Skip to main content
Erschienen in: Cellulose 4/2014

01.08.2014 | Original Paper

Poly(ε-caprolactone) (PCL)/cellulose nano-crystal (CNC) nanocomposites and foams

verfasst von: Hao-Yang Mi, Xin Jing, Jun Peng, Max R. Salick, Xiang-Fang Peng, Lih-Sheng Turng

Erschienen in: Cellulose | Ausgabe 4/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Poly(ε-caprolactone) (PCL)/cellulose nanocrystal (CNC) nanocomposites were produced via twin-screw extrusion. Microcellular nanocomposite samples were produced with microcellular injection molding using carbon dioxide (CO2) as physical blowing agent. The foaming behavior, physical properties, thermal properties, crystallization behavior, and biocompatibility were investigated. It was found that the CNCs interacted with the PCL matrix which led to a strong interface. The CNCs effectively acted as nucleation agents in microcellular injection molding. Both solid and foamed samples with higher levels of CNC content showed higher tensile moduli, complex viscosities, and storage moduli due to the reinforcement effects of CNCs. Furthermore, improvement in the foamed samples was more significant due to their fine cell structure. The addition of CNCs caused a reduction of the decomposition temperature and an increase in the glass transition temperature, crystallization temperature, and crystallinity of PCL. Moreover, the biocompatibility of the foamed nanocomposites with low CNC content was verified by 3T3 fibroblast cell culture.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Agarwal S, Speyerer C (2010) Degradable blends of semi-crystalline and amorphous branched poly(caprolactone): effect of microstructure on blend properties. Polymer 51:1024–1032CrossRef Agarwal S, Speyerer C (2010) Degradable blends of semi-crystalline and amorphous branched poly(caprolactone): effect of microstructure on blend properties. Polymer 51:1024–1032CrossRef
Zurück zum Zitat Alloin F, D’Aprea A, Dufresne A, El Kissi N, Bossard F (2011) Poly(oxyethylene) and ramie whiskers based nanocomposites: influence of processing: extrusion and casting/evaporation. Cellulose 18:957–973CrossRef Alloin F, D’Aprea A, Dufresne A, El Kissi N, Bossard F (2011) Poly(oxyethylene) and ramie whiskers based nanocomposites: influence of processing: extrusion and casting/evaporation. Cellulose 18:957–973CrossRef
Zurück zum Zitat Angles MN, Dufresne A (2000) Plasticized starch/tunicin whiskers nanocomposites. 1. Structural analysis. Macromolecules 33:8344–8353CrossRef Angles MN, Dufresne A (2000) Plasticized starch/tunicin whiskers nanocomposites. 1. Structural analysis. Macromolecules 33:8344–8353CrossRef
Zurück zum Zitat Bonini C, Heux L, Cavaille JY, Lindner P, Dewhurst C, Terech P (2002) Rodlike cellulose whiskers coated with surfactant: a small-angle neutron scattering characterization. Langmuir 18:3311–3314CrossRef Bonini C, Heux L, Cavaille JY, Lindner P, Dewhurst C, Terech P (2002) Rodlike cellulose whiskers coated with surfactant: a small-angle neutron scattering characterization. Langmuir 18:3311–3314CrossRef
Zurück zum Zitat Cao XD, Vicens MAR, Magalhaes WLE, Loboa EG, Lucia LA (2009) Cellulose nanocrystals as fillers for electrospun PCL nanocomposite scaffolds. Abstr Pap Am Chem S 237 Cao XD, Vicens MAR, Magalhaes WLE, Loboa EG, Lucia LA (2009) Cellulose nanocrystals as fillers for electrospun PCL nanocomposite scaffolds. Abstr Pap Am Chem S 237
Zurück zum Zitat de Menezes AJ, Siqueira G, Curvelo AAS, Dufresne A (2009) Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymer 50:4552–4563CrossRef de Menezes AJ, Siqueira G, Curvelo AAS, Dufresne A (2009) Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymer 50:4552–4563CrossRef
Zurück zum Zitat Ding J, Ma WH, Song FJ, Zhong Q (2013) Effect of nano-Calcium Carbonate on microcellular foaming of polypropylene. J Mater Sci 48:2504–2511CrossRef Ding J, Ma WH, Song FJ, Zhong Q (2013) Effect of nano-Calcium Carbonate on microcellular foaming of polypropylene. J Mater Sci 48:2504–2511CrossRef
