties and application of scandium-reinforced aluminum. JOM 55(3):35–39CrossRef
43.
Zurück zum Zitat Davydov VG, Elagin VI, Zakharov VV, Rostova TD (1996) Alloying aluminum alloys with scandium and zirconium additives. Met Sci Heat Treat 38:347–352CrossRef Davydov VG, Elagin VI, Zakharov VV, Rostova TD (1996) Alloying aluminum alloys with scandium and zirconium additives. Met Sci Heat Treat 38:347–352CrossRef
44.
Zurück zum Zitat Yin Z, Pan Q, Zhang Y, Jiang F (2000) Effect of minor Sc and Zr on the microstructure and mechanical properties of Al–Mg based alloys. Mater Sci Eng A 280:151–155CrossRef Yin Z, Pan Q, Zhang Y, Jiang F (2000) Effect of minor Sc and Zr on the microstructure and mechanical properties of Al–Mg based alloys. Mater Sci Eng A 280:151–155CrossRef
45.
Zurück zum Zitat Kaibyshev R, Sitdikov O, Olenyov S (2002) Ultrafine grain formation during equal channel angular extrusion in an Al–Mg–Sc Alloy. In: Zhu YT, Langdon TG, Mishra RS, Semiatin SL, Saran MJ, Lowe TC (eds) Ultrafine grained materials II. TMS Annual Meeting, Seattle, pp 65–74 Kaibyshev R, Sitdikov O, Olenyov S (2002) Ultrafine grain formation during equal channel angular extrusion in an Al–Mg–Sc Alloy. In: Zhu YT, Langdon TG, Mishra RS, Semiatin SL, Saran MJ, Lowe TC (eds) Ultrafine grained materials II. TMS Annual Meeting, Seattle, pp 65–74
46.
Zurück zum Zitat Valiev RZ, Vishnyakov YD, Mulyukov RR, Fainshtein GS (1990) On the decrease of curie temperature in submicron-grained nickel. Phys Status Solidi A 117:549–553CrossRef Valiev RZ, Vishnyakov YD, Mulyukov RR, Fainshtein GS (1990) On the decrease of curie temperature in submicron-grained nickel. Phys Status Solidi A 117:549–553CrossRef
47.
Zurück zum Zitat Sabirov I, Estrin Y, Barnett MR, Timokhina I, Hodgson PD (2008) Enhanced tensile ductility of an ultra-fine-grained aluminum alloy. Scripta Mater 58:163–166CrossRef Sabirov I, Estrin Y, Barnett MR, Timokhina I, Hodgson PD (2008) Enhanced tensile ductility of an ultra-fine-grained aluminum alloy. Scripta Mater 58:163–166CrossRef
48.
49.
Zurück zum Zitat Dieter GE (1988) Mechanical metallurgy. McGraw-Hill, Singapore Dieter GE (1988) Mechanical metallurgy. McGraw-Hill, Singapore
50.
Zurück zum Zitat Kocks UF, Mecking H (2003) Physics and phenomenology of strain hardening: the FCC case. Prog Mater Sci 48:171–273CrossRef Kocks UF, Mecking H (2003) Physics and phenomenology of strain hardening: the FCC case. Prog Mater Sci 48:171–273CrossRef
51.
Zurück zum Zitat Wang Y, Chen M, Zhou F, Ma E (2002) High tensile ductility in a nanostructured metal. Nature 419:912–915CrossRef Wang Y, Chen M, Zhou F, Ma E (2002) High tensile ductility in a nanostructured metal. Nature 419:912–915CrossRef
52.
Zurück zum Zitat Ma E (2003) Instabilities and ductility of nanocrystalline and ultrafine-grained metals. Scripta Mater 49:663–668CrossRef Ma E (2003) Instabilities and ductility of nanocrystalline and ultrafine-grained metals. Scripta Mater 49:663–668CrossRef
53.
Zurück zum Zitat Torre D, Pereloma EV, Davies CHJ (2004) Strain rate sensitivity and apparent activation volume measurements on equal channel angular extruded Cu processed by one to twelve passes. Scripta Mater 51:367–371CrossRef Torre D, Pereloma EV, Davies CHJ (2004) Strain rate sensitivity and apparent activation volume measurements on equal channel angular extruded Cu processed by one to twelve passes. Scripta Mater 51:367–371CrossRef
54.
Zurück zum Zitat Wei Y, Gao H (2008) An elastic–viscoplastic model of deformation in nanocrystalline metals based on coupled mechanisms in grain boundaries and grain interiors. Mater Sci Eng, A 478:16–25CrossRef Wei Y, Gao H (2008) An elastic–viscoplastic model of deformation in nanocrystalline metals based on coupled mechanisms in grain boundaries and grain interiors. Mater Sci Eng, A 478:16–25CrossRef
55.
Zurück zum Zitat Kubin LP, Chihab K, Estrin Y (1988) The rate dependence of the portevin-Le chatelier effect. Acta Metall 36:2707–2718CrossRef Kubin LP, Chihab K, Estrin Y (1988) The rate dependence of the portevin-Le chatelier effect. Acta Metall 36:2707–2718CrossRef
56.
Zurück zum Zitat Han BQ, Huang J, Zhu YT, Lavernia EJ (2006) Negative strain-rate sensitivity in a nanostructured aluminum alloy. Adv Eng Mater 8:945–947CrossRef Han BQ, Huang J, Zhu YT, Lavernia EJ (2006) Negative strain-rate sensitivity in a nanostructured aluminum alloy. Adv Eng Mater 8:945–947CrossRef
58.
