Skip to main content
Erschienen in: Journal of Polymer Research 3/2024

01.03.2024 | Review paper

Poly (ethylene-co-methacrylic acid) (PEMA) ionomers and their applications including self-healing and shape memory applications

verfasst von: Shilpi Tiwari, Dibyendu S. Bag, Mayank Dwivedi

Erschienen in: Journal of Polymer Research | Ausgabe 3/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

PEMA [poly (ethylene-co-methacrylic acid)] ionomer is a cost-effective, commercially important class of random copolymer of ethylene and methacrylic acid (3–15 mol %) where 15–80% of the acid groups are neutralized to form metal salts. Such PEMA ionomers carry great potential for use in a wide variety of unique applications such as shape memory, packaging materials, compatibilizers, toughening agent, and effective water vapor barrier material in organic devices and photovoltaic applications. Besides, due to their ‘self-healing’ property after impact, these materials have attracted special attention to the material scientists and technologists for their use in armour applications. The potential of self-healing materials to enable them damage-tolerant and also the load-bearing capability are promising aspects to develop lightweight functional structures to meet aerospace application requirements. This review introduces the state-of-the-art discussion of such novel ionomeric materials and their applications, especially on self-healing and shape memory materials. Indeed, this review first enlightens a deep understanding of the fundamentals of this class of materials with its electrostatic interactions within such ionic polymeric materials as well as highlights their extended functional applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bazuin CG, Eisenberg A (1981) Modification of Polymer Properties through Ion Incorporation. Ind Eng Chem Prod Res Dev 20:271–286CrossRef Bazuin CG, Eisenberg A (1981) Modification of Polymer Properties through Ion Incorporation. Ind Eng Chem Prod Res Dev 20:271–286CrossRef
2.
Zurück zum Zitat MacKnight WJ, Earnest TRJ (2010) The Structure and Properties of Ionomers. Polym Sci Part D Macromol Rev 16:41–122CrossRef MacKnight WJ, Earnest TRJ (2010) The Structure and Properties of Ionomers. Polym Sci Part D Macromol Rev 16:41–122CrossRef
3.
Zurück zum Zitat Longworth R, Vaughan DJ (1968) Physical structure of ionomers. Nature 218:85–87CrossRef Longworth R, Vaughan DJ (1968) Physical structure of ionomers. Nature 218:85–87CrossRef
4.
Zurück zum Zitat Rees RW, Vaughan DJ (1965) Polym Prepr Am Chem Soc, Div Polym Chem 6:287 Rees RW, Vaughan DJ (1965) Polym Prepr Am Chem Soc, Div Polym Chem 6:287
5.
Zurück zum Zitat Eisenberg A, Rinaudo M (1990) Polyelectrolytes and ionomers. Polym Bull 24:671CrossRef Eisenberg A, Rinaudo M (1990) Polyelectrolytes and ionomers. Polym Bull 24:671CrossRef
6.
Zurück zum Zitat MacKnight WJ, McKenna LW, Read BE, Stein RS (1968) Properties of ethylene-methacrylic acid copolymers and their sodium salts.Infrared studies. J Phys Chem 72:1122–1126CrossRef MacKnight WJ, McKenna LW, Read BE, Stein RS (1968) Properties of ethylene-methacrylic acid copolymers and their sodium salts.Infrared studies. J Phys Chem 72:1122–1126CrossRef
7.
Zurück zum Zitat Potaufeux JE, Odent J, Notta-Cuvier D, Lauro F, Raquez JM (2020) A Comprehensive Review about the Structure-Properties of Ionic Polymeric Materials. Polym Chem Potaufeux JE, Odent J, Notta-Cuvier D, Lauro F,  Raquez JM (2020) A Comprehensive Review about the Structure-Properties of Ionic Polymeric Materials. Polym Chem
8.
Zurück zum Zitat Poulakis JG, Papaspyrides CD (2000) A model process for the recycling of a Surlyn®ionomer. Adv Polym Technol 19:203–209CrossRef Poulakis JG, Papaspyrides CD (2000) A model process for the recycling of a Surlyn®ionomer. Adv Polym Technol 19:203–209CrossRef
9.
Zurück zum Zitat Manchor JA, Bennett JM, Weisenbach MR (2002) New concepts in passive fire protection. 43rd AIAA/ASME/ASCE/AHS SDM Conference.American Institute of Aeronautics and Astronautics, Denver, Colorado Manchor JA, Bennett JM, Weisenbach MR (2002) New concepts in passive fire protection. 43rd AIAA/ASME/ASCE/AHS SDM Conference.American Institute of Aeronautics and Astronautics, Denver, Colorado
10.
Zurück zum Zitat Goldsmith A (2003) Ionomer-polymer self-healing material applications. 2ndAIAA “Unmanned Unlimited” Systems, Technologies, and Operations – Aerospace.American Institute of Aeronautics and Astronautics, San Diego, California Goldsmith A (2003) Ionomer-polymer self-healing material applications. 2ndAIAA “Unmanned Unlimited” Systems, Technologies, and Operations – Aerospace.American Institute of Aeronautics and Astronautics, San Diego, California
11.
Zurück zum Zitat Mills D (2009) Self-healing materials: fundamentals, design strategies, and applications. Corros Eng Sci Technol 44:163 Mills D (2009) Self-healing materials: fundamentals, design strategies, and applications. Corros Eng Sci Technol 44:163
12.
Zurück zum Zitat White SR, Sottos NR, Geubelle PH, Moore JS, Kessler MR, Sriram SR, Viswanathan S (2001) Autonomic healing of polymer composites. Nature 409:794–797PubMedCrossRef White SR, Sottos NR, Geubelle PH, Moore JS, Kessler MR, Sriram SR, Viswanathan S (2001) Autonomic healing of polymer composites. Nature 409:794–797PubMedCrossRef
13.
Zurück zum Zitat Sijbesma RP, Beijer FH, Brunsveld L, Folmer BJB, Hirschberg JHKK, Lange RFM et al (1997) Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. Science 278:1601–1604PubMedCrossRef Sijbesma RP, Beijer FH, Brunsveld L, Folmer BJB, Hirschberg JHKK, Lange RFM et al (1997) Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. Science 278:1601–1604PubMedCrossRef
14.
Zurück zum Zitat An SY, Arunbabu D, Noh SM, Song YK, Oh JK (2015) Recent strategies to develop self-healable crosslinked polymeric networks. Chem Commun 51:13058–13070CrossRef An SY, Arunbabu D, Noh SM, Song YK, Oh JK (2015) Recent strategies to develop self-healable crosslinked polymeric networks. Chem Commun 51:13058–13070CrossRef
15.
Zurück zum Zitat Hager MD, Greil P, Leyens C, van der Zwaag S, Schubert US (2010) Self-Healing Materials. Adv Mater 22:5424–5430PubMedCrossRef Hager MD, Greil P, Leyens C, van der Zwaag S, Schubert US (2010) Self-Healing Materials. Adv Mater 22:5424–5430PubMedCrossRef
16.
Zurück zum Zitat Yang Y, Urban MW (2018) Self-healing of polymers via supramolecular chemistry. Adv Mater Interfaces 5:1800384CrossRef Yang Y, Urban MW (2018) Self-healing of polymers via supramolecular chemistry. Adv Mater Interfaces 5:1800384CrossRef
17.
Zurück zum Zitat Deflorian F, Rossi S, Scrinzi E (2013) Self-healing supramolecular polyurethane coatings: preliminary study of the corrosion protective properties. Corros Eng, Sci Technol 48:147–154CrossRef Deflorian F, Rossi S, Scrinzi E (2013) Self-healing supramolecular polyurethane coatings: preliminary study of the corrosion protective properties. Corros Eng, Sci Technol 48:147–154CrossRef
18.
Zurück zum Zitat Liu Y-L, Chuo T-W (2013) Self-healing polymers based on thermally reversible Diels Alder chemistry. Polym Chem 4:2194–2205CrossRef Liu Y-L, Chuo T-W (2013) Self-healing polymers based on thermally reversible Diels Alder chemistry. Polym Chem 4:2194–2205CrossRef
19.
Zurück zum Zitat Zhang L, Wang D, Xu L, Zhang A (2021) A Supramolecular Polymer with Ultra-Stretchable, Notch- Insensitive. Rapid Self-Healing and Adhesive Polymer Chemistry 12:660–669 Zhang L, Wang D, Xu L, Zhang A (2021) A Supramolecular Polymer with Ultra-Stretchable, Notch- Insensitive. Rapid Self-Healing and Adhesive Polymer Chemistry 12:660–669
20.
Zurück zum Zitat Kalista SJ, Ward TC, Oyetunji Z (2007) Self-healing of poly (ethylene-co-methacrylic acid) copolymers following projectile puncture. Mech Adv Mater Struct 14:391–397CrossRef Kalista SJ, Ward TC, Oyetunji Z (2007) Self-healing of poly (ethylene-co-methacrylic acid) copolymers following projectile puncture. Mech Adv Mater Struct 14:391–397CrossRef
21.
Zurück zum Zitat Kumar N, Bag DS, Singh KP, Dixit A, Mishra S, Tripathi DN, Prasad NE (2020) Self-sealing Polymeric Materials: Mechanism and Applications. Adv Mat Lett 11:20061521CrossRef Kumar N, Bag DS, Singh KP, Dixit A, Mishra S, Tripathi DN, Prasad NE (2020) Self-sealing Polymeric Materials: Mechanism and Applications. Adv Mat Lett 11:20061521CrossRef
22.