Zurück zum Zitat Dolomanova V, Kumar V, Pyrz R, Madaleno LAO, Jensen LR, Rauhe JCM (2013) Foaming of microcellular PP-MWCNT nanocomposite in a sub-critical CO2 process. Cell Polym 32:1–19 Dolomanova V, Kumar V, Pyrz R, Madaleno LAO, Jensen LR, Rauhe JCM (2013) Foaming of microcellular PP-MWCNT nanocomposite in a sub-critical CO2 process. Cell Polym 32:1–19
Zurück zum Zitat Donoghue PS, Lamond R, Boomkamp SD, Sun T, Gadegaard N, Riehle MO, Barnett SC (2013) The development of a epsilon-polycaprolactone scaffold for central nervous system repair. Tissue Eng Pt A 19:497–507CrossRef Donoghue PS, Lamond R, Boomkamp SD, Sun T, Gadegaard N, Riehle MO, Barnett SC (2013) The development of a epsilon-polycaprolactone scaffold for central nervous system repair. Tissue Eng Pt A 19:497–507CrossRef
Zurück zum Zitat Espert A, Vilaplana F, Karlsson S (2004) Comparison of water absorption in natural cellulosic fibres from wood and one-year crops in polypropylene composites and its influence on their mechanical properties. Compos Part A Appl S 35:1267–1276CrossRef Espert A, Vilaplana F, Karlsson S (2004) Comparison of water absorption in natural cellulosic fibres from wood and one-year crops in polypropylene composites and its influence on their mechanical properties. Compos Part A Appl S 35:1267–1276CrossRef
Zurück zum Zitat Fang B, Wan YZ, Tang TT, Gao C, Dai KR (2009) Proliferation and osteoblastic differentiation of human bone marrow stromal cells on hydroxyapatite/bacterial cellulose nanocomposite scaffolds. Tissue Eng Pt A 15:1091–1098CrossRef Fang B, Wan YZ, Tang TT, Gao C, Dai KR (2009) Proliferation and osteoblastic differentiation of human bone marrow stromal cells on hydroxyapatite/bacterial cellulose nanocomposite scaffolds. Tissue Eng Pt A 15:1091–1098CrossRef
Zurück zum Zitat Filpponen I, Lucia LA, Argyropoulos DS (2008) CELL 269-cellulose nanocrystals as scaffolds for nanodevices. Abstr Pap Am Chem S 235 Filpponen I, Lucia LA, Argyropoulos DS (2008) CELL 269-cellulose nanocrystals as scaffolds for nanodevices. Abstr Pap Am Chem S 235
Zurück zum Zitat Gea S, Reynolds CT, Roohpur N, Soykeabkaew N, Wirjosentono B, Bilotti E, Peijs T (2010) Biodegradable composites based on poly(epsilon-caprolactone) and bacterial cellulose as a reinforcing agent. J Biobased Mater Bio 4:384–390CrossRef Gea S, Reynolds CT, Roohpur N, Soykeabkaew N, Wirjosentono B, Bilotti E, Peijs T (2010) Biodegradable composites based on poly(epsilon-caprolactone) and bacterial cellulose as a reinforcing agent. J Biobased Mater Bio 4:384–390CrossRef
Zurück zum Zitat Guo QP, Groeninckx G (2001) Crystallization kinetics of poly (epsilon-caprolactone) in miscible thermosetting polymer blends of epoxy resin and poly (epsilon-caprolactone). Polymer 42:8647–8655CrossRef Guo QP, Groeninckx G (2001) Crystallization kinetics of poly (epsilon-caprolactone) in miscible thermosetting polymer blends of epoxy resin and poly (epsilon-caprolactone). Polymer 42:8647–8655CrossRef
Zurück zum Zitat Honma T, Senda T, Inoue Y (2003) Thermal properties and crystallization behaviour of blends of poly(epsilon-caprolactone) with chitin and chitosan. Polym Int 52:1839–1846CrossRef Honma T, Senda T, Inoue Y (2003) Thermal properties and crystallization behaviour of blends of poly(epsilon-caprolactone) with chitin and chitosan. Polym Int 52:1839–1846CrossRef
Zurück zum Zitat Ishihara K, Ishikawa E, Iwasaki Y, Nakabayashi N (1999) Inhibition of fibroblast cell adhesion on substrate by coating with 2-methacryloyloxyethyl phosphorylcholine polymers. J Biomat Sci-Polym E 10:1047–1061CrossRef Ishihara K, Ishikawa E, Iwasaki Y, Nakabayashi N (1999) Inhibition of fibroblast cell adhesion on substrate by coating with 2-methacryloyloxyethyl phosphorylcholine polymers. J Biomat Sci-Polym E 10:1047–1061CrossRef