Zurück zum Zitat Fan GJ, Wang GY, Choo H, Liaw PK, Park YS, Han BQ, Lavernia EJ (2005) Deformation behavior of an ultrafine-grained Al–Mg alloy at different strain rates. Scripta Mater 52:929–933CrossRef Fan GJ, Wang GY, Choo H, Liaw PK, Park YS, Han BQ, Lavernia EJ (2005) Deformation behavior of an ultrafine-grained Al–Mg alloy at different strain rates. Scripta Mater 52:929–933CrossRef
59.
Zurück zum Zitat Sha G, Yao L, Liao X, Ringer SP, Duan ZC, Langdon TG (2011) Segregation of solute elements at grain boundaries in an ultrafine grained Al–Zn–Mg–Cu alloy. Ultramicroscopy 111:500–505CrossRef Sha G, Yao L, Liao X, Ringer SP, Duan ZC, Langdon TG (2011) Segregation of solute elements at grain boundaries in an ultrafine grained Al–Zn–Mg–Cu alloy. Ultramicroscopy 111:500–505CrossRef
60.
Zurück zum Zitat Meyers MA, Mishra A, Benson DJ (2006) Mechanical properties of nanocrystalline materials. Prog Mater Sci 51:427–556CrossRef Meyers MA, Mishra A, Benson DJ (2006) Mechanical properties of nanocrystalline materials. Prog Mater Sci 51:427–556CrossRef
61.
Zurück zum Zitat Blum W, Zeng XH (2009) A simple dislocation model of deformation resistance of ultrafine-grained materials explaining Hall–Petch strengthening and enhanced strain rate sensitivity. Acta Mater 57:1966–1974CrossRef Blum W, Zeng XH (2009) A simple dislocation model of deformation resistance of ultrafine-grained materials explaining Hall–Petch strengthening and enhanced strain rate sensitivity. Acta Mater 57:1966–1974CrossRef
62.
Zurück zum Zitat Kapoor R, Gupta C, Sharma G, Chakravartty JK (2005) Deformation behavior of Al–1.5 Mg processed using the equal channel angular pressing technique. Scripta Mater 53:1389–1393CrossRef Kapoor R, Gupta C, Sharma G, Chakravartty JK (2005) Deformation behavior of Al–1.5 Mg processed using the equal channel angular pressing technique. Scripta Mater 53:1389–1393CrossRef
63.
Zurück zum Zitat Muñoz-Morris MA, Garcia OC, Morris DG (2003) Mechanical behaviour of dilute Al–Mg alloy processed by equal channel angular pressing. Scripta Mater 48:213–218CrossRef Muñoz-Morris MA, Garcia OC, Morris DG (2003) Mechanical behaviour of dilute Al–Mg alloy processed by equal channel angular pressing. Scripta Mater 48:213–218CrossRef
64.
Zurück zum Zitat Conrad H, Narayan J (2002) Mechanisms for grain size hardening and softening in Zn. Acta Mater 50:5067–5078CrossRef Conrad H, Narayan J (2002) Mechanisms for grain size hardening and softening in Zn. Acta Mater 50:5067–5078CrossRef
65.
Zurück zum Zitat Wang YM, Ma E (2004) Three strategies to achieve uniform tensile deformation in a nanostructured metal. Acta Mater 52:1699–1709CrossRef Wang YM, Ma E (2004) Three strategies to achieve uniform tensile deformation in a nanostructured metal. Acta Mater 52:1699–1709CrossRef
66.
Zurück zum Zitat Li YJ, Zeng XH, Blum W (2004) Transition from strengthening to softening by grain boundaries in ultrafine-grained Cu. Acta Mater 52:5009–5018CrossRef Li YJ, Zeng XH, Blum W (2004) Transition from strengthening to softening by grain boundaries in ultrafine-grained Cu. Acta Mater 52:5009–5018CrossRef
67.
Zurück zum Zitat Conrad H, Yang D (2002) Plastic deformation kinetics of electrodeposited Cu foil at low and intermediate homologous temperatures. J Electron Mater 31:304–312CrossRef Conrad H, Yang D (2002) Plastic deformation kinetics of electrodeposited Cu foil at low and intermediate homologous temperatures. J Electron Mater 31:304–312CrossRef
68.
Zurück zum Zitat Deep G, Plumtree A (1975) Yield point behavior in extruded aluminum rod. Metall Trans A6:359–366CrossRef Deep G, Plumtree A (1975) Yield point behavior in extruded aluminum rod. Metall Trans A6:359–366CrossRef
69.
Zurück zum Zitat Lloyd DJ, Morris LR (1977) Luders band deformation in a fine grained aluminium alloy. Acta Metall 25:857–861CrossRef Lloyd DJ, Morris LR (1977) Luders band deformation in a fine grained aluminium alloy. Acta Metall 25:857–861CrossRef
70.
Zurück zum Zitat Wyrzykowski JW, Grabski MW (1982) Lüders deformation in ultrafine-grained pure aluminium. Mater Sci Eng 56:197–200CrossRef Wyrzykowski JW, Grabski MW (1982) Lüders deformation in ultrafine-grained pure aluminium. Mater Sci Eng 56:197–200CrossRef
71.
Zurück zum Zitat Hung PC, Sun PL, Yu CY, Kao PW, Chang CP (2005) Inhomogeneous tensile deformation in ultrafine-grained aluminum. Scripta Mater 53:647–652CrossRef Hung PC, Sun PL, Yu CY, Kao PW, Chang CP (2005) Inhomogeneous tensile deformation in ultrafine-grained aluminum. Scripta Mater 53:647–652CrossRef
Metadaten
Titel
Plastic deformation behavior of ultrafine-grained Al–Mg–Sc alloy
verfasst von
N. Kumar
M. Komarasamy
R. S. Mishra
Publikationsdatum
01.06.2014
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 12/2014
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-014-8115-5

Weitere Artikel der Ausgabe 12/2014

Journal of Materials Science 12/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.