23.
Zurück zum Zitat Coughlin CS, Martinelli AA. Boswell RF (2004) Mechanism of Ballistic Self-healing in EMAA Ionomers). Polym Mater Sci Eng 91:261 – PMSE Coughlin CS, Martinelli AA. Boswell RF (2004) Mechanism of Ballistic Self-healing in EMAA Ionomers). Polym Mater Sci Eng 91:261 – PMSE
24.
Zurück zum Zitat van der Zwaag EdS (2007) Self-healing materials: an alternative approach to 20 centuries of materials science. Springer, DordrechtCrossRef van der Zwaag EdS (2007) Self-healing materials: an alternative approach to 20 centuries of materials science. Springer, DordrechtCrossRef
25.
Zurück zum Zitat Tadano K, Hirasawa E, Yamamoto H, Yano S (1989) Order-Disorder Transition of Ionic Clusters in Ionomers. Macromolecules 22:226–233CrossRef Tadano K, Hirasawa E, Yamamoto H, Yano S (1989) Order-Disorder Transition of Ionic Clusters in Ionomers. Macromolecules 22:226–233CrossRef
26.
Zurück zum Zitat Kutsumizu S, Tadano K, Matsuda Y, Goto M, Tachino H, Hara H, Yano S (2000) Investigation of Microphase Separation and Thermal Properties of Noncrystalline Ethylene Ionomers. 2. IR, DSC, and Dielectric Characterization. Macromolecules 33:9044–9053CrossRef Kutsumizu S, Tadano K, Matsuda Y, Goto M, Tachino H, Hara H, Yano S (2000) Investigation of Microphase Separation and Thermal Properties of Noncrystalline Ethylene Ionomers. 2. IR, DSC, and Dielectric Characterization. Macromolecules 33:9044–9053CrossRef
27.
Zurück zum Zitat Eisenberg A, Hird B, Moore RB (1990) A new multiplet-cluster model for the morphology of random ionomers. Macromolecules 23:4098–4107CrossRef Eisenberg A, Hird B, Moore RB (1990) A new multiplet-cluster model for the morphology of random ionomers. Macromolecules 23:4098–4107CrossRef
28.
Zurück zum Zitat Fall R (2001) Puncture Reversal of Ethylene Ionomers—Mechanistic Studies, M.S. thesis, Virginia Tech, Blacksburg, Virginia Fall R (2001) Puncture Reversal of Ethylene Ionomers—Mechanistic Studies, M.S. thesis, Virginia Tech, Blacksburg, Virginia
29.
Zurück zum Zitat Wu DY, Meure S, Solomon D (2008) Self-healing polymeric materials: a review of recent developments. Prog Polym Sci 33:479–522CrossRef Wu DY, Meure S, Solomon D (2008) Self-healing polymeric materials: a review of recent developments. Prog Polym Sci 33:479–522CrossRef
30.
Zurück zum Zitat Kalista S, Ward TC (2007) Thermal characteristics of the self-healing response in poly(ethylene-co-methacrylic acid) copolymers. J R Soc Interface 4:405–11PubMedCrossRef Kalista S, Ward TC (2007) Thermal characteristics of the self-healing response in poly(ethylene-co-methacrylic acid) copolymers. J R Soc Interface 4:405–11PubMedCrossRef
31.
Zurück zum Zitat Varley RJ, van der Zwaag S (2008) Towards an understanding of thermally activated self-healing of an ionomer system during ballistic penetration. Acta Mater 56:5737–5750CrossRef Varley RJ, van der Zwaag S (2008) Towards an understanding of thermally activated self-healing of an ionomer system during ballistic penetration. Acta Mater 56:5737–5750CrossRef
32.
Zurück zum Zitat Varley RJ, van der Zwaag S (2010) Autonomous damage initiated healing in a thermo-responsive ionomer. Polymer International, Polym Int 59:1031–1038CrossRef Varley RJ, van der Zwaag S (2010) Autonomous damage initiated healing in a thermo-responsive ionomer. Polymer International, Polym Int 59:1031–1038CrossRef
33.
Zurück zum Zitat Grande AM, Castelnovo L, LandroLD Giacomuzzo C, FrancesconiA Rahman MA (2013) Rate-dependent self-healing behavior of an ethylene-co-methacrylic acid ionomer under high-energy impact conditions. J Appl Polym Sci 130:1949–1958CrossRef Grande AM, Castelnovo L, LandroLD Giacomuzzo C, FrancesconiA Rahman MA (2013) Rate-dependent self-healing behavior of an ethylene-co-methacrylic acid ionomer under high-energy impact conditions. J Appl Polym Sci 130:1949–1958CrossRef
34.
Zurück zum Zitat Janszen G, Capezzera G, Grande AM, Landro LD (2019) Mitigation of Impact Damage with Self-Healing and Anti-Sloshing Materials in Aerospace Fuel Tanks. Aerospace 6:14CrossRef Janszen G, Capezzera G, Grande AM, Landro LD (2019) Mitigation of Impact Damage with Self-Healing and Anti-Sloshing Materials in Aerospace Fuel Tanks. Aerospace 6:14CrossRef
35.
Zurück zum Zitat Francesconi A, Giacomuzzo C, Grande AM, Mudric T, Zaccariotto M, Etemadi E, Galvanetto U (2013) Comparison of self-healing ionomer to aluminium-alloy bumpers for protecting spacecraft equipment from space debris impacts. Adv Space Res 51:930–940CrossRef Francesconi A, Giacomuzzo C, Grande AM, Mudric T, Zaccariotto M, Etemadi E, Galvanetto U (2013) Comparison of self-healing ionomer to aluminium-alloy bumpers for protecting spacecraft equipment from space debris impacts. Adv Space Res 51:930–940CrossRef
36.
Zurück zum Zitat Pernigoni L, Lafont U, Grande AM (2021) Self-healing materials for space applications: overview of present development and major limitations. CEAS Space J 13:341–352CrossRef Pernigoni L, Lafont U, Grande AM (2021) Self-healing materials for space applications: overview of present development and major limitations. CEAS Space J 13:341–352CrossRef
37.
Zurück zum Zitat Huber A, Hinkley JA (2005) Impression Testing of Self-healing Polymers. NASA 1–12 Huber A, Hinkley JA (2005) Impression Testing of Self-healing Polymers. NASA 1–12
38.
Zurück zum Zitat Gordon KL (2016) Engineering Polymer Blends for Impact Damage Mitigation (NASA/TM—2016–219002) Gordon KL (2016) Engineering Polymer Blends for Impact Damage Mitigation (NASA/TM—2016–219002)
39.
Zurück zum Zitat Gordon KL (2017) Ballistic Puncture Self-healing Polymeric Materials (NASA/TM–2017–219642) Gordon KL (2017) Ballistic Puncture Self-healing Polymeric Materials (NASA/TM–2017–219642)
40.
Zurück zum Zitat Kulkarni HP, Mogilevsky G, Mullins W, Kleinhammes A, Wu Y (2005) Local Thermal Analysis: Study of viscoelastic properties and time dependence in Surlyn. MRS Proceedings 898 Kulkarni HP, Mogilevsky G, Mullins W, Kleinhammes A, Wu Y (2005) Local Thermal Analysis: Study of viscoelastic properties and time dependence in Surlyn. MRS Proceedings 898
41.
Zurück zum Zitat Haramina T, Pugar D, Ivančević D, Smojver I (2021) Mechanical Properties of Poly(ethylene-co-methacrylic acid) Reinforced with Carbon Fibers. Polymers 13:165PubMedPubMedCentralCrossRef Haramina T, Pugar D, Ivančević D, Smojver I (2021) Mechanical Properties of Poly(ethylene-co-methacrylic acid) Reinforced with Carbon Fibers. Polymers 13:165PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Wakabayashi K, Register RA (2006) Morphological Origin of the Multistep Relaxation Behavior in Semicrystalline Ethylene/Methacrylic Acid Ionomers. Macromolecules 39:1079–1086CrossRef Wakabayashi K, Register RA (2006) Morphological Origin of the Multistep Relaxation Behavior in Semicrystalline Ethylene/Methacrylic Acid Ionomers. Macromolecules 39:1079–1086CrossRef
43.
Zurück zum Zitat Kalista SJ, Pflug JR, Varley RJ (2013) Effect of ionic content on ballistic self-healing in EMAA copolymers and ionomers. Polym Chem 4(18):4910 Kalista SJ, Pflug JR, Varley RJ (2013) Effect of ionic content on ballistic self-healing in EMAA copolymers and ionomers. Polym Chem 4(18):4910
44.
Zurück zum Zitat Wakabayashi K, Register RA (2005) Micromechanical interpretation of the modulus of ethylene–(meth)acrylic acid copolymers. Polymer 46:8838–8845CrossRef Wakabayashi K, Register RA (2005) Micromechanical interpretation of the modulus of ethylene–(meth)acrylic acid copolymers. Polymer 46:8838–8845CrossRef
45.
Zurück zum Zitat Vega JM, Grande AM, van der Zwaag S, Garcia SJ (2014) On the role of free carboxylic groups and cluster conformation on the surface scratch healing behaviour of ionomers. Eur Polymer J 57:121–126CrossRef Vega JM, Grande AM, van der Zwaag S, Garcia SJ (2014) On the role of free carboxylic groups and cluster conformation on the surface scratch healing behaviour of ionomers. Eur Polymer J 57:121–126CrossRef
46.