Zurück zum Zitat Juntaro J, Ummartyotin S, Sain M, Manuspiya H (2012) Bacterial cellulose reinforced polyurethane-based resin nanocomposite: a study of how ethanol and processing pressure affect physical, mechanical and dielectric properties. Carbohyd Polym 87:2464–2469CrossRef Juntaro J, Ummartyotin S, Sain M, Manuspiya H (2012) Bacterial cellulose reinforced polyurethane-based resin nanocomposite: a study of how ethanol and processing pressure affect physical, mechanical and dielectric properties. Carbohyd Polym 87:2464–2469CrossRef
Zurück zum Zitat Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Edit 44:3358–3393CrossRef Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Edit 44:3358–3393CrossRef
Zurück zum Zitat Kramschuster A, Turng LS (2010) An injection molding process for manufacturing highly porous and interconnected biodegradable polymer matrices for use as tissue engineering scaffolds. J Biomed Mater Res B 92B:366–376 Kramschuster A, Turng LS (2010) An injection molding process for manufacturing highly porous and interconnected biodegradable polymer matrices for use as tissue engineering scaffolds. J Biomed Mater Res B 92B:366–376
Zurück zum Zitat Lee JWS, Park CB (2006) Use of nitrogen as a blowing agent for the production of fine-celled high-density polyethylene foams. Macromol Mater Eng 291:1233–1244CrossRef Lee JWS, Park CB (2006) Use of nitrogen as a blowing agent for the production of fine-celled high-density polyethylene foams. Macromol Mater Eng 291:1233–1244CrossRef
Zurück zum Zitat Lee BH, Kim HJ, Yang HS (2012) Polymerization of aniline on bacterial cellulose and characterization of bacterial cellulose/polyaniline nanocomposite films. Curr Appl Phys 12:75–80CrossRef Lee BH, Kim HJ, Yang HS (2012) Polymerization of aniline on bacterial cellulose and characterization of bacterial cellulose/polyaniline nanocomposite films. Curr Appl Phys 12:75–80CrossRef
Zurück zum Zitat Liu HX, Huang YY, Yuan L, He PS, Cai ZH, Shen YL, Xu YM, Yu Y, Xiong HG (2010) Isothermal crystallization kinetics of modified bamboo cellulose/PCL composites. Carbohyd Polym 79:513–519CrossRef Liu HX, Huang YY, Yuan L, He PS, Cai ZH, Shen YL, Xu YM, Yu Y, Xiong HG (2010) Isothermal crystallization kinetics of modified bamboo cellulose/PCL composites. Carbohyd Polym 79:513–519CrossRef
Zurück zum Zitat Liu S, Jeannes S, Chen BQ (2011) Nanofibrous bacterial cellulose/chitosan scaffolds: preparation, structure and mechanical properties. J Biomater Tiss Eng 1:60–67CrossRef Liu S, Jeannes S, Chen BQ (2011) Nanofibrous bacterial cellulose/chitosan scaffolds: preparation, structure and mechanical properties. J Biomater Tiss Eng 1:60–67CrossRef
Zurück zum Zitat Ljungberg N, Bonini C, Bortolussi F, Boisson C, Heux L, Cavaille JY (2005) New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene: effect of surface and dispersion characteristics. Biomacromolecules 6:2732–2739CrossRef Ljungberg N, Bonini C, Bortolussi F, Boisson C, Heux L, Cavaille JY (2005) New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene: effect of surface and dispersion characteristics. Biomacromolecules 6:2732–2739CrossRef
Zurück zum Zitat Ljungberg N, Cavaille JY, Heux L (2006) Nanocomposites of isotactic polypropylene reinforced with rod-like cellulose whiskers. Polymer 47:6285–6292CrossRef Ljungberg N, Cavaille JY, Heux L (2006) Nanocomposites of isotactic polypropylene reinforced with rod-like cellulose whiskers. Polymer 47:6285–6292CrossRef
Zurück zum Zitat Lonnberg H, Fogelstrom L, Berglund MASASL, Malmstrom E, Hult A (2008) Surface grafting of microfibrillated cellulose with poly(epsilon-caprolactone)—synthesis and characterization. Eur Polym J 44:2991–2997CrossRef Lonnberg H, Fogelstrom L, Berglund MASASL, Malmstrom E, Hult A (2008) Surface grafting of microfibrillated cellulose with poly(epsilon-caprolactone)—synthesis and characterization. Eur Polym J 44:2991–2997CrossRef