Zurück zum Zitat Vanhoorne P, Register RA (1996) Low-shear melt rheology of partially-neutralized ethylene-methacrylic acid ionomers. Macromolecules 29:598–604CrossRef Vanhoorne P, Register RA (1996) Low-shear melt rheology of partially-neutralized ethylene-methacrylic acid ionomers. Macromolecules 29:598–604CrossRef
47.
Zurück zum Zitat Varley RJ, Shen S, van der Zwaag S (2010) The effect of cluster plasticisation on the self-healing behaviour of ionomers. Polymer 51:679–686CrossRef Varley RJ, Shen S, van der Zwaag S (2010) The effect of cluster plasticisation on the self-healing behaviour of ionomers. Polymer 51:679–686CrossRef
48.
Zurück zum Zitat Penco M, Rhaman A, Spagnoli G, Janszen G, Di Landro L (2011) Novel system with damage initiated autonomous healing property based on heterogeneous blends of ethylene-methacrylic acid ionomer. Mater Lett 65(14):2107–2110CrossRef Penco M, Rhaman A, Spagnoli G, Janszen G, Di Landro L (2011) Novel system with damage initiated autonomous healing property based on heterogeneous blends of ethylene-methacrylic acid ionomer. Mater Lett 65(14):2107–2110CrossRef
49.
Zurück zum Zitat Rahman MA, Penco M, Peroni I, Ramorino G, Grande AM, Di Landro L (2011) Self-Repairing Systems Based on Ionomers and Epoxidized Natural Rubber Blends. ACS Appl Mater Interfaces 3:4865–4874PubMedCrossRef Rahman MA, Penco M, Peroni I, Ramorino G, Grande AM, Di Landro L (2011) Self-Repairing Systems Based on Ionomers and Epoxidized Natural Rubber Blends. ACS Appl Mater Interfaces 3:4865–4874PubMedCrossRef
50.
Zurück zum Zitat Rahman MA, Penco M, Peroni I, Ramorino G, Janszen G, Di Landro L (2012) Autonomous healing materials based on epoxidized natural rubber and ethylene methacrylic acid ionomers. Smart Mater Struct 21:035014CrossRef Rahman MA, Penco M, Peroni I, Ramorino G, Janszen G, Di Landro L (2012) Autonomous healing materials based on epoxidized natural rubber and ethylene methacrylic acid ionomers. Smart Mater Struct 21:035014CrossRef
51.
Zurück zum Zitat Rahman MA, Spagnoli G, Grande AM, Di Landro L (2013) Role of Phase Morphology on the Damage Initiated Self-healing Behavior of Ionomer Blends. Macromol Mater Eng 298:1350–1364CrossRef Rahman MA, Spagnoli G, Grande AM, Di Landro L (2013) Role of Phase Morphology on the Damage Initiated Self-healing Behavior of Ionomer Blends. Macromol Mater Eng 298:1350–1364CrossRef
52.
Zurück zum Zitat Bose RK, Picchioni F, Muljana H (2019) Thermoreversible Polymeric Nanocomposites. In Nanocomposites—Recent Evolutions; IntechOpen: London, UK Bose RK, Picchioni F, Muljana H (2019) Thermoreversible Polymeric Nanocomposites. In Nanocomposites—Recent Evolutions; IntechOpen: London, UK
53.
Zurück zum Zitat Huang L, Yi N, Wu Y, Zhang Y, Zhang Q, Huang Y, Ma Y, Chen Y (2013) Multichannel and repeatable self-healing of mechanical enhanced graphene-thermoplastic polyurethane composites. Adv Mater 25(15):2224–2228PubMedCrossRef Huang L, Yi N, Wu Y, Zhang Y, Zhang Q, Huang Y, Ma Y, Chen Y (2013) Multichannel and repeatable self-healing of mechanical enhanced graphene-thermoplastic polyurethane composites. Adv Mater 25(15):2224–2228PubMedCrossRef
54.
Zurück zum Zitat Gallego J, Del Val MA, Contreras V, Páez A (2013) Heating asphalt mixtures with microwaves to promote self-healing. Constr Build Mater 42:1–4CrossRef Gallego J, Del Val MA, Contreras V, Páez A (2013) Heating asphalt mixtures with microwaves to promote self-healing. Constr Build Mater 42:1–4CrossRef
55.
Zurück zum Zitat Duenas T, Enke A, Chai K, Castellucci M, Sundaresan VB, Wudl F, Murphy EB, Mal A, Alexandar JR, Corder A et al (2010) Smart self-healing material systems using inductive and resistive heating. ACS Symposium Series, vol 1050. American Chemical Society, Washington, DC, USA, pp 45–60 Duenas T, Enke A, Chai K, Castellucci M, Sundaresan VB, Wudl F, Murphy EB, Mal A, Alexandar JR, Corder A et al (2010) Smart self-healing material systems using inductive and resistive heating. ACS Symposium Series, vol 1050. American Chemical Society, Washington, DC, USA, pp 45–60
56.
Zurück zum Zitat García-Huete N, Post W, Laza JM, Vilas JL, León LM, García SJ (2018) Effect of the blend ratio on the shape memory and self-healing behaviour of ionomer-polycyclooctene crosslinked polymer blends. Eur Polymer J 98:154–161CrossRef García-Huete N, Post W, Laza JM, Vilas JL, León LM, García SJ (2018) Effect of the blend ratio on the shape memory and self-healing behaviour of ionomer-polycyclooctene crosslinked polymer blends. Eur Polymer J 98:154–161CrossRef
57.
Zurück zum Zitat Calderón-Villajos R, López AJ, Peponi L, Manzano-Santamaría J, Ureña A (2019) 3D-printed self-healing composite polymer reinforced with carbon nanotubes. Materials Letters Calderón-Villajos R, López AJ, Peponi L, Manzano-Santamaría J, Ureña A (2019) 3D-printed self-healing composite polymer reinforced with carbon nanotubes. Materials Letters
58.
Zurück zum Zitat Wu W, Zhou Y, Li J, Wan C (2019) Shape memory and self‐healing behavior of styrene–butadiene–styrene/ethylene‐methacrylic acid copolymer (SBS/EMAA) elastomers containing ionic interactions. J Appl Polym Sci 48666 Wu W, Zhou Y, Li J, Wan C (2019) Shape memory and self‐healing behavior of styrene–butadiene–styrene/ethylene‐methacrylic acid copolymer (SBS/EMAA) elastomers containing ionic interactions. J Appl Polym Sci 48666
59.
Zurück zum Zitat Yan W, Ding Y, Zhang R, Luo X, Sheng P, Xue P, He J (2022) Dual-functional polymer blends with rapid thermo-responsive shape memory and repeatable self-healing properties. Polymer 239:124436CrossRef Yan W, Ding Y, Zhang R, Luo X, Sheng P, Xue P, He J (2022) Dual-functional polymer blends with rapid thermo-responsive shape memory and repeatable self-healing properties. Polymer 239:124436CrossRef
60.
Zurück zum Zitat Sundaresan VB, Morgan A, Castellucci M (2013) Self-Healing of Ionomeric Polymers with Carbon Fibers from Medium-Velocity Impact and Resistive Heating. Smart Mater Res 1–12 Sundaresan VB, Morgan A, Castellucci M (2013) Self-Healing of Ionomeric Polymers with Carbon Fibers from Medium-Velocity Impact and Resistive Heating. Smart Mater Res 1–12
61.
62.
Zurück zum Zitat Kim BK, Lee SY, Xu M (1998) Polyurethanes having shape-shape-memory effects. Polymer 37:5781–93CrossRef Kim BK, Lee SY, Xu M (1998) Polyurethanes having shape-shape-memory effects. Polymer 37:5781–93CrossRef
63.
Zurück zum Zitat Calkins FT, Mabe JH (2010) Shape Memory Alloy Based Morphing Aerostructures. J Mech Des 132:111012CrossRef Calkins FT, Mabe JH (2010) Shape Memory Alloy Based Morphing Aerostructures. J Mech Des 132:111012CrossRef
64.
Zurück zum Zitat Hartl DJ, Lagoudas DC (2007) Aerospace applications of shape memory alloys. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 221:535–552CrossRef Hartl DJ, Lagoudas DC (2007) Aerospace applications of shape memory alloys. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 221:535–552CrossRef
65.
Zurück zum Zitat Huang WM, Zhao Y, Wang CC, Ding Z, Purnawali H, Tang C, Zhang JL (2012) Thermo/chemo-responsive shape memory effect in polymers: a sketch of working mechanisms, fundamentals and optimization. J Polym Res 19:9952 Huang WM, Zhao Y, Wang CC, Ding Z, Purnawali H, Tang C, Zhang JL (2012) Thermo/chemo-responsive shape memory effect in polymers: a sketch of working mechanisms, fundamentals and optimization. J Polym Res 19:9952
66.
Zurück zum Zitat Xie T (2011) Recent advances in polymer shape memory. Polymer 52:4985–5000CrossRef Xie T (2011) Recent advances in polymer shape memory. Polymer 52:4985–5000CrossRef
67.
Zurück zum Zitat Xia Y, HeY, Zhang F, Liu Y, Leng J (2020) A Review of Shape Memory Polymers and Composites: Mechanisms, Materials, and Applications. Adv Mater 2000713 Xia Y, HeY, Zhang F, Liu Y, Leng J (2020) A Review of Shape Memory Polymers and Composites: Mechanisms, Materials, and Applications. Adv Mater 2000713
68.
Zurück zum Zitat Liu C, Qin H, Mather PT (2007) Review of progress in shape-memory polymers. J Mater Chem 17:1543–1558CrossRef Liu C, Qin H, Mather PT (2007) Review of progress in shape-memory polymers. J Mater Chem 17:1543–1558CrossRef
69.
Zurück zum Zitat Sun L, Huang WM, Ding Z, Zhao Y, Wang CC, Purnawali H, Tang C (2012) Stimulus-responsive shape memory materials: A review. Mater Des 33:577–640CrossRef Sun L, Huang WM, Ding Z, Zhao Y, Wang CC, Purnawali H, Tang C (2012) Stimulus-responsive shape memory materials: A review. Mater Des 33:577–640CrossRef
70.
Zurück zum Zitat Behl M, Zotzmann J, Schroeter M, Lendlein M (2011) Handbook of biodegradable polymers: isolation, synthesis, characterization and applications. In: Lendlein A, Sisson A (eds). WileyVCH, Weinheim , Ch 8 Behl M, Zotzmann J, Schroeter M, Lendlein M (2011) Handbook of biodegradable polymers: isolation, synthesis, characterization and applications. In: Lendlein A, Sisson A (eds). WileyVCH, Weinheim , Ch 8
71.
Zurück zum Zitat Tobushi H, Pieczyska E, Ejiri Y, Sakuragi T (2009) Thermomechanical properties of shape-memory alloy and polymer and their composites. Mech Adv Mater Struc 16(3):236–247CrossRef Tobushi H, Pieczyska E, Ejiri Y, Sakuragi T (2009) Thermomechanical properties of shape-memory alloy and polymer and their composites. Mech Adv Mater Struc 16(3):236–247CrossRef
72.
Zurück zum Zitat Dolog R, Weiss RA (2013) Shape Memory Behavior of a Polyethylene-Based Carboxylate Ionomer. Macromolecules 46:7845–7852CrossRef Dolog R, Weiss RA (2013) Shape Memory Behavior of a Polyethylene-Based Carboxylate Ionomer. Macromolecules 46:7845–7852CrossRef
73.
Zurück zum Zitat Dolog R, Weiss RA (2017) Properties and shape-memory behavior of compounds of a poly(ethylene- co -methacrylic acid) ionomer and zinc stearate. Polymer 128:128–134CrossRef Dolog R, Weiss RA (2017) Properties and shape-memory behavior of compounds of a poly(ethylene- co -methacrylic acid) ionomer and zinc stearate. Polymer 128:128–134CrossRef
74.
Zurück zum Zitat Lu L, Li G (2016) One-Way Multishape-Memory Effect and Tunable Two-Way Shape Memory Effect of Ionomer Poly (ethylene-co-methacrylic acid). ACS Appl Mater Interfaces 8:14812–14823PubMedCrossRef Lu L, Li G (2016) One-Way Multishape-Memory Effect and Tunable Two-Way Shape Memory Effect of Ionomer Poly (ethylene-co-methacrylic acid). ACS Appl Mater Interfaces 8:14812–14823PubMedCrossRef
75.
Zurück zum Zitat Pilate F, Toncheva A, Dubois P et al (2016) Shape-memory polymers for multiple applications in the materials world. EurPolym J 80:268–294 Pilate F, Toncheva A, Dubois P et al (2016) Shape-memory polymers for multiple applications in the materials world. EurPolym J 80:268–294
76.
Zurück zum Zitat Navarro-Baena I, Kenny J, Peponi L (2014) Thermally-activated shape memory behaviour of bionanocomposites reinforced with cellulose nanocrystals. Cellulose 21:4231–4246CrossRef Navarro-Baena I, Kenny J, Peponi L (2014) Thermally-activated shape memory behaviour of bionanocomposites reinforced with cellulose nanocrystals. Cellulose 21:4231–4246CrossRef
77.
Zurück zum Zitat Sessini V, Brox D, López AJ, Ureña A, PeponiL (2018) Thermally activated shape memory behavior of copolymers based on ethylene reinforced with silica nanoparticles. Nanocomposites 1–17 Sessini V, Brox D, López AJ, Ureña A, PeponiL (2018) Thermally activated shape memory behavior of copolymers based on ethylene reinforced with silica nanoparticles. Nanocomposites 1–17
78.
Zurück zum Zitat Zarek M, Layani M, CoopersteinI Sachyani E, Cohn D, Magdassi S (2016) 3D Printing of Shape Memory Polymers for Flexible Electronic Devices. Adv Mater 28:4449–4454PubMedCrossRef Zarek M, Layani M, CoopersteinI Sachyani E, Cohn D, Magdassi S (2016) 3D Printing of Shape Memory Polymers for Flexible Electronic Devices. Adv Mater 28:4449–4454PubMedCrossRef
79.
Zurück zum Zitat Yu R, Yang X, Zhang Y, Zhao XJ, WuX Zhao TT, ZhaoYL Huang W (2017) Three-Dimensional Printing of Shape Memory Composites with Epoxy-Acrylate Hybrid Photopolymer. ACS Appl Mater Interfaces 9:1820–1829PubMedCrossRef Yu R, Yang X, Zhang Y, Zhao XJ, WuX Zhao TT, ZhaoYL Huang W (2017) Three-Dimensional Printing of Shape Memory Composites with Epoxy-Acrylate Hybrid Photopolymer. ACS Appl Mater Interfaces 9:1820–1829PubMedCrossRef
80.
Zurück zum Zitat Zhao Z, Peng F, Cavicchi KA, Cakmak M, Weiss RA, Vogt BD (2017) Three-Dimensional Printed Shape Memory Objects Based on an Olefin Ionomer of Zinc-Neutralized Poly (ethylene-co-methacrylic acid). ACS Appl Mater Interfaces 9:27239–27249PubMedCrossRef Zhao Z, Peng F, Cavicchi KA, Cakmak M, Weiss RA, Vogt BD (2017) Three-Dimensional Printed Shape Memory Objects Based on an Olefin Ionomer of Zinc-Neutralized Poly (ethylene-co-methacrylic acid). ACS Appl Mater Interfaces 9:27239–27249PubMedCrossRef
81.
Zurück zum Zitat Yeh JT, Fan-Chiang CC, Cho MF (1995) Effects of compatibilizer precursors on the barrier properties and morphology of polyethylene/polyamide blends. Polym Bull 35:371–378CrossRef Yeh JT, Fan-Chiang CC, Cho MF (1995) Effects of compatibilizer precursors on the barrier properties and morphology of polyethylene/polyamide blends. Polym Bull 35:371–378CrossRef
82.
Zurück zum Zitat Fellahi S, Favis BD, Fisa B (1996) Morphological stability in injection-moulded high-density polyethylene/polyamide-6 blends. Polymer 37:2615–2626CrossRef Fellahi S, Favis BD, Fisa B (1996) Morphological stability in injection-moulded high-density polyethylene/polyamide-6 blends. Polymer 37:2615–2626CrossRef
83.
Zurück zum Zitat Fairley G, Prud’Homme RE (1987) A contribution to the understanding of polyethylene/ionomer/polyamide-6 blends. Polymer Eng Sci 27(20):1495–1503CrossRef Fairley G, Prud’Homme RE (1987) A contribution to the understanding of polyethylene/ionomer/polyamide-6 blends. Polymer Eng Sci 27(20):1495–1503CrossRef
84.
Zurück zum Zitat Willis JM, Favis BD (1988) Processing-morphology relationships of compatibilized polyolefin/polyamide blends. Part I: The effect of an lonomer compatibilizer on blend morphology. Polym Eng Sci 28(21):1416–1426CrossRef Willis JM, Favis BD (1988) Processing-morphology relationships of compatibilized polyolefin/polyamide blends. Part I: The effect of an lonomer compatibilizer on blend morphology. Polym Eng Sci 28(21):1416–1426CrossRef
85.
Zurück zum Zitat Zhang L, Brostowitz NR, CavicchiKA Weiss RA (2013) Perspective: Ionomer Research and Applications. Macromol React Eng 8:81–99CrossRef Zhang L, Brostowitz NR, CavicchiKA Weiss RA (2013) Perspective: Ionomer Research and Applications. Macromol React Eng 8:81–99CrossRef
86.
Zurück zum Zitat Bragaglia M, McNally T, Lamastra FR, CherubiniV, Nanni F (2021) Compatibilization of an immiscible blend of EPDM and POM with an Ionomer. J Appl Polym Sci 138:50423 Bragaglia M, McNally T, Lamastra FR, CherubiniV, Nanni F (2021) Compatibilization of an immiscible blend of EPDM and POM with an Ionomer. J Appl Polym Sci 138:50423
87.
Zurück zum Zitat Vyas HA (2009) Synthesis and characterization of ionomers as compatibilizer for polymer blends. Thesis, Maharaja Sayajirao University of Baroda Vyas HA (2009) Synthesis and characterization of ionomers as compatibilizer for polymer blends. Thesis, Maharaja Sayajirao University of Baroda
88.