Zurück zum Zitat Marcovich NE, Auad ML, Bellesi NE, Nutt SR, Aranguren MI (2006) Cellulose micro/nanocrystals reinforced polyurethane. J Mater Res 21:870–881CrossRef Marcovich NE, Auad ML, Bellesi NE, Nutt SR, Aranguren MI (2006) Cellulose micro/nanocrystals reinforced polyurethane. J Mater Res 21:870–881CrossRef
Zurück zum Zitat Mathew AP, Dufresne A (2002) Morphological investigation of nanocomposites from sorbitol plasticized starch and tunicin whiskers. Biomacromolecules 3:609–617CrossRef Mathew AP, Dufresne A (2002) Morphological investigation of nanocomposites from sorbitol plasticized starch and tunicin whiskers. Biomacromolecules 3:609–617CrossRef
Zurück zum Zitat Matzinos P, Tserki V, Gianikouris C, Pavlidou E, Panayiotou C (2002) Processing and characterization of LDPE/starch/PCL blends. Eur Polym J 38:1713–1720CrossRef Matzinos P, Tserki V, Gianikouris C, Pavlidou E, Panayiotou C (2002) Processing and characterization of LDPE/starch/PCL blends. Eur Polym J 38:1713–1720CrossRef
Zurück zum Zitat Mi HY, Salick MR, Jing X, Jacques BR, Crone WC, Peng XF, Turng LS (2013) Characterization of thermoplastic polyurethane/polylactic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding. Mat Sci Eng C Mater 33:4767–4776CrossRef Mi HY, Salick MR, Jing X, Jacques BR, Crone WC, Peng XF, Turng LS (2013) Characterization of thermoplastic polyurethane/polylactic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding. Mat Sci Eng C Mater 33:4767–4776CrossRef
Zurück zum Zitat Morin A, Dufresne A (2002) Nanocomposites of chitin whiskers from Riftia tubes and poly(caprolactone). Macromolecules 35:2190–2199CrossRef Morin A, Dufresne A (2002) Nanocomposites of chitin whiskers from Riftia tubes and poly(caprolactone). Macromolecules 35:2190–2199CrossRef
Zurück zum Zitat Naguib HE, Park CB, Lee PC, Xu DL (2006) A study on the foaming behaviors of PP resins with talc as nucleating agent. J Polym Eng 26:565–587CrossRef Naguib HE, Park CB, Lee PC, Xu DL (2006) A study on the foaming behaviors of PP resins with talc as nucleating agent. J Polym Eng 26:565–587CrossRef
Zurück zum Zitat Oksman K, Mathew AP, Bondeson D, Kvien I (2006) Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Compos Sci Technol 66:2776–2784CrossRef Oksman K, Mathew AP, Bondeson D, Kvien I (2006) Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Compos Sci Technol 66:2776–2784CrossRef
Zurück zum Zitat Qua EH, Hornsby PR (2011) Preparation and characterisation of nanocellulose reinforced polyamide-6. Plast, Rubber Compos 40:300–306CrossRef Qua EH, Hornsby PR (2011) Preparation and characterisation of nanocellulose reinforced polyamide-6. Plast, Rubber Compos 40:300–306CrossRef
Zurück zum Zitat Reinsch VE, Kelley SS (1997) Crystallization of poly(hydroxybutyrate-co-hydroxyvalerate) in wood fiber-reinforced composites. J Appl Polym Sci 64:1785–1796CrossRef Reinsch VE, Kelley SS (1997) Crystallization of poly(hydroxybutyrate-co-hydroxyvalerate) in wood fiber-reinforced composites. J Appl Polym Sci 64:1785–1796CrossRef
Zurück zum Zitat Roy D, Semsarilar M, Guthrie JT, Perrier S (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38:2046–2064CrossRef Roy D, Semsarilar M, Guthrie JT, Perrier S (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38:2046–2064CrossRef
Zurück zum Zitat Sain S, Ray D, Mukhopadhyay A, Sengupta S, Kar T, Ennis CJ, Rahman PKSM (2012) Synthesis and characterization of PMMA-cellulose nanocomposites by in situ polymerization technique. J Appl Polym Sci 126:E127–E134CrossRef Sain S, Ray D, Mukhopadhyay A, Sengupta S, Kar T, Ennis CJ, Rahman PKSM (2012) Synthesis and characterization of PMMA-cellulose nanocomposites by in situ polymerization technique. J Appl Polym Sci 126:E127–E134CrossRef
Zurück zum Zitat Samir MASA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626CrossRef Samir MASA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626CrossRef
Zurück zum Zitat Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10:425–432CrossRef Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10:425–432CrossRef
Zurück zum Zitat Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2:728–765CrossRef Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2:728–765CrossRef
Zurück zum Zitat Siqueira G, Fraschini C, Bras J, Dufresne A, Prud’homme R, Laborie MP (2011) Impact of the nature and shape of cellulosic nanoparticles on the isothermal crystallization kinetics of poly(epsilon-caprolactone). Eur Polym J 47:2216–2227CrossRef Siqueira G, Fraschini C, Bras J, Dufresne A, Prud’homme R, Laborie MP (2011) Impact of the nature and shape of cellulosic nanoparticles on the isothermal crystallization kinetics of poly(epsilon-caprolactone). Eur Polym J 47:2216–2227CrossRef
Zurück zum Zitat Srithep Y, Turng LS, Sabo R, Clemons C (2012) Nanofibrillated cellulose (NFC) reinforced polyvinyl alcohol (PVOH) nanocomposites: properties, solubility of carbon dioxide, and foaming. Cellulose 19:1209–1223CrossRef Srithep Y, Turng LS, Sabo R, Clemons C (2012) Nanofibrillated cellulose (NFC) reinforced polyvinyl alcohol (PVOH) nanocomposites: properties, solubility of carbon dioxide, and foaming. Cellulose 19:1209–1223CrossRef
Zurück zum Zitat Wambua P, Ivens J, Verpoest I (2003) Natural fibres: can they replace glass in fibre reinforced plastics? Compos Sci Technol 63:1259–1264CrossRef Wambua P, Ivens J, Verpoest I (2003) Natural fibres: can they replace glass in fibre reinforced plastics? Compos Sci Technol 63:1259–1264CrossRef
Zurück zum Zitat Xiang CH, Taylor AG, Hinestroza JP, Frey MW (2013) Controlled release of nonionic compounds from poly(lactic acid)/cellulose nanocrystal nanocomposite fibers. J Appl Polym Sci 127:79–86CrossRef Xiang CH, Taylor AG, Hinestroza JP, Frey MW (2013) Controlled release of nonionic compounds from poly(lactic acid)/cellulose nanocrystal nanocomposite fibers. J Appl Polym Sci 127:79–86CrossRef
Zurück zum Zitat Yang J, Han CR, Duan JF, Xu F, Sun RC (2013) Mechanical and viscoelastic properties of cellulose nanocrystals reinforced poly(ethylene glycol) nanocomposite hydrogels. Acs Appl Mater Inter 5:3199–3207CrossRef Yang J, Han CR, Duan JF, Xu F, Sun RC (2013) Mechanical and viscoelastic properties of cellulose nanocrystals reinforced poly(ethylene glycol) nanocomposite hydrogels. Acs Appl Mater Inter 5:3199–3207CrossRef
Zurück zum Zitat Yoshioka M, Takabe K, Sugiyama J, Nishio Y (2006) Newly developed nanocomposites from cellulose acetate/layered silicate/poly(epsilon-caprolactone): synthesis and morphological characterization. J Wood Sci 52:121–127CrossRef Yoshioka M, Takabe K, Sugiyama J, Nishio Y (2006) Newly developed nanocomposites from cellulose acetate/layered silicate/poly(epsilon-caprolactone): synthesis and morphological characterization. J Wood Sci 52:121–127CrossRef
Zurück zum Zitat Zhao HB, Cui ZX, Sun XF, Turng LS, Peng XF (2013) Morphology and properties of injection molded solid and microcellular polylactic acid/polyhydroxybutyrate-valerate (PLA/PHBV) blends. Ind Eng Chem Res 52:2569–2581CrossRef Zhao HB, Cui ZX, Sun XF, Turng LS, Peng XF (2013) Morphology and properties of injection molded solid and microcellular polylactic acid/polyhydroxybutyrate-valerate (PLA/PHBV) blends. Ind Eng Chem Res 52:2569–2581CrossRef
Zurück zum Zitat Zimmermann T, Pohler E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6:754–761CrossRef Zimmermann T, Pohler E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6:754–761CrossRef
Metadaten
Titel
Poly(ε-caprolactone) (PCL)/cellulose nano-crystal (CNC) nanocomposites and foams
verfasst von
Hao-Yang Mi
Xin Jing
Jun Peng
Max R. Salick
Xiang-Fang Peng
Lih-Sheng Turng
Publikationsdatum
01.08.2014
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 4/2014
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-014-0327-y

Weitere Artikel der Ausgabe 4/2014

Cellulose 4/2014 Zur Ausgabe