Zurück zum Zitat Tierney NK, Register RA (2002) Ion Hopping in Ethylene−Methacrylic Acid Ionomer Melts As Probed by Rheometry and Cation Diffusion Measurements. Macromolecules 35:2358–2364CrossRef Tierney NK, Register RA (2002) Ion Hopping in Ethylene−Methacrylic Acid Ionomer Melts As Probed by Rheometry and Cation Diffusion Measurements. Macromolecules 35:2358–2364CrossRef
89.
Zurück zum Zitat Nishioka A, Onodera S, Koda T, Miyata K, Furuichi K, Kodama K, Koyama K (2009) Effect of Blended Ionomers on the Strain Hardening of Polyester-Type Elastomer/Ionomer Blends. Polym J 41(8):661–666CrossRef Nishioka A, Onodera S, Koda T, Miyata K, Furuichi K, Kodama K, Koyama K (2009) Effect of Blended Ionomers on the Strain Hardening of Polyester-Type Elastomer/Ionomer Blends. Polym J 41(8):661–666CrossRef
90.
Zurück zum Zitat Chen X, Sha J, Chen T, Zhao H, Ji H, Xie L, Ma Y (2019) Effect of ionomer interfacial compatibilization on highly filled HDPE/Al2O3/ionomer composites: Morphology and rheological behavior. Compos Sci Technol 170:7–14CrossRef Chen X, Sha J, Chen T, Zhao H, Ji H, Xie L, Ma Y (2019) Effect of ionomer interfacial compatibilization on highly filled HDPE/Al2O3/ionomer composites: Morphology and rheological behavior. Compos Sci Technol 170:7–14CrossRef
91.
Zurück zum Zitat Li T, Yan N (2007) Mechanical properties of wood flour/HDPE/ionomer composites. Compos A Appl Sci Manuf 38:1–12CrossRef Li T, Yan N (2007) Mechanical properties of wood flour/HDPE/ionomer composites. Compos A Appl Sci Manuf 38:1–12CrossRef
92.
Zurück zum Zitat Retolaza A, Eguiazabal JI, Nazabal J (2003) Poly (ethylene-co-methacrylic acid)–lithium ionomer as a compatibilizer for poly (ethylene terephthalate)/linear low-density polyethylene blends. J Appl Polym Sci 87:1322–1328CrossRef Retolaza A, Eguiazabal JI, Nazabal J (2003) Poly (ethylene-co-methacrylic acid)–lithium ionomer as a compatibilizer for poly (ethylene terephthalate)/linear low-density polyethylene blends. J Appl Polym Sci 87:1322–1328CrossRef
93.
Zurück zum Zitat Robles JA, Ramirez TL, Cruz RA, Cepeda AM (2008) Composites of Recycled Poly (Ethylene Terephtalate)/High-Density Polyethylene with Agave Fibers. Polym Mater Sci Eng 99:515 Robles JA, Ramirez TL, Cruz RA, Cepeda AM (2008) Composites of Recycled Poly (Ethylene Terephtalate)/High-Density Polyethylene with Agave Fibers. Polym Mater Sci Eng 99:515
94.
Zurück zum Zitat Kalfoglou NK, Skafidas DS, Sotiropoulou DD (1994) Compatibilization of blends of poly(ethylene terephthalate) and linear low density polyethylene with the ionomer of poly(ethylene-co-methacrylic acid). Polymer 35:3624–3630CrossRef Kalfoglou NK, Skafidas DS, Sotiropoulou DD (1994) Compatibilization of blends of poly(ethylene terephthalate) and linear low density polyethylene with the ionomer of poly(ethylene-co-methacrylic acid). Polymer 35:3624–3630CrossRef
95.
Zurück zum Zitat Guerrero C, Lozano T, González V, Arroyo E (2001) Properties and morphology of poly(ethylene terephthalate) and high-density polyethylene blends. J Appl Polym Sci 82:1382–1390CrossRef Guerrero C, Lozano T, González V, Arroyo E (2001) Properties and morphology of poly(ethylene terephthalate) and high-density polyethylene blends. J Appl Polym Sci 82:1382–1390CrossRef
96.
Zurück zum Zitat Willis JM, Favis BD, Lavalle C (1993) The influence of interfacial interactions on the morphology and thermal properties of binary polymer blends. J Mater Sci 28(7):1749–1757CrossRef Willis JM, Favis BD, Lavalle C (1993) The influence of interfacial interactions on the morphology and thermal properties of binary polymer blends. J Mater Sci 28(7):1749–1757CrossRef
97.
Zurück zum Zitat Willis JM, Caldas V, Favis BD (1991) Processing-morphology relationships of compatibilized polyolefin/polyamide blends. J Mater Sci 26(17):4742–4750CrossRef Willis JM, Caldas V, Favis BD (1991) Processing-morphology relationships of compatibilized polyolefin/polyamide blends. J Mater Sci 26(17):4742–4750CrossRef
98.
Zurück zum Zitat Macknight WJ, Lenz RW, Musto PV, Somani RJ (1985) Binary alloys of nylon 6 and ethylene-methacrylic acid copolymers: Morphological, thermal and mechanical analysis. Polym Eng Sci 25(18):1124–1134CrossRef Macknight WJ, Lenz RW, Musto PV, Somani RJ (1985) Binary alloys of nylon 6 and ethylene-methacrylic acid copolymers: Morphological, thermal and mechanical analysis. Polym Eng Sci 25(18):1124–1134CrossRef
99.
Zurück zum Zitat Baouz T, Fellahi S (2005) Interfacial modification of high density polyethylene/glass fiber reinforced and non-reinforced polyamide 66 blends. J Appl Polym Sci 98:1748–1760CrossRef Baouz T, Fellahi S (2005) Interfacial modification of high density polyethylene/glass fiber reinforced and non-reinforced polyamide 66 blends. J Appl Polym Sci 98:1748–1760CrossRef
100.
Zurück zum Zitat Leewajanakul P, Pattanaolarn R, Ellis JW, Nithitanakul M, Grady BP (2003) Use of zinc-neutralized ethylene/methacrylic acid copolymer ionomers as blend compatibilizers for nylon 6 and low-density polyethylene. J Appl Polym Sci 89:620–629CrossRef Leewajanakul P, Pattanaolarn R, Ellis JW, Nithitanakul M, Grady BP (2003) Use of zinc-neutralized ethylene/methacrylic acid copolymer ionomers as blend compatibilizers for nylon 6 and low-density polyethylene. J Appl Polym Sci 89:620–629CrossRef
101.
Zurück zum Zitat Lahor A, Nithitanakul M, Grady BP (2004) Blends of low-density polyethylene with nylon compatibilized with a sodium-neutralized carboxylate ionomer. Eur Polymer J 40:2409–2420CrossRef Lahor A, Nithitanakul M, Grady BP (2004) Blends of low-density polyethylene with nylon compatibilized with a sodium-neutralized carboxylate ionomer. Eur Polymer J 40:2409–2420CrossRef
102.
Zurück zum Zitat Vyas H, Shrinet V, Murthy CN, Jain RC, Singh AK (2008) Preparation and Characterization of HDPE-Nylon-6 Blends Compatibilized with Ionomer for Industrial Application. Polym Plast Technol Eng 47:1231–1241CrossRef Vyas H, Shrinet V, Murthy CN, Jain RC, Singh AK (2008) Preparation and Characterization of HDPE-Nylon-6 Blends Compatibilized with Ionomer for Industrial Application. Polym Plast Technol Eng 47:1231–1241CrossRef
103.
Zurück zum Zitat Li J, Li J, Feng D, Zhao J, Sun J, Li D (2017) Excellent rheological performance and impact toughness of cellulose nanofibers/PLA/ionomer composite. RSC Adv 7:28889–28897CrossRef Li J, Li J, Feng D, Zhao J, Sun J, Li D (2017) Excellent rheological performance and impact toughness of cellulose nanofibers/PLA/ionomer composite. RSC Adv 7:28889–28897CrossRef
104.
Zurück zum Zitat Jantanasakulwong K, Kobayashi Y, Kuboyama K, Ougizawa T (2016) Thermoplastic vulcanizate based on Poly(lactic acid) and acrylic rubber blended with ethylene ionomer. J Macromol Sci Part B 55:1068–1085CrossRef Jantanasakulwong K, Kobayashi Y, Kuboyama K, Ougizawa T (2016) Thermoplastic vulcanizate based on Poly(lactic acid) and acrylic rubber blended with ethylene ionomer. J Macromol Sci Part B 55:1068–1085CrossRef
105.
Zurück zum Zitat Sessini V, López Galisteo AJ, Leonés A, Ureña A, Peponi L (2019) Sandwich-Type Composites Based on Smart Ionomeric Polymer and Electrospun Microfibers. Front Mater 6 Sessini V, López Galisteo AJ, Leonés A, Ureña A, Peponi L (2019) Sandwich-Type Composites Based on Smart Ionomeric Polymer and Electrospun Microfibers. Front Mater 6
106.
Zurück zum Zitat Cai X, Riedl B, Ait-Kadi A (2003) Cellulose fiber/poly(ethylene-co-methacrylic acid) composites with ionic interphase. Compos A Appl Sci Manuf 34:1075–1084CrossRef Cai X, Riedl B, Ait-Kadi A (2003) Cellulose fiber/poly(ethylene-co-methacrylic acid) composites with ionic interphase. Compos A Appl Sci Manuf 34:1075–1084CrossRef
107.
Zurück zum Zitat Kim YJ, Lee HM, Park OO (1995) Processabilities and mechanical properties of surlyn-treated starch/LDPE blends. Polym Eng Sci 35:1652–1657CrossRef Kim YJ, Lee HM, Park OO (1995) Processabilities and mechanical properties of surlyn-treated starch/LDPE blends. Polym Eng Sci 35:1652–1657CrossRef
108.
Zurück zum Zitat Choudhury A (2008) Isothermal crystallization and mechanical behavior of ionomer treated sisal/HDPE composites. Mater Sci Eng, A 491:492–500CrossRef Choudhury A (2008) Isothermal crystallization and mechanical behavior of ionomer treated sisal/HDPE composites. Mater Sci Eng, A 491:492–500CrossRef
109.
Zurück zum Zitat Szabó G, Kun D, Renner K, Pukánszky B (2018) Structure, properties and interactions in ionomer/lignin blends. Mater Des 152:129–139CrossRef Szabó G, Kun D, Renner K, Pukánszky B (2018) Structure, properties and interactions in ionomer/lignin blends. Mater Des 152:129–139CrossRef
110.
Zurück zum Zitat Sanchez-Valdes S, Lopez-Quintanilla ML, Ramirez-Vargas E, Medellin-Rodriguez FJ, Gutierrez-Rodriguez JM (2006) Macromol Mater Eng 291:128CrossRef Sanchez-Valdes S, Lopez-Quintanilla ML, Ramirez-Vargas E, Medellin-Rodriguez FJ, Gutierrez-Rodriguez JM (2006) Macromol Mater Eng 291:128CrossRef
111.
Zurück zum Zitat Paul DR, Robeson LM (2008) Polymer nanotechnology: Nanocomposites. Polymer 49(15):3187–3204CrossRef Paul DR, Robeson LM (2008) Polymer nanotechnology: Nanocomposites. Polymer 49(15):3187–3204CrossRef
112.
Zurück zum Zitat Tesarikova A, Merinska D (2014) Mechanical properties of PE, PP, Surlyn and EVA/clay nanocomposites for packaging films. AIP Conf Proc 1599(1):178–181CrossRef Tesarikova A, Merinska D (2014) Mechanical properties of PE, PP, Surlyn and EVA/clay nanocomposites for packaging films. AIP Conf Proc 1599(1):178–181CrossRef
113.
Zurück zum Zitat Sánchez-Valdés S, Martínez Colunga JG, López-Quintanilla ML, Yañez Flores I, García-Salazar ML, González Cantu C (2008) Preparation and UV weathering of polyethylene nanocomposites. Polym Bull 60:829–836CrossRef Sánchez-Valdés S, Martínez Colunga JG, López-Quintanilla ML, Yañez Flores I, García-Salazar ML, González Cantu C (2008) Preparation and UV weathering of polyethylene nanocomposites. Polym Bull 60:829–836CrossRef
114.
Zurück zum Zitat Santamaría P, Eguiazabal JI (2012) Structure and mechanical properties of blown films of ionomer-compatibilized LDPE nanocomposites. Polym Testing 31:367–374CrossRef Santamaría P, Eguiazabal JI (2012) Structure and mechanical properties of blown films of ionomer-compatibilized LDPE nanocomposites. Polym Testing 31:367–374CrossRef
115.
Zurück zum Zitat Hosseinkhanli H, Aalaie J, Abdollahi M, Khalkhali T, Shojaei M (2014) Thermal, mechanical, and barrier properties of polyethylene/surlyn/organoclay nanocomposites blown films prepared by different mixing methods. J Vinyl Add Tech 21:60–69CrossRef Hosseinkhanli H, Aalaie J, Abdollahi M, Khalkhali T, Shojaei M (2014) Thermal, mechanical, and barrier properties of polyethylene/surlyn/organoclay nanocomposites blown films prepared by different mixing methods. J Vinyl Add Tech 21:60–69CrossRef
116.
Zurück zum Zitat Shah RK, Hunter DL, Paul DR (2005) Nanocomposites from poly(ethylene-co-methacrylic acid) ionomers: effect of surfactant structure on morphology and properties. Polymer 46:2646–2662CrossRef Shah RK, Hunter DL, Paul DR (2005) Nanocomposites from poly(ethylene-co-methacrylic acid) ionomers: effect of surfactant structure on morphology and properties. Polymer 46:2646–2662CrossRef
117.
Zurück zum Zitat Shah RK, Krishnaswamy RK, Takahashi S, Paul DR (2006) Blown films of nanocomposites prepared from low density polyethylene and a sodium ionomer of poly(ethylene-co-methacrylic acid). Polymer 47:6187CrossRef Shah RK, Krishnaswamy RK, Takahashi S, Paul DR (2006) Blown films of nanocomposites prepared from low density polyethylene and a sodium ionomer of poly(ethylene-co-methacrylic acid). Polymer 47:6187CrossRef
118.
Zurück zum Zitat Yoo Y, Shah RK, Paul DR (2007) Fracture behavior of nanocomposites based on poly(ethylene-co-methacrylic acid) ionomers. Polymer 48:4867–4873CrossRef Yoo Y, Shah RK, Paul DR (2007) Fracture behavior of nanocomposites based on poly(ethylene-co-methacrylic acid) ionomers. Polymer 48:4867–4873CrossRef
119.
Zurück zum Zitat Liu H, Tag Lim H, Hyun Ahn K, Jong LS (2007) Effect of ionomer on clay dispersions in polypropylene-layered silicate nanocomposites. J Appl Polym Sci 104(6):4024–4034CrossRef Liu H, Tag Lim H, Hyun Ahn K, Jong LS (2007) Effect of ionomer on clay dispersions in polypropylene-layered silicate nanocomposites. J Appl Polym Sci 104(6):4024–4034CrossRef
120.
Zurück zum Zitat Lim HT, Liu H, Ahn KH, Lee SJ, Hong JS (2010) Effect of added ionomer on morphology and properties of PP/organoclay nanocomposites. Korean J Chem Eng 27:705–715CrossRef Lim HT, Liu H, Ahn KH, Lee SJ, Hong JS (2010) Effect of added ionomer on morphology and properties of PP/organoclay nanocomposites. Korean J Chem Eng 27:705–715CrossRef
121.
Zurück zum Zitat Monsiváis-Barrón AJ, Bonilla-Rios J, Ramos de Valle LF, Palacios E (2013) Oxygen permeation properties of HDPE-layered silicate nanocomposites. Polym Bull 70:939–951CrossRef Monsiváis-Barrón AJ, Bonilla-Rios J, Ramos de Valle LF, Palacios E (2013) Oxygen permeation properties of HDPE-layered silicate nanocomposites. Polym Bull 70:939–951CrossRef
122.
Zurück zum Zitat Shah RK, Paul DR (2006) Comparison of Nanocomposites Prepared from Sodium, Zinc, and Lithium Ionomers of Ethylene/Methacrylic Acid Copolymers. Macromolecules 39:3327–3336CrossRef Shah RK, Paul DR (2006) Comparison of Nanocomposites Prepared from Sodium, Zinc, and Lithium Ionomers of Ethylene/Methacrylic Acid Copolymers. Macromolecules 39:3327–3336CrossRef
123.
Zurück zum Zitat Spencer MW, Wetzel MD, Troeltzsch C, Paul DR (2012) Effects of acid neutralization on the morphology and properties of organoclay nanocomposites formed from K+ and Na+poly(ethylene-co-methacrylic acid) ionomers. Polymer 53(2):555–568CrossRef Spencer MW, Wetzel MD, Troeltzsch C, Paul DR (2012) Effects of acid neutralization on the morphology and properties of organoclay nanocomposites formed from K+ and Na+poly(ethylene-co-methacrylic acid) ionomers. Polymer 53(2):555–568CrossRef
124.
Zurück zum Zitat Datta P, Guha C, Sarkhel G (2014) Effect of Zn+2Poly(ethylene-co-methacrylic acid) Ionomer on Mechanical Properties, Thermal Properties, Morphology and Process Rheology of Acrylonitrile Styrene Acrylate (ASA) Terpolymer. Polym-Plast Technol Eng 53:80–89CrossRef Datta P, Guha C, Sarkhel G (2014) Effect of Zn+2Poly(ethylene-co-methacrylic acid) Ionomer on Mechanical Properties, Thermal Properties, Morphology and Process Rheology of Acrylonitrile Styrene Acrylate (ASA) Terpolymer. Polym-Plast Technol Eng 53:80–89CrossRef
125.
Zurück zum Zitat Datta P, Guha C, Sarkhel G (2014) Effect of Na-ionomer on dynamic rheological, dynamic mechanical and creep properties of acrylonitrile styrene acrylate (ASA)/Na+1poly (ethylene-co-methacrylic acid) ionomer blend. Polym Adv Technol 25:1454–1463CrossRef Datta P, Guha C, Sarkhel G (2014) Effect of Na-ionomer on dynamic rheological, dynamic mechanical and creep properties of acrylonitrile styrene acrylate (ASA)/Na+1poly (ethylene-co-methacrylic acid) ionomer blend. Polym Adv Technol 25:1454–1463CrossRef
126.
Zurück zum Zitat Datta P, Guha C, Sarkhel G (2015) Morphological, Dynamic Mechanical, Creep and Weathering Behavior of Carbon Nanotube-Reinforced 50/50 ASA/Zn-Ionomer Blend. Polym-Plast Technol Eng 55:453–462CrossRef Datta P, Guha C, Sarkhel G (2015) Morphological, Dynamic Mechanical, Creep and Weathering Behavior of Carbon Nanotube-Reinforced 50/50 ASA/Zn-Ionomer Blend. Polym-Plast Technol Eng 55:453–462CrossRef
127.
Zurück zum Zitat Balasubramanian R, Park S, Kim SS, Lee J (2019) Investigation of binary blends of m-aramid and sodium ionomer: Mechanical, thermal, and morphological properties. J Thermoplast Compos Mater 32(6):831–847CrossRef Balasubramanian R, Park S, Kim SS, Lee J (2019) Investigation of binary blends of m-aramid and sodium ionomer: Mechanical, thermal, and morphological properties. J Thermoplast Compos Mater 32(6):831–847CrossRef
128.
Zurück zum Zitat Rajasekaran D, Maji PK (2019) Recycling of Quaternary Household Plastic Wastes by Utilizing Poly(Ethylene-co-Methacrylic acid) Copolymer Sodium Ion: Compatibility and Re-processability Assessments. J Polym Environ Rajasekaran D, Maji PK (2019) Recycling of Quaternary Household Plastic Wastes by Utilizing Poly(Ethylene-co-Methacrylic acid) Copolymer Sodium Ion: Compatibility and Re-processability Assessments. J Polym Environ
129.
Zurück zum Zitat Rajasekaran D, Maji PK (2021) Recycling of waste PP and crumb rubber together by use of self-healing ionomer as process compatibilizer. J Mater Cycles Waste Manag 1–13 Rajasekaran D, Maji PK (2021) Recycling of waste PP and crumb rubber together by use of self-healing ionomer as process compatibilizer. J Mater Cycles Waste Manag 1–13
130.
Zurück zum Zitat Grossiord N, Kroon JM, Andriessen R, Blom PWM (2012) Degradation mechanisms in organic photovoltaic devices. Org Electron 13(3):432–456CrossRef Grossiord N, Kroon JM, Andriessen R, Blom PWM (2012) Degradation mechanisms in organic photovoltaic devices. Org Electron 13(3):432–456CrossRef
131.
Zurück zum Zitat Yang HB, Song QL, Gong C, Li CM (2010) The degradation of indium tin oxide/pentacene/fullerene/tris-8-hydroxy-quinolinato aluminum/aluminum heterojunction organic solar cells: By oxygen or moisture? Sol Energy Mater Sol Cells 94(5):846–849CrossRef Yang HB, Song QL, Gong C, Li CM (2010) The degradation of indium tin oxide/pentacene/fullerene/tris-8-hydroxy-quinolinato aluminum/aluminum heterojunction organic solar cells: By oxygen or moisture? Sol Energy Mater Sol Cells 94(5):846–849CrossRef
132.
Zurück zum Zitat Norrman K, Gevorgyan SA, Kreb FC (2009) Water-Induced Degradation of Polymer Solar Cells Studied by H218O Labeling. Appl Mater Interfaces 1:102–112CrossRef Norrman K, Gevorgyan SA, Kreb FC (2009) Water-Induced Degradation of Polymer Solar Cells Studied by H218O Labeling. Appl Mater Interfaces 1:102–112CrossRef
133.
Zurück zum Zitat Jørgensen M, Norrman K, Krebs FC (2008) Stability/degradation of polymer solar cells. Sol Energy Mater Sol Cells 92:686–714CrossRef Jørgensen M, Norrman K, Krebs FC (2008) Stability/degradation of polymer solar cells. Sol Energy Mater Sol Cells 92:686–714CrossRef
135.
Zurück zum Zitat Choi MC, Kim Y, Ha CS (2008) Polymers for flexible displays: From material selection to device applications. Prog Polym Sci 33:581–630CrossRef Choi MC, Kim Y, Ha CS (2008) Polymers for flexible displays: From material selection to device applications. Prog Polym Sci 33:581–630CrossRef
136.
Zurück zum Zitat Dennler G, Lungenschmied C, Neugebauer H, Sariciftci N, Latreche M, Czeremuszkin G, Wertheimer M (2006) A new encapsulation solution for flexible organic solar cells. Thin Solid Films 511:349–353CrossRef Dennler G, Lungenschmied C, Neugebauer H, Sariciftci N, Latreche M, Czeremuszkin G, Wertheimer M (2006) A new encapsulation solution for flexible organic solar cells. Thin Solid Films 511:349–353CrossRef
137.
Zurück zum Zitat Lewis JS, Weaver MS (2004) Thin-film permeation-barrier technology for flexible organic light-emitting devices. IEEE J Sel Top Quantum Electron 10:45–57CrossRef Lewis JS, Weaver MS (2004) Thin-film permeation-barrier technology for flexible organic light-emitting devices. IEEE J Sel Top Quantum Electron 10:45–57CrossRef
138.
Zurück zum Zitat Plichta A, Weber A, Habeck A (2003) Ultrathin flexible glass substrates. MRS Proceedings (Cambridge: Cambridge University Press) p H9. 1 Plichta A, Weber A, Habeck A (2003) Ultrathin flexible glass substrates. MRS Proceedings (Cambridge: Cambridge University Press) p H9. 1
139.
Zurück zum Zitat Crawford G (2005) Flexible Flat Panel Displays (New York: Wiley) Crawford G (2005) Flexible Flat Panel Displays (New York: Wiley)
140.
Zurück zum Zitat Shelton SW, Chen TL, Barclay DE, Ma B (2012) Solution-Processable Triindoles as Hole Selective Materials in Organic Solar Cells. ACS Appl Mater Interfaces 4:2534–2540PubMedCrossRef Shelton SW, Chen TL, Barclay DE, Ma B (2012) Solution-Processable Triindoles as Hole Selective Materials in Organic Solar Cells. ACS Appl Mater Interfaces 4:2534–2540PubMedCrossRef
141.
Zurück zum Zitat Kelly TW, PaulFB Chris G, David EE, Dawn M, Michael AH, Dennis EV, Steven DT (2004) Recent progress in organic electronics: materials, devices, and processes. Chem Mater 16:4413–4422CrossRef Kelly TW, PaulFB Chris G, David EE, Dawn M, Michael AH, Dennis EV, Steven DT (2004) Recent progress in organic electronics: materials, devices, and processes. Chem Mater 16:4413–4422CrossRef
142.
Zurück zum Zitat Ramamurthy PC, Harrell WR, Gregory RV, Sadanadan B, Rao AM (2003) Electronic properties of polyaniline/carbon nanotube composites Synthetic Metals. Synth Met 137:1497–1498CrossRef Ramamurthy PC, Harrell WR, Gregory RV, Sadanadan B, Rao AM (2003) Electronic properties of polyaniline/carbon nanotube composites Synthetic Metals. Synth Met 137:1497–1498CrossRef
143.
Zurück zum Zitat Moro L, Visser RJ (2009) Organic Photovoltaics. In: Brabec C, Dyakonov V, Scherf U (eds) Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, p 491 Moro L, Visser RJ (2009) Organic Photovoltaics. In: Brabec C, Dyakonov V, Scherf U (eds) Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, p 491
144.
Zurück zum Zitat Dennler G, Lungenschmied C, Neugebauer H, Sariciftci NS, Labouret AJ (2005) Flexible, Conjugated Polymer-Fullerene-Based Bulk-Heterojunction Solar Cells: Basics, Encapsulation, and Integration. J Mater Res 20:3224–3233CrossRef Dennler G, Lungenschmied C, Neugebauer H, Sariciftci NS, Labouret AJ (2005) Flexible, Conjugated Polymer-Fullerene-Based Bulk-Heterojunction Solar Cells: Basics, Encapsulation, and Integration. J Mater Res 20:3224–3233CrossRef
145.
Zurück zum Zitat Seethamraju S, Ramamurthy PC, Madras G (2013) Ionomer Based Blend as Water Vapor Barrier Material for Organic Device Encapsulation. ACS Appl Mater Interfaces 5:4409–4416PubMedCrossRef Seethamraju S, Ramamurthy PC, Madras G (2013) Ionomer Based Blend as Water Vapor Barrier Material for Organic Device Encapsulation. ACS Appl Mater Interfaces 5:4409–4416PubMedCrossRef
146.
Zurück zum Zitat Adiga V, Rao AD, Kumar S, Raghavan S, Ramamurthy PC (2018) Long term aging studies of graphene/surlyn encapsulated organic photovoltaic devices. 2018 4th ieee international conference on emerging electronics (icee). pp. 1–4 Adiga V, Rao AD, Kumar S, Raghavan S, Ramamurthy PC (2018) Long term aging studies of graphene/surlyn encapsulated organic photovoltaic devices. 2018 4th ieee international conference on emerging electronics (icee). pp. 1–4
147.
Zurück zum Zitat Seethamraju S, Ramamurthy PC, Madras G (2014) Organic passivation layer on flexible Surlyn substrate for encapsulating organic photovoltaics. Appl Phys Lett 105:104102CrossRef Seethamraju S, Ramamurthy PC, Madras G (2014) Organic passivation layer on flexible Surlyn substrate for encapsulating organic photovoltaics. Appl Phys Lett 105:104102CrossRef
148.
Zurück zum Zitat Seethamraju S (2014) RamamurthyPC and Madras G. Performance of an ionomer blend-nanocomposites as an effective gas barrier material for organic device, RSC Adv 4:11176–11187 Seethamraju S (2014) RamamurthyPC and Madras G. Performance of an ionomer blend-nanocomposites as an effective gas barrier material for organic device, RSC Adv 4:11176–11187
149.
Zurück zum Zitat Seethamraju S, Rao AD, Ramamurthy PC, Madras G (2014) Layer-by-layer assembly of Nafion on PEMA ionomer with ultrahigh water vapor barrier. Langmuir 30:14606–14611PubMedCrossRef Seethamraju S, Rao AD, Ramamurthy PC, Madras G (2014) Layer-by-layer assembly of Nafion on PEMA ionomer with ultrahigh water vapor barrier. Langmuir 30:14606–14611PubMedCrossRef
150.
Zurück zum Zitat Kopanati GN, Seethamraju S, Ramamurthy PC, Madras G (2015) A Surlyn/magnesium oxide nanocomposites as an effective water vapor barrier for organic device encapsulation. RSC Adv 5:32580–32587CrossRef Kopanati GN, Seethamraju S, Ramamurthy PC, Madras G (2015) A Surlyn/magnesium oxide nanocomposites as an effective water vapor barrier for organic device encapsulation. RSC Adv 5:32580–32587CrossRef
151.
Zurück zum Zitat Kopanati GN, Ramamurthy PC, Madras G (2016) TiO2/EVOH based reactive interlayer in Surlyn for organic device encapsulation. Mater Res Express 3:025302 Kopanati GN, Ramamurthy PC, Madras G (2016) TiO2/EVOH based reactive interlayer in Surlyn for organic device encapsulation. Mater Res Express 3:025302
152.
Zurück zum Zitat Lertngim A, Phiriyawirut M, Wootthikanokkhan J, Yuwawech K, Sangkhun W, Kumnorkaew P, Muangnapoh T (2017) Preparation of Surlyn films reinforced with cellulose nanofibres and feasibility of applying the transparent composite films for organic photovoltaic encapsulation. Royal Society Open Science 4:170792PubMedPubMedCentralCrossRef Lertngim A, Phiriyawirut M, Wootthikanokkhan J, Yuwawech K, Sangkhun W, Kumnorkaew P, Muangnapoh T (2017) Preparation of Surlyn films reinforced with cellulose nanofibres and feasibility of applying the transparent composite films for organic photovoltaic encapsulation. Royal Society Open Science 4:170792PubMedPubMedCentralCrossRef
153.
Zurück zum Zitat Rukmanikrishnan B, Chae J, Lee J (2020) Rheological, mechanical, thermal and barrier properties of highly elastic polyurethane/zinc ionomer composite films. J Thermoplast Compos Mater Rukmanikrishnan B, Chae J, Lee J (2020) Rheological, mechanical, thermal and barrier properties of highly elastic polyurethane/zinc ionomer composite films. J Thermoplast Compos Mater 
154.
Zurück zum Zitat Jitianu A, Amatucci G, Klein LC (2008) Organic–inorganic sol-gel thick films for humidity barriers. J Mater Res 23(08):2084–2090CrossRef Jitianu A, Amatucci G, Klein LC (2008) Organic–inorganic sol-gel thick films for humidity barriers. J Mater Res 23(08):2084–2090CrossRef
155.
Zurück zum Zitat Samios CK, Kalfoglou NK (1998) Compatibilization of poly(ethylene-co-vinyl alcohol) (EVOH) and EVOH/HDPE blends with ionomers structure and properties. Polymer 39:3863–3870CrossRef Samios CK, Kalfoglou NK (1998) Compatibilization of poly(ethylene-co-vinyl alcohol) (EVOH) and EVOH/HDPE blends with ionomers structure and properties. Polymer 39:3863–3870CrossRef
156.
Zurück zum Zitat Shelat KJ, Dutta NK, Choudhury NR (2008) Interfacial Interaction and Morphology of EVOH and Ionomer Blends by Scanning Thermal Microscopy and Its Correlation with Barrier Characteristics. Langmuir 24:5464–5473PubMedCrossRef Shelat KJ, Dutta NK, Choudhury NR (2008) Interfacial Interaction and Morphology of EVOH and Ionomer Blends by Scanning Thermal Microscopy and Its Correlation with Barrier Characteristics. Langmuir 24:5464–5473PubMedCrossRef
157.
Zurück zum Zitat Morris BA (2007) New Developments in Ionomer Technology for Film Applications. J Plast Film Sheeting 23:97–108CrossRef Morris BA (2007) New Developments in Ionomer Technology for Film Applications. J Plast Film Sheeting 23:97–108CrossRef
158.
Zurück zum Zitat Chen JC (2000) Stearic-Modified Ionomers for Golf Balls US Patent 6,100,321 Chen JC (2000) Stearic-Modified Ionomers for Golf Balls US Patent 6,100,321
159.
Zurück zum Zitat Stats RJ and Chen, JC (2003) Highly Neutralized Ethylene Copolymers and their use in Golf Balls. US Patent 6,653,382 B1 Stats RJ and Chen, JC (2003) Highly Neutralized Ethylene Copolymers and their use in Golf Balls. US Patent 6,653,382 B1
160.
Zurück zum Zitat Chen JC (2007) Development of New Ionomers with Novel Gas Permeation Properties. J Plast Film Sheeting 23:119–132CrossRef Chen JC (2007) Development of New Ionomers with Novel Gas Permeation Properties. J Plast Film Sheeting 23:119–132CrossRef
161.
Zurück zum Zitat Ali S, Ji Y, Zhang Q, Zhao H, Chen W, Wang D, Li L (2019) Preparation of Polyethylene and Ethylene/Methacrylic Acid Copolymer Blend Films with Tunable Surface Properties through Manipulating Processing Parameters during Film Blowing. Polymers 11:1565PubMedPubMedCentralCrossRef Ali S, Ji Y, Zhang Q, Zhao H, Chen W, Wang D, Li L (2019) Preparation of Polyethylene and Ethylene/Methacrylic Acid Copolymer Blend Films with Tunable Surface Properties through Manipulating Processing Parameters during Film Blowing. Polymers 11:1565PubMedPubMedCentralCrossRef
162.
Zurück zum Zitat Molitor RP (1974) Golf ball cover compositions comprising a mixture of ionomer resins. US Patent 3:819–768 Molitor RP (1974) Golf ball cover compositions comprising a mixture of ionomer resins. US Patent 3:819–768
163.
164.
Zurück zum Zitat Akimoto H, Kanazawa T, Yamada M, Matsuda S, Shonaike GO, Murakami A (2001) Impact fracture behavior of ethylene ionomer and structural change after stretching. J Appl Polym Sci 81:1712–1720CrossRef Akimoto H, Kanazawa T, Yamada M, Matsuda S, Shonaike GO, Murakami A (2001) Impact fracture behavior of ethylene ionomer and structural change after stretching. J Appl Polym Sci 81:1712–1720CrossRef
165.
Zurück zum Zitat Kim Y, Cho J, Choe J, Lee J and Lee H, Kwon H (2018) Mechanical and thermal properties of dope dyed P-aramid fabric/surlyn composite. Proceedings of 18 th European Conference on Composite Materials Athens, Greece, 24–28th June, 2018 Kim Y, Cho J, Choe J, Lee J and Lee H, Kwon H (2018) Mechanical and thermal properties of dope dyed P-aramid fabric/surlyn composite. Proceedings of 18 th European Conference on Composite Materials Athens, Greece, 24–28th June, 2018
166.
Zurück zum Zitat Fallahi A, Bahramzadeh Y, Tabatabaie SE et al (2017) A novel multifunctional soft robotic transducer made with poly (ethylene-co-methacrylic acid) ionomer metal nanocomposite. Int J Intell Robot Appl 1:143–156CrossRef Fallahi A, Bahramzadeh Y, Tabatabaie SE et al (2017) A novel multifunctional soft robotic transducer made with poly (ethylene-co-methacrylic acid) ionomer metal nanocomposite. Int J Intell Robot Appl 1:143–156CrossRef
167.
Zurück zum Zitat Ajekwene KK, Johny J, Kurian T (2018) Sodium Salt of Polyethylene-Co-Methacrylic Acid Ionomer/Polyaniline Binary Blends for EMI Shielding Applications. Progress in Electromagnetics Research C 88:207–218CrossRef Ajekwene KK, Johny J, Kurian T (2018) Sodium Salt of Polyethylene-Co-Methacrylic Acid Ionomer/Polyaniline Binary Blends for EMI Shielding Applications. Progress in Electromagnetics Research C 88:207–218CrossRef
168.
Zurück zum Zitat Kim JH, Cho HN, Kim SH, Kim JY (2004) PTC behavior of polymer composites containing ionomers upon electron beam irradiation. Macromol Res 12:53–62CrossRef Kim JH, Cho HN, Kim SH, Kim JY (2004) PTC behavior of polymer composites containing ionomers upon electron beam irradiation. Macromol Res 12:53–62CrossRef
Metadaten
Titel
Poly (ethylene-co-methacrylic acid) (PEMA) ionomers and their applications including self-healing and shape memory applications
verfasst von
Shilpi Tiwari
Dibyendu S. Bag
Mayank Dwivedi
Publikationsdatum
01.03.2024
Verlag
Springer Netherlands
Erschienen in
Journal of Polymer Research / Ausgabe 3/2024
Print ISSN: 1022-9760
Elektronische ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-023-03865-6

Weitere Artikel der Ausgabe 3/2024

Journal of Polymer Research 3/2024 